Научная статья на тему 'Неравномерность движения нагребающей лапы погрузочной машины типа ПНБ в зависимости от ее массы'

Неравномерность движения нагребающей лапы погрузочной машины типа ПНБ в зависимости от ее массы Текст научной статьи по специальности «Механика и машиностроение»

CC BY
270
34
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Записки Горного института
Scopus
ВАК
ESCI
GeoRef
Ключевые слова
ПОГРУЗОЧНАЯ МАШИНА / МЕХАНИЗМ / НАГРЕБАЮЩАЯ ЛАПА / ПАРАМЕТР / ПРОИЗВОДИТЕЛЬНОСТЬ / ТРАЕКТОРИЯ / КОЭФФИЦИЕНТ / МАССА

Аннотация научной статьи по механике и машиностроению, автор научной работы — Тимофеев И. П., Кузькин А. Ю.

Сформулированы требования к траектории движения передней кромки лапы погрузочной машины типа ПНБ для обеспечения максимальной площади захвата насыпного груза при условии вписываемости траектории в размеры приемной плиты. Проанализированы кинематические схемы механизма нагребающих лап. Предложены рациональные параметры механизма, обеспечивающие увеличение объема единичного захвата насыпного груза в 1,5 раза и, как следствие, повышение теоретической производительности машины на 30 %. Представлена методика определения площади, заключенной в сложной траектории движения передней кромки лапы. Разработана математическая модель движения нагребающей лапы с криволинейной хвостовой частью с использованием методов векторной алгебры, центральных разностей второго порядка и триангуляции. Геометрические параметры механизма рабочего органа погрузочной машины описываются линейным уравнением, определяющим функциональную зависимость координат положения передней кромки лапы от угла поворота ведущего звена и параметров кинематической схемы. Исследовано влияние общей массы нагребающей лапы на коэффициент неравномерности хода механизма. Установлено, что перераспределение масс рабочей и хвостовой частей лапы в пределах заданной общей массы снижает коэффициент неравномерности хода.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Тимофеев И. П., Кузькин А. Ю.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Неравномерность движения нагребающей лапы погрузочной машины типа ПНБ в зависимости от ее массы»

ё И.П.Тимофеев, АЮ.Кузькин

Неравномерность движения нагребающей лапы.

УДК 622.619

НЕРАВНОМЕРНОСТЬ ДВИЖЕНИЯ НАГРЕБАЮЩЕЙ ЛАПЫ ПОГРУЗОЧНОЙ МАШИНЫ ТИПА ПНБ В ЗАВИСИМОСТИ ОТ ЕЕ МАССЫ

И.П. ТИМОФЕЕВ, А.Ю.КУЗЬКИН

Санкт-Петербургский горный университет, Россия

Сформулированы требования к траектории движения передней кромки лапы погрузочной машины типа ПНБ для обеспечения максимальной площади захвата насыпного груза при условии вписываемости траектории в размеры приемной плиты. Проанализированы кинематические схемы механизма нагребающих лап. Предложены рациональные параметры механизма, обеспечивающие увеличение объема единичного захвата насыпного груза в 1,5 раза и, как следствие, повышение теоретической производительности машины на 30 %.

Представлена методика определения площади, заключенной в сложной траектории движения передней кромки лапы. Разработана математическая модель движения нагребающей лапы с криволинейной хвостовой частью с использованием методов векторной алгебры, центральных разностей второго порядка и триангуляции. Геометрические параметры механизма рабочего органа погрузочной машины описываются линейным уравнением, определяющим функциональную зависимость координат положения передней кромки лапы от угла поворота ведущего звена и параметров кинематической схемы.

Исследовано влияние общей массы нагребающей лапы на коэффициент неравномерности хода механизма. Установлено, что перераспределение масс рабочей и хвостовой частей лапы в пределах заданной общей массы снижает коэффициент неравномерности хода.

Ключевые слова: погрузочная машина, механизм, нагребающая лапа, параметр, производительность, траектория, коэффициент, масса.

