Научная статья на тему 'Мультифрактальные характеристики поверхности тонких газочувствительных пленок медьсодержащего полиакрилонитрила'

Мультифрактальные характеристики поверхности тонких газочувствительных пленок медьсодержащего полиакрилонитрила Текст научной статьи по специальности «Нанотехнологии»

CC BY
37
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
тонкие пленки / полиакрилонитрил / теория самоорганизации / мультифрактальный флуктуационный анализ / thin films / polyacrylonitrile / selforganization theory / multifractal fluctuation analysis

Аннотация научной статьи по нанотехнологиям, автор научной работы — Т В. Семенистая, Н К. Плуготаренко

Проведено исследование поверхности тонких пленок медьсодержащего полиакрилонитрила (ПАН) методом атомно-силовой микроскопии. Плотность распределения по высоте профиля поверхности была проанализирована методом мультифрактального детрендированного флуктуационного анализа (МФДФА). В качестве параметров для этого анализа использовались фрактальная размерность, корреляционная размерность, скейлинговый показатель, показатель Херста (Н). Исследование поверхности тонких пленок медьсодержащего ПАН методом МФДФА подтвердило предположение о мультифрактальности поверхности. Технологические особенности получения пленок определяют повторяемость встречаемости структур разной фрактальной размерности по поверхности пленок, что отражается на показателе Херста. Перегиб на мультифрактальном спектре присутствует в тех случаях, когда пленки обладают газочувствительностью с коэффициентом S = 0,35 и более.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Т В. Семенистая, Н К. Плуготаренко

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

In this paper, the study of the surface of thin films of copper-containing polyacrylonitrile (PAN) was carried out by atomic force microscopy. The distribution function over the height of the surface profile was analyzed by the method of multifractal detrended fluctuation analysis (MPDFA). The parameters for this analysis were: the fractal dimension, the correlation dimension, the scaling index, the Hurst index (H). Investigation of the surface of thin films of copper-containing PAN using MFDFA confirmed the assumption that the surface is multifractal. Technological features of the production of films determine the frequency of occurrence of structures of different fractal dimensions along the surface of the films, which is reflected in the Hurst index. The bend on the mulfractal spectrum is present in cases where the films have gas sensitivity with a coefficient S = 0.35 or more.

Текст научной работы на тему «Мультифрактальные характеристики поверхности тонких газочувствительных пленок медьсодержащего полиакрилонитрила»

Мультифрактальные характеристики поверхности тонких газочувствительных пленок медьсодержащего полиакрилонитрила

Т. В. Семенистая, Н. К. Плуготаренко

Южный федеральный университет, Институт нанотехнологий, электроники и приборостроения, г. Таганрог, 347922, Ростовская обл., Россия, e-mail: [email protected]

Поступила 15.10.2018 После доработки 04.02.2019 Принята к публикации 08.02.2019

Проведено исследование поверхности тонких пленок медьсодержащего полиакрилонитрила (ПАН) методом атомно-силовой микроскопии. Плотность распределения по высоте профиля поверхности была проанализирована методом мультифрактального детрендированного флук-туационного анализа (МФДФА). В качестве параметров для этого анализа использовались фрактальная размерность, корреляционная размерность, скейлинговый показатель, показатель Херста (Н). Исследование поверхности тонких пленок медьсодержащего ПАН методом МФДФА подтвердило предположение о мультифрактальности поверхности. Технологические особенности получения пленок определяют повторяемость встречаемости структур разной фрактальной размерности по поверхности пленок, что отражается на показателе Херста. Перегиб на мультифрактальном спектре присутствует в тех случаях, когда пленки обладают газочувствительностью с коэффициентом S = 0,35 и более.

Ключевые слова: тонкие пленки, полиакрилонитрил, теория самоорганизации, мультифрак-тальный флуктуационный анализ.

УДК 541.123:54621 Б01: 10.5281/7епоао.2629548 ВВЕДЕНИЕ

Использование органических полупроводниковых материалов в качестве газочувствительных слоев открывает широкие возможности для создания датчиков нового поколения с улучшенными функциональными и метрологическими характеристиками. Неоспоримыми преимуществами указанного класса соединений являются химическая и термическая стабильность и их способность к обратимому присоединению различных молекул.

К органическим полупроводникам относятся органические полимеры с системой сопряженных п-связей (сопряженные полимеры) и могут быть использованы в качестве чувствительного слоя сенсоров резистивного типа. Цепь полисопряжения не всегда представлена в первичной структуре полимера, возможно ее образование при пирохимической или термической обработке соединения. Сопряженные полимеры обладают уникальными свойствами благодаря своему химическому строению, за счет чего они приобретают электрические свойства проводящих материалов и имеют механические свойства обычных полимеров. Система полисопряжения служит потенциальным источником носителей заряда.

Электрические характеристики сопряженных полимеров находятся в широком диапазоне значений [1].

Объектом наших исследований является полиакрилонитрил (ПАН), относящийся к замещенным полиолефинам, первичная структура которого не имеет сопряженных п-связей, что соответствует диэлектрическому состоянию вещества. При температурной обработке ПАН протекает ряд термохимических реакций, что приводит к образованию карбонизированного соединения [2], который делает этот полимер перспективным материалом для применения в оптоэлектронике, микро- и наноэлектронике, в качестве сенсоров и биосенсоров, в вакуумной электронике для создания дисплеев. ИК-пиролизованный ПАН обладает уникальными свойствами, которые могут сильно изменяться в зависимости от состава пленкообразующего раствора, способа получения и выбора модифицирующих добавок.

Применение пленок металлсодержащего ПАН в качестве газочувствительного элемента сенсора базируется на адсорбционно-резистивном эффекте и состоит в изменении сопротивления при селективном поглощении молекул газа. Оптимизация адсорбционно-резистивных

свойств ПАН может достигаться введением в

© Семенистая Т.В., Плуготаренко Н.К., Электронная обработка материалов, 2019, 55(2), 52-59.

ПАН солей переходных металлов в небольших концентрациях либо управлением надмолекулярной структурой за счет различных методов формирования пленок материала.

Проблема получить функциональные материалы с оптимальными характеристиками, используя заданные технологические параметры для их формирования, является актуальной для современной микро- и наноэлектроники. Морфология поверхности пленок ПАН и структура полимерной молекулы взаимосвязаны через процессы, протекающие при формировании структуры материала. Управление процессами формирования материала пленок ПАН и их свойствами с использованием заданных технологических параметров с целью формирования материалов с принципиально новыми свойствами лежит в основе интереса к материалам ПАН.

В настоящее время происходит значительный скачок в улучшении качества изображений, сделанных атомно-силовым микроскопом (АСМ), поверхности материалов благодаря развитию технологий сканирования. Это дает возможность получить больше информации, проводя более качественный анализ таких изображений с использованием интеллектуальных методов обработки данных. Ряд функциональных свойств композитных материалов напрямую зависит от организации структуры поверхности - это электропроводность, газочувствительность, стабильность, механическая прочность. Наличие фрактально-перколя-ционных структур часто является важным показателем, ведущим к возможности придания определенных свойств материалам.

Исследование поверхностных свойств тонких пленок медьсодержащего ПАН важно для оптимизации технологических режимов его получения с целью улучшения газочувствительных свойств материала. АСМ-изображение поверхности таких пленок может служить отправной точкой для их анализа методами нелинейной динамики и теории информации [3-6]. Процессы самоорганизации, протекающие при формировании изучаемых органических полимерных материалов, дают возможность образования фрактальных структур разной размерности. Это явление может стать определяющим при формировании центров адсорбции при взаимодействии газа с поверхностью пленки. Метод мультифрактального детрендированного флукту-ационного анализа (МФДФА) широко применяется в различных областях для анализа данных [7-9] и позволяет определить степень муль-тифрактальности поверхности пленок, так как такие показатели, как коэффициент шерохо-

ватости и геометрическая фрактальная поверхность, не коррелируют с коэффициентом газочувствительности. В данной работе предложено использовать этот метод для исследования поверхности тонких пленок медьсодержащего ПАН для подтверждения мультифрактальности.

МЕТОДЫ ИССЛЕДОВАНИЯ

Тонкие пленки полиакрилонитрила были получены под действием ИК-отжига или термоотжига [10-12]. В качестве добавок использовали соли меди.

Чувствительность пленок оценивали с помощью коэффициента газочувствительности S, который рассчитывается как:

S = (Ro - Rg)/Ro, при Ro > Rg, (1)

где Ro - значение сопротивления пленки на воздухе; Rg - значение сопротивления пленки в атмосфере детектируемого газа.

В данной работе исследование поверхности тонких пленок медьсодержащего ПАН проведено методом атомно-силовой микроскопии. Изображения поверхности размером 5^5 мкм2 были получены с использованием сканирующего микроскопа Solver P47 Pro (NT-MDT) и обработаны с использованием программы Image Analysis. Плотность распределения по высоте профиля поверхности была проанализирована методом мультифрактального детрендиро-ванного флуктуационного анализа. В качестве параметров для этого анализа использовались фрактальная размерность, корреляционная размерность, скейлинговый показатель, показатель Херста (Н).

Исследование поверхности тонких пленок медьсодержащего полиакрилонитрила методом МФДФА подтвердило предположение о мультифрактальности поверхности. Технологические особенности получения пленок определяют регулярность встречаемости структур разной фрактальной размерности по поверхности пленок, что отражается на показателе Херста. Перегиб на мультифрактальном спектре присутствует в тех случаях, когда пленки обладают газочувствительностью с коэффициентом S = 0,35 и более.

Таким образом, предложенный метод анализа изображений поверхности пленок композитных материалов обладает прогностической функцией при определении свойств материалов на основании характеристики степени фракталь-ности и хаотичности образующихся на поверхности структур.

При оценивании параметра Н для самоподобных временных рядов используется метод

детрендированного флуктуационного анализа (ДФА) [13, 14]. В этом случае для исходного ряда данных x(t) строится кумулятивный ряд

y (t ) = Е t_1 x (t), который разбивается на N

сегментов длиной s. Для каждого сегмента y(t) вычисляется флуктуационная функция:

F2 (s) = 1ЕХ_1 (y(t)-Ym (t))) (2)

где Ym(t) - локальный m-полиномиальный тренд в пределах данного сегмента.

Функция F(s) усредняется по всему ряду y(t). Такие вычисления повторяются для различных размеров сегментов, чтобы получить зависимость F(s) в широком диапазоне значений параметра s. Для процессов с фрактальными свойствами с ростом s функция F(s) также возрастает, и линейная зависимость log F(s) от log s свидетельствует о наличии свойства масштабной инвариантности:

F(s) ® sH. (3)

При исследовании свойств мультифрак-тальных процессов применяется мультифрак-тальный флуктуационный анализ [15, 16]. При проведении МФДФА исследуется зависимость флуктуационной функции Fq(s) от параметра q:

Fq (s) = ^-1ZN=,[F2 М]2}', (4)

полученной возведением выражения (2) в степень q и последующим усреднением по всем сегментам. Изменяя временную шкалу s при фиксированном показателе q, находим зависимость Fq(s), представляя ее в двойных логарифмических координатах. Если исследуемый ряд сводится к мультифрактальному множеству, проявляющему долгосрочные зависимости, то флуктуационная функция Fq(s) представляется степенной зависимостью:

Fq(s) ® sh(q) (5)

с функцией обобщенного показателя Херста h(q). Для рядов данных, которые отвечают монофрактальному множеству, флуктуационная функция Fq(s) одинакова для всех сегментов, и обобщенный показатель Херста h(q) = H не зависит от параметра q. Для мультифрактальных рядов h(q) является нелинейной функцией: при положительных q основной вклад в функцию Fq(s) дают сегменты, проявляющие большие отклонения F 2(s), а при отрицательных q доминируют сегменты с малыми дисперсиями F 2(s). Таким образом, при отрицательных значениях q обобщенный показатель Херста h(q) описывает

сегменты, проявляющие малые флуктуации, а при положительных - большие. Параметр Н (0 < Н < 1), называемый показателем Херста, представляет собой степень самоподобия. Наряду с этим свойством показатель Н характеризует меру долгосрочной зависимости стохастического процесса.

В работе [16] отмечается, что одним из недостатков оценивания мультифрактального спектра является то, что оценивается верхняя огибающая истинного спектра. Это может приводить к неправильной интерпретации численных результатов, поскольку при истинном дискретном спектре / (а) полученная огибающая будет включать множество ложных точек. Поэтому в случае рядов небольшой длины возникает необходимость проведения дополнительных исследований для подтверждения наличия мультифрактальных свойств.

Основные этапы мультифрактального детрендированного флуктуационного анализа реализованы в программной среде МЛТЬЛБ.

РЕЗУЛЬТАТЫ

В данной работе были проанализированы АСМ-изображения поверхности тонких газочувствительных пленок медьсодержащего ПАН, полученных в различных технологических режимах и проявивших газочувствительные свойства к диоксиду азота (табл. 1).

На рис. 1 представлены характерные АСМ-изображения пленок и соответствующие им функции распределения высоты профиля. Полученные функции распределения высоты профиля поверхности были обработаны методом МФДФА. Для сравнения показатели Херста были приведены в сравнении с белым шумом и рядом данных, характеризующих монофрактал.

Мультифрактальные ряды данных имеют два минимума и два максимума амплитуды колебаний, что отсутствует в монофрактале. Отсутствие флуктуаций с минимальными и максимальными колебаниями проистекает из нормального распределения монофрактального ряда данных, где изменение характеризуется изменением статистического момента второго порядка. В мультифрактальных рядах данных локальные флуктуации являются верхним пределом колебаний для сегментов в рамках длительного периода флуктуаций и нижним пределом для сегментов малого периода флуктуаций. Различие мультифрактальных и монофрактальных рядов продемонстрировано на рис. 2.

Экспонента Херста д-го порядка (Нд) является одной из нескольких типов скейленговой экспоненты, параметризующей мультифрактальную структуру рядов данных.

Таблица 1. Значения коэффициента газочувствительности пленок медьсодержащего ПАН по отношению к диоксиду азота, с(М02) = 146 ррт

№ Образец Коэффициент газочувствительности при 20°С, отн. ед.

1 ПАН/СиС12 1% Си, ИК-отжиг 200°С 10 мин, 500°С 10 мин 0,15

2 ПАН/СиС12 2% Си, ИК-отжиг 200°С 10 мин, 500°С 10 мин 0,02

3 ПАН/СиС12 1% Си, термоотжиг 200°С 840 мин 0,35

4 ПАН/СиС12 2% Си, термоотжиг 200°С 840 мин 0,49

5 ПАН/СиС12 3% Си, термоотжиг 200°С 840 мин 0,18

6 ПАН/Си(Ш3)21% Си, ИК-отжиг 200°С 10 мин, 500°С 10 мин 0,03

7 ПАН/Си(Ш3)2 1% Си, термоотжиг 200°С 840 мин 0,28

8 ПАН/СиС12 3% Си, ИК-отжиг 600°С 0,18

9 ПАН/СиС12 3% Си, ИК-отжиг 700°С 0,08

10 ПАН/СиС12 3% Си, ИК-отжиг 800°С 0,12

Рис. 1. АСМ-изображения и соответствующие им функции распределения высоты профиля пленок медьсодержащего ПАН, полученных в разных режимах отжига: (а) а (СиС12) = 2%, термоотжиг 200°С 840 мин; (б) а (СиС12) = 3%, термоотжиг 200°С 840 мин; (в) а (СиС12) = 3%, ИК-отжиг 600°С.

200 400 600 800 1000 1200 1400 1600 1800 2000 Рис. 2. Монофрактальные и мультифрактальные ряды.

-5-4-3-2-] 0 12 3 4 5 Ч

I

-5-4-3-2-1 0 1 2 3 4 5 Ч

Л

Мультифрактальны й спектр

ЬЯтах-Ншп

_|_I_I_I_I_I_I_1_

0,2 0,6

1,4

0

ч Ьч

Рис. 3. Графическая иллюстрация для вычисления экспоненциального множества д-го порядка ), сингулярности кд и сингулярной размерности Бд.

Типичная процедура в МФДФА - конвертирование Нд в экспоненциальное множество д-го порядка (д) и затем преобразование его в сингулярность кд и сингулярную размерность д-го порядка Од. Функция кд в зависимости от Од показывает мультифрактальный спектр.

Экспоненциальное множество д-го порядка (д может быть вычислено через Нд. Экспоненциальное множество 1Ч используется для вычисления сингулярности кд и сингулярной размерности Од. Графическая иллюстрация приведена на рис. 3, где показатель tq для монофрактала и белого шума является линейной д-зависимостью, поэтому постоянная кд сводит мультифрак-тальный спектр к небольшой дуге для рядов монофрактала и белого шума. В отличие от них мультифрактальные временные ряды имеют множество tq с искривленной д-зависимостью и, следовательно, уменьшающуюся сингулярность кд. Результирующий мультифрактальный спектр имеет большую величину, чем разница между максимальным и минимальным кд, которая называется шириной мультифрактального спектра. Показатель Херста для монофракталов представляет среднюю фрактальную структуру

временного ряда и тесно связан с центральной тенденцией мультифрактального спектра. Отклонение от средней фрактальной структуры для сегментов с большими и малыми колебаниями представлено шириной мультифрак-тального спектра. Нужно обратить внимание, что форма мультифрактального спектра на рис. 3 не является симметричной. Мультифрактальный спектр имеет длинный левый «хвост», свидетельствующий о том, что имеются фрактальные структуры, нечувствительные к локальным колебаниям с небольшими величинами.

На рис. 4 представлены результаты МФДФА для трех пленок, полученные в различных технологических режимах, для которых мультифрак-тальные спектры отличаются. Они показывают типы спектров, полученных в данном исследовании.

В первом случае (рис. 4а) поверхность неоднородна, но показатель Херста имеет достаточно высокие значения. На мультифрактальном спектре имеется явный двойной перегиб, что свидетельствует о наличии трех локальных областей с различным показателем Херста.

(а)

(б)

(в)

Рис. 4. Локальные экспоненты Херста (красным отмечена монофрактальная серия, голубым - белый шум, синим -исследуемая серия) и соответственно мультифрактальные спектры пленок медьсодержащего ПАН, полученных в разных режимах отжига: (а) а (СиС12) = 2%, термоотжиг 200°С 840 мин; (б) а (СиС12) = 3%, термоотжиг 200°С 840 мин; (в) а (СиС12) = 3%, ИК-отжиг 600°С.

Таблица 2. Результаты исследований методом МФДФА пленок медьсодержащего ПАН

Образец Максимальный коэффициент газочувствительности 5 при 20°С, отн. ед. Показатель Херста Особенности мультифрактального спектра

ПАН/СиС12 2% Си, термоотжиг 200°С 840 мин 0,40-0,70 0,72-0,76 Двойной перегиб

ПАН/СиС12 3% Си, термоотжиг 200°С 840 мин 0,10-0,29 0,59-0,67 Одинарный перегиб

ПАН/СиС12 3% Си, ИК-отжиг 600°С 0,12-0,19 0,73-0,75 Перегиб отсутствует

Во втором случае (рис. 4б) поверхность неоднородна, распределение по высоте профиля имеет плато, перегиб на мультифрактальном спектре присутствует, но выражен неявно.

В третьем случае (рис. 4в) на поверхности пики распределены более равномерно. Функция распределения по высоте профиля близка к нормальной. На мультифрактальном спектре присутствует перегиб.

Результаты исследований, сформированные в три характерные группы, приведены в табл. 2.

ОБСУЖДЕНИЕ

Для проведения МФДФА были выбраны образцы металлоорганических пленок двух видов, формирование структуры и морфологии которых является результатом высокоинтенсивного кратковременного воздействия ИК излучением и более длительного низкотемпературного воздействия нагревом. Как видно из табл. 1, газочувствительностью обладают все образцы, но в разной степени: в зависимости от способа термообработки материала и от концентрации меди в пленкообразующих растворах. Использование заданных технологических параметров позволяет управлять формированием структуры ПАН на молекулярном уровне и получить материал с определенными электрофизическими характеристиками, но не обеспечивает однозначный прогноз газочувствительных свойств, поскольку влияние структуры следует рассматривать на уровне микроструктуры пленки. Использование свойства растворов ПАН образовывать гель при охлаждении обеспечивает равномерное распределение добавки солей меди и закрепление в объеме органической матрицы. Это позволяет создавать нанокомпо-зитные структуры и на наноуровне обеспечивать формирование развитой поверхности пленочных материалов.

АСМ-анализ поверхностей пленок показал, что несколько образцов с внешне различной морфологией имели сходные функции распределения высоты профилей. Проведенные исследования показали, что применение различных температурно-временных режимов формирования полимерной нанокомпозитной пленки и модифицирование ее переходным металлом с разной процентной концентрацