Научная статья на тему 'Novel approaches to chiral meta-mirrors, asymmetric cavities, and polaritons'

Novel approaches to chiral meta-mirrors, asymmetric cavities, and polaritons Текст научной статьи по специальности «Биологические науки»

CC BY
18
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Novel approaches to chiral meta-mirrors, asymmetric cavities, and polaritons»

Novel approaches to chiral meta-mirrors, asymmetric cavities,

and polaritons

D.G. Baranov1

1- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology,

Dolgoprudny 141700, Russia

Geometrical chirality is a universal phenomenon that surrounds us on many different length scales ranging from geometrical shapes of various living organisms to DNA and drug molecules. The majority of molecules involved in biological processes are chiral. Acting on a biological receptor, opposite enantiomers of the same molecule cause different response, perceived as different odor or taste. In pharmaceutics, the opposite enantiomer of a drug molecule can be useless at best, but often it is toxic for the chiral human body. In this regard, there is a great demand from the pharmaceutical industry to develop effective methods of separating chiral enantiomers.

Interaction of chiral matter with circularly polarized electromagnetic fields leads to the effect of circular dichroism, which underlies numerous methods for distinguishing molecular enantiomers. However, those interactions are usually weak and can be well understood without the need to consider a correlated motion between light and matter. If and how strong light-matter interaction can aid those challenging tasks remained largely unclear thus far.

In this talk, I will overview the fundamentals of chirality of light and matter, present optical designs required for realization of chiral polaritonic states, discuss recently developed theoretical models, and speculate on the exciting phenomena that can be enabled by strong coupling between chiral light and matter [1,2]. Recent theoretical efforts indicate that chiral polaritonic systems may feature non-trivial optical phenomena, where the interplay of light and matter chirality plays the key role in determining the eigenfunctions of the system, as well as its response to external electromagnetic fields [3,4]. Finally, I will present how van der Waals technology can be utilized to assemble helical homostructures with chiral properties without the necessity for sophisticated nanofabrication techniques [5]. The proposed strategy is based on the formation of twisted helical van der Waals homostructures with chiral arrangement of biaxial films.

[1] D.G. Baranov, B. Munkhbat, N.O. Länk, R. Verre, M. Käll, T. Shegai, Nanophotonics 9, 283 (2020).

[2] K. Voronin, A.S. Taradin, M.V. Gorkunov, D.G. Baranov, ACS Photonics 9, 2652 (2022).

[3] C. Schäfer and D.G. Baranov, J. Phys. Chem. Lett. 14, 3777 (2023).

[4] D.G. Baranov, C. Schäfer, M.V. Gorkunov, ACS Photonics 10, 2440 (2023).

[5] K.V. Voronin, A.N. Toksumakov, G.A. Ermolaev, A.S. Slavich, M.K. Tatmyshevskiy, S.M. Novikov, A.A. Vyshnevyy, A.V. Arsenin, K.S. Novoselov, D.A. Ghazaryan, and others, Laser & Photonics Reviews, 2301113 (2024).

i Надоели баннеры? Вы всегда можете отключить рекламу.