Как цитировать эту статью: Тимофеев И.П. Неравномерность движения нагребающей лапы погрузочной машины типа ПНБ в зависимости от ее массы / И.П.Тимофеев, А.Ю.Кузькин // Записки Горного института. 2016. Т.221. С.717-723. DOI 10.18454/РМ1.2016.5.717

Введение. Повышение эффективности добычи полезных ископаемых подземным способом непосредственно связано с разработкой и созданием новой высокопроизводительной техники, в частности погрузочных и буропогрузочных машин, ускоряющих проведение выработок для подготовки фронта очистных работ.

В настоящее время, несмотря на значительное увеличение доли комбайновой проходки, обусловленной внедрением мощных проходческих комбайнов избирательного действия, широкое применение находят погрузочные машины с нагребающими лапами типа ПНБ [10, 11].

При буровзрывном способе погрузка горной массы осуществляется, в основном, погрузочными машинами непрерывного действия с нагребающими лапами. Их применение возможно для пород любой крепости по шкале Протодьяконова. Погрузочные машины с нагребающими лапами успешно используются при проходке тоннелей, на очистных работах и в складском хозяйстве.

Механизмы рабочих органов и конструкции нагребающих лап постоянно модернизируются, появляются новые технические решения [1, 6, 7, 13], о чем свидетельствует огромное количество патентов и авторских свидетельств. Однако нет метода сравнительной оценки эффективности того или иного рабочего органа погрузочной машины, конструкции нагребающей лапы, не разработаны методики, позволяющие выполнять сравнительный анализ кинематических схем механизмов нагребающих лап с целью выбора наиболее рациональной схемы.

Методы исследования. В современных горных погрузочных машинах непрерывного действия типа ПНБ механизмы нагребающих лап выполнены по следующим кинематическим схемам:

• кривошипно-балансирная (рис.1, а);

• кривошипно-кулисная с прямолинейной кулисой (рис.1, б);

• кривошипно-кулисная с криволинейной кулисой (рис.1, в).

В схемах на рис. 1 приняты следующие условные обозначения: г - радиус кривошипа; R - длина балансира; й\, ё2 -координаты центра вращения балансира относительно центра вращения кривошипа; в - угол отклонения рабочей части лапы от линии шатуна; О\ - центр вращения кривошипа; О3 - центр вращения балансира.

Нагребающие лапы погрузочных машин имеют различную конструктивную форму - прямолинейную с отклонением рабочей части относительно хвостовой на угол в (рис.1, а), двухсекционную с прямолинейными рабочей и хвостовой частями (рис.1, б) и с прямолинейной рабочей и криволинейной хвостовой частями (рис.1, в).

В качестве рациональных критериев оценки кинематических схем приняты форма траектории, описываемая передней кромкой лапы (точка С) в габаритах приемной плиты и площадь, заключенная внутри траектории.

ё И.П.Тимофеев, АЮ.Кузькин

Неравномерность движения нагребающей лапы.

к

3

Рис. 1. Кинематические схемы механизмов нагребающих лап 1 - кривошип; 2 - шатун (а) или кулиса (б, в) ; 3 - балансир (а) или ползун (б, в); 4 - стойка

2

Траектория, описываемая передней кромкой лапы, для достижения наибольшей производительности машины и меньшего сопротивления внедрению лапы в насыпной груз должна удовлетворять следующим требованиям [2, 14, 17]:

• вписываться в габариты приемной плиты погрузочной машины;

• на участке внедрения лапа должна двигаться перпендикулярно передней кромке приемной плиты и отклоняться от перпендикулярности на минимальный угол ±10° для снижения усилия внедрения;

• траектория не должна выходить за пределы бокового габарита приемной плиты с целью предотвращения возможного заклинивания лапы;

• на участке нагребания траектория должна выходить за переднюю кромку плиты на 20-50 мм для предварительного рыхления передней кромкой лапы основания штабеля насыпного груза;

• на участке транспортирования траектория должна пересекать осевую линию приемной плиты для увеличения площади, заключенной внутри траектории, и для уменьшения «мертвых» зон, не охваченных траекторией, и не должна заходить в зону приемного окна конвейера;

• на участке холостого хода траектория не должна пересекать траекторию движения конца кривошипа (точка А на рис. 1);

• площадь, заключенная в траектории движения передней кромки лапы, должна быть максимальной с учетом перечисленных требований.

Для совершенствования рабочих органов погрузочных машин типа ПНБ и конструктивного исполнения нагребающих лап проведена оптимизация параметров кинематических схем на основе синтеза механизмов. Предложена новая форма нагребающей лапы (рис.1, в) [13] и рациональная траектория движения передней кромки лапы для повышения эффективности работы машины.

Для определения траекторий движения точек звеньев использованы методы векторной алгебры [3]. Исследование поворотов звеньев произведено при помощи матриц поворотов [9], определяющих координаты характерных точек. Для исследования кинематики механизмов нагребающих лап использованы аналитические и вычислительные методы. Так, существует матрица, называемая матрицей поворота, умножение которой на координаты вектора позволяет получить координаты вектора, повернутого на некоторый угол. В вычислениях был принят набор углов поворота от 0 до 360° с шагом 1°.

Координаты характерных точек звеньев механизма получены для моментов времени ^ = ф/ю. Задача численного дифференцирования сводилась к определению значений функций у(х): уь у2,..., yN в некоторых точках хь х2,..., xN. В качестве функций выступают координаты точек звеньев, хь х2,..., -моменты времени.

По методу центральных разностей второго порядка производная в точке хк вычисляется по формуле

у'( хк) = -1 - 4 ук + 3 ук+1 .

Хк+1 — Хк—1

Из полученных значений координат точки С дифференцированием определены проекции ее линейной скорости и ускорения на оси х и у и далее получены их модули и направления векторов [5].

Для определения площади фигуры, описываемой точкой С, вычислялась площадь приближающего ее многоугольника, полученного при определении координат точки. Для этого полученный невыпуклый многоугольник триангулировался ушным методом.

ё И.П.Тимофеев, АЮ.Кузькин

Неравномерность движения нагребающей лапы.

В математике известно утверждение [4], что у любого многоугольника существует, по крайней мере, два «уха». Если взять ^-угольник и отрезать от него это «ухо», то образуется (^-1)-угольник. Эту процедуру можно повторять, пока весь многоугольник не окажется нарезанным на треугольники. Когда он нарезан на треугольники, можно вычислить площадь каждого и, суммировав, получить приближение к площади фигуры, описываемой точкой С.

Если точки Ах(хх; ух), А2(х2; у2), А3(х3; у3) - это вершины треугольника, то его площадь выражается формулой

5 = 1 2

Х1" хз Ух " Уз

Х2 - Х3 у2 - у3

Рис.2. Схема нагребающей лапы к математической модели кривошипно-кулисного механизма с криволинейной кулисой

Реализованное в рамках вычисления программное обеспечение позволило определить параметры механизмов, задавая чистые функции [16], связывающие угол поворота ведущего звена О А и координаты характерных точек звеньев механизма. Все необходимые вычисления проводятся автоматически для любой модификации механизма.

На рис.2 представлена схема механизма с условными обозначениями, принятыми в математической модели: г - длина кривошипа ОхА; R - радиус кривизны хвостовой части лапы AD; 1х - длина рабочей части лапы АС; в - острый угол между продолжением касательной к дуге AD в точке А и АС; L - длина дуги AD.

Прямоугольную систему координат выбирали так, чтобы точка Ох в ней совпадала с началом координат - осью вращения кривошипа, а точка О3 имела координаты [йх; d2].

Дальнейшее исследование движения механизма осуществляется в предположении равномерного вращения кривошипа О А с постоянной угловой скоростью ю.

Угол поворота О А в момент времени t равен ф = Ш. Координаты точки Ох - [йх; d2].

Так как длина вектора О1Л равна г, его координаты, а значит и координаты точки А, определяются выражением

О А] = [А] =

г cos ю t г sin юt

Так как точка О3 имеет координаты [йх; d2], координаты вектора ОзА находятся по формуле

[Оз А] = [ОзО1 ] + [О1 А] = [О1 А] - [ООз ] = [А] - [О3 ] =

Г С08 юt - d1 Г 8Ш Юt - d^

Модуль этого вектора равен

|О3А\ = ^О3ЛО3Л г2 + d12 + d2 - 2г(d2 smюt + d1cosюt) .

Точка D лежит на окружности радиусом R, проходящей через точки О3 и А. Для отыскания координат точки D сначала необходимо найти центр окружности. Обозначим его О. Для нахождения этой окружности учтем, что точка О равноудалена от точек О3 и А: |О3А| = |АО|. Из этого следует, что точка О лежит на срединном перпендикуляре к отрезку О3А. Середину этого отрезка обозначим Т: О3Т = ТЛ = 0,5О3Л. Тогда, исходя из того, что точка О лежит на серединном перпендикуляре к отрезку О3А, выполняется условие ОТ ± О3Л.

Орт вектора О А имеет координаты:

1

е03А = '

Юз А|

- = ОА =

1

^г2 + йх2 + й2 - 2г(й2 sinюt + С08ю^

г cos ю t -

Г sin Ю t - йт

Отсюда можно найти единичную нормаль к нему:

X

ё И.П.Тимофеев, АЮ.Кузькин

Неравномерность движения нагребающей лапы.

n

O3A

тJr 2 + dj2 + d 2 - 2r (d 2 sin rot + d, cos rot) Найдем координату точки Т: О3Т = 0,5034 , отсюда

r cos rot - d, - r sin rot - d 2

[Г ]=[Оз ]+ 0,5[0з A] =

dj

- d0

+ 0,5

r cos rot - d, r sin rot - d2

= 0,5

r cos rot + d, r sin rot + d2

Точка О находится от точки А на расстоянии R. Треугольник ОАТ прямоугольный. Гипотенуза АО имеет длину R, таким образом АО = R.

Катет АТ имеет длину, равную половине длины АО3 (так как точка Т - середина отрезка АО3):

\АТ\ = 1| АО3| = r2 + d1 + d2 - 2r(d2 sin rot + dxcos rot).

Тогда катет ТО имеет длину:

|T0| = ^ÍAО2—ATI = 2 - [r2 + dj2 + d22 - 2r (d2 sin rot + dx cos rot)

Так как ТО ортогонален вектору АО3, он коллинеарен вектору нормали nOjA. Значит ТО - один из двух векторов ТО = ±ТОп0зА.

Координаты точки О могут быть найдены из равенства:

[O ]=[Г ]+[ТО ] = 2

r cos rot + dj r sin rot - d2

Í

4 R2 -

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

r2 + dj2 + d2 - 2r(d2 sin rot + d, cos rot)

2д/r2 + d2 + d2 - 2r(d2 sin rot + d, cos rot)

r sin rot - d2 - r cos rot + d,

. (1)

Выбор знака здесь может быть произведен из начальных условий. Во всех расчетах знак оказывался положительным. В этом случае координаты точки О имеют вид равенства (1).

Найдем касательную в точке А к окружности радиусом R с центром в точке О. Так как касательная к окружности ортогональна радиусу в точке касания, то касательная в точке А ортогональна радиусу ОА. Вычислим вектор [ОА] = [А] - [О] по формуле (1).

Так как длина вектора ОА равна R, его орт можно найти по формуле

1

2R

r cos rot - d, r sin rot + d9

J

4R 2 -

r2 + d,2 + d2 + 2r (d 2 sin rot - d, cos rot)

2R^r2 + d,2 + d2 + 2r (d 2 sin rot - d, cos rot)

r cos rot + d, - r sin rot + d9

. (2)

Нормаль к этому вектору (а значит и орт касательной к окружности) находим по формуле (2). Орт вектора АС повернут относительно найденной касательной на угол Р, а значит имеет координаты \влс ] = Х(Р)[х], определяемые по выражению (2).

Так как сам вектор АС имеет длину 1ь его координаты имеют вид выражения (2). Следовательно, координаты точки С можно найти по формуле

[с ]=\л]+\лс ]=

r cos rot cos P - sin P

+ —- sin P cos P

r sin rot 2R

r sin rot + d 2 - r cos rot + d,

r2 + d,2 + d22 + 2r (d2 sin rot - d, cos rot)

2R^Jr2 + d,2 + d2 + 2r (d2 sin rot - d, cos ro t)

r cos rot - d, r sin rot + d0

(3)

Скорость и ускорение точки С находятся дифференцированием выражения (3) по времени. Анализ результатов исследования. Обобщенный анализ взаимного влияния основных параметров рассматриваемых кинематических схем рабочих органов погрузочных машин типа ПНБ [6, 12, 15] на площадь внутри траектории, описываемой передней кромкой лапы, и ее расположение на приемной плите позволил принять рациональное сочетание параметров механизмов, обеспечи-

!

х

X

eOA =

X

ё И.П.Тимофеев, АЮ.Кузькин

Неравномерность движения нагребающей лапы.

ю,с

4,95

4,90

4,85

4,80

4,75

4,70

4,65

4,60

4,55

4,50

4,45

0 30 60 90 120 150 180 210 240 270 300 330 ф, град

Рис.3. Графики зависимости <в = / (ф) 1- модернизированный кривошипно-балансирный механизм; 2 - кривошипно-кулисный механизм с прямолинейной кулисой; 3 - кривошипно-кулисный механизм с криволинейной кулисой

5 -

0,100 -0,095 -0,090 -0,085

0,080 -.......

0,075 -0,070 -0,065 - --' 0,060

110

130

140

150

Рис.4. Графики зависимости 5 = /(т) 1 - кривошипно-кулисный механизм с криволинейной кулисой; 2 - модернизированный кривошипно-балансирный механизм; 3 - кривошипно-кулисный механизм с прямолинейной кулисой

вающих увеличение площади внутри траектории в 1,5 раза и, как следствие, повышение теоретической производительности на 30 %. Геометрические параметры кинематических схем механизмов нагребающих лап погрузочных машин:

Тип механизма r, мм d1, мм d2, мм ß, град R, мм Площадь, м2

Модернизированный кривошипно-балансирный 250 -180 430 5 - 0,504

Кривошипно-кулисный с прямолинейной кулисой 250 -15 380 30 - 0,470

Кривошипно-кулисный с криволинейной кулисой 250 90 400 5 1100 0,461

Увеличение объема единичного захвата насыпного груза приводит к повышению технологической нагрузки (рабочего сопротивления) на исполнительный орган погрузочной машины. Технологическая нагрузка, формируемая в разные фазы движения лапы по траектории в процессе взаимодействия с насыпным грузом, не является постоянной [8].

Оценка динамики ведущего звена для исследуемых схем получена расчетом коэффициента неравномерности его хода. На рис.3 представлены графики зависимости угловой скорости ведущего звена (кривошипа) ю в функции угла поворота кривошипа ф, полученные на основании результатов компьютерного моделирования, при условии сохранения общей массы лапы m = 130 кг, соответствующей массе лапы погрузочной машины параметрического ряда, и при соотношении масс рабочей и хвостовой частей лапы, равной 1,0.

Минимальные и максимальные значения угловых скоростей составили: для модернизированного кривошипно-балансирного механизма - 4,50 и 4,91 с-1; для кривошипно-кулисного механизма с прямолинейной кулисой - 4,48 и 4,93 с-1; для кривошипно-кулисного механизма с криволинейной кулисой - 4,61 и 4,94 с-1.

Расчетные значения коэффициентов неравномерности хода ведущего звена: для модернизированного кривошипно-балансирного механизма 5 = 0,085; для кривошипно-кулисного механизма с прямолинейной кулисой 5 = 0,0904 и для кривошипно-кулисного механизма с криволинейной кулисой 5 = 0,0675. Коэффициент неравномерности вычислялся по формуле

5 _ < max < min

<ср

где ютах и ютт - максимальная и минимальная угловая скорость за цикл движения механизма, с-1; юср - средняя угловая скорость за цикл движения механизма, с-1.

Следует отметить, что для кривошипно-кулисной схемы с криволинейной кулисой коэффициент неравномерности движения в 1,4 раза меньше в сравнении с кривошипно-кулисной с прямолинейной кулисой и в 1,3 раза - в сравнении с кривошипно-балансирной.

Для погрузочных машин различного типоразмера массы лап т = 120-160 кг. Результаты исследования влияния общей массы лапы т на коэффициент неравномерности движения механизма 5 для рассматриваемых кинематических схем представлены на рис.4.

m, кг

ё И.П.Тимофеев, АЮ.Кузькин

Неравномерность движения нагребающей лапы.

5 1

0,086 0,084 0,082 1 0,08 0,078 0,076 -0,074 -0,072 -0,07

55

5

0,105 0,1 -

0,095 -0,09 0,085 0,08

55

5 -

0,75 -0,7 0,065 0,06 0,055 -|

0,05

55

ч. 3

2

65

75

85

95

105 т!, кг

4

1

75

95

т!, кг

4

3

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

75

95

115

135 ть кг

Рис.5. Графики зависимости 5 = ^ту) для кривошипно-балансирного механизма (а); кривошипно-кулисного механизма с прямолинейной кулисой (б); кривошипно-кулисного механизма с криволинейной кулисой (в)

1 - т = 120 кг; 2 - 130; 3- 140; 4 - 150; 5 - 160

Установлена линейная зависимость 5 = /(т) для всех исследуемых схем. При этом для кривошипно-балансирной схемы изменение неравномерности хода 5 при увеличении массы лапы т незначительно и составляет для 120 кг -0,0726 и для 160 кг - 0,0826; для кривошипно-кулисной схемы с прямолинейной кулисой для 120 кг - 0,0851 и для 160 кг - 0,1054; для кри-вошипно-кулисной схемы с криволинейной кулисой для 120 кг - 0,0645 и для 160 кг - 0,0804.

Установлено снижение коэффициента неравномерности хода 5 при смещении центра масс нагребающей лапы в сторону ее хвостовой части. С увеличением массы хвостовой части лапы т! коэффициент неравномерности хода механизма снижается для всех принятых значений масс т.

На рис.5, а представлены графики зависимости коэффициента неравномерности хода 5 от массы хвостовой части лапы т! для кривошип-но-балансирного механизма.

Результаты исследования показали, что увеличение в 1,5 раза массы хвостовой части лапы т! по отношению к массе рабочей части т0 снижает коэффициент неравномерности хода на 15 % для всех значений масс лапы.

На рис.5, б, в представлены графики зависимости коэффициента неравномерности хода 5 от массы хвостовой части лапы т! для криво-шипно-кулисного механизма с прямолинейной кулисой и с криволинейной кулисой. Для исследуемых механизмов установлена параболическая зависимость изменения коэффициента неравномерности хода 5 от массы хвостовой части лапы т\. Увеличение массы хвостовой части лапы т! ведет к снижению коэффициента неравномерности хода кривошипа.

Анализ графиков на рис.5 показал, что с увеличением массы хвостовой части лапы т! коэффициент неравномерности хода механизма 5 снижается для всех принятых значений масс лапы т для исследуемых механизмов.

а

5

4

б

5

3

2

в

5

2

1

Выводы

1. На основании анализа кинематической схемы механизма рабочего органа погрузочной машины типа ПНБ установлено, что параметры кривошипно-балансирного механизма нагребающей лапы не позволяют получить траектории, полностью отвечающие целевым функциям и поставленным ограничениям.

2. Математическая модель механизма рабочего органа погрузочной машины с нагребающими лапами описывается линейным уравнением, определяющим функциональную зависимость координат положения передней кромки лапы от угла поворота ведущего звена и геометрических параметров кинематической схемы.

3. Коэффициенты неравномерности движения механизма для массы лапы, соответствующей массе базовой модели погрузочной машины типа ПНБ (т = 130 кг) равны: для кривошипно-балансирной схемы 0,085; для кривошипно-кулисной с прямолинейной кулисой 0,0904; для кривошипно-кулисной с криволинейной кулисой 0,0675.

Записки Горного института. 2016. Т.221. С.717-723

ё И.П.Тимофеев, АЮ.Кузькин

Неравномерность движения нагребающей лапы.

4. Установлена линейная зависимость коэффициента неравномерности хода 5 от массы лапы m. При увеличении массы m от 120 до 160 кг коэффициент неравномерности изменяется от 0,0726 до 0,0826 для кривошипно-балансирного механизма; от 0,0851 до 0,1054 для кривошипно-кулисного с прямолинейной кулисой и от 0,0645 до 0,0804 для кривошипно-кулисного с криволинейной кулисой.

5. Для исследуемых механизмов установлена параболическая зависимость коэффициента неравномерности хода механизма от массы хвостовой части лапы. Увеличение массы хвостовой части лапы ведет к снижению коэффициента неравномерности движения.

6. Установлено снижение коэффициента неравномерности хода для кривошипно-кулисного механизма с криволинейной кулисой в 1,4 раза в сравнении с кривошипно-кулисным с прямолинейной кулисой и в 1,3 раза в сравнении с кривошипно-балансирным.

ЛИТЕРАТУРА

1. Афонина Н.Б. К разработке методики исследования погрузочных органов проходческих комбайнов с нагребающими звездами // Горное оборудование и электромеханика. 2013. № 2. С.25-30.

2. ВасильеваМ.А. Повышение производительности погрузочной машины совершенствованием механизма нагребающих лап: Автореф. дис.. .канд. техн. наук / Национальный минерально-сырьевой университет «Горный». СПб, 2012. 21 с.

3. ВержбицкийВ.М. Основы численных методов: М.: Высшая школа, 2002. 840 с.

4. Волков Е.А. Численные методы. М.: Наука, 1987. 248 с.

5. Евграфов А.Н. Расчет и проектирование механизмов и машин с помощью ЭВМ / СПбГТУ. СПб, 1992. 80 с.

6. К вопросу систематизации конструкции и кинематических схем погрузочных органов непрерывного действия / А.В.Отроков, Г.Ш.Хазанович, И.Е.Колесниченко, В.Г.Хазанович // Современные проблемы науки и образования. 2014 № 4. URL: www.science-education.ru/118-13857.

7. Кравченко П.Д. Влияние неравномерности перемещения нагребающих лап на производительность и энергоемкость погрузки / П.Д.Кравченко, И.Ф.Рюмин // Труды Новочеркасского политехнического ин-та. 1970. Т.218. С.119-125.

8. Крисаченко Е.А. Исследование процесса взаимодействия рабочего органа погрузочных машин с парными нагребающими лапами со штабелем насыпного крупнокускового материала: Автореф.. .канд. техн. наук / ЮРГПУ. Новочеркасск. 1971. 21 с.

9. Лойцянский Л.Г. Курс теоретической механики / Л.Г.Лойцянский, А.И.Лурье. В 2-х т. Т.2. М.: Наука, 1983. 640 с.

10. Малевич Н.А. Горнопроходческие машины и комплексы. М.: Недра, 1980. 384 с.

11. Машины и оборудование для проведения горизонтальных и наклонных горных выработок / Под общей ред. Б.Ф.Братченко. М.: Недра, 1975. 416 с.

12. Обоснование рациональных параметров механизма нагребающих лап шахтной погрузочной машины / Н.А.Белоус, А.Ю.Кузькин, Г.В.Соколова, И.П.Тимофеев // Современные проблемы науки и образования. 2014. № 4. URL: www.science-education.ru/118-13901.

13. Патент № 2560013 РФ. Погрузочная машина / И.П.Тимофеев, Г.В.Соколова, Н.А.Белоус, А.Ю.Кузькин, Г.А.Колтон. 0публ.20.08.15. Бюл. № 23.

14. Тимофеев И.П. Влияние геометрических параметров механизма нагребающих лап шахтной погрузочной машины на ее производительность / И.П.Тимофеев, М.А.Васильева, А.Ю.Кузькин // Материалы Международной научно-практической конференции молодых ученых и студентов «Опыт прошлого - взгляд в будущее»; ТулГУ. Тула, 2011. C.56-58.

15. Тимофеев И.П. Оптимизация параметров механизма нагребающей лапы погрузочной машины типа ПНБ / И.П.Тимофеев, Н.А.Белоус, А.Ю.Кузькин // Записки Горного института. 2014. Т.209. C.13-17.

16. ФилдА. Функциональное программирование / А.Филд, П.Харрисон. М.: Мир, 1993. 637 с.

17. Хазанович Г.Ш. Теоретические исследования формирования нагрузок в клиновом тягово-транспортирующем органе проходческого перегружателя / Г.Ш.Хазанович, Р.В.Каргин, А.С.Носенко // Научно-технические и социально-экономические проблемы Российского Донбасса: Материалы 49-й научно-производственной региональной конференции; СКНЦ ВШ. Ростов-на-Дону. 2000. С.109-114.

Авторы: И.П.Тимофеев, д-р техн. наук, профессор, [email protected] (Санкт-Петербургский горный университет, Россия), А.Ю.Кузькин, канд. техн. наук, доцент, [email protected] (Санкт-Петербургский горный университет, Россия).

Статья принята к публикации 28.04.2016.

i Надоели баннеры? Вы всегда можете отключить рекламу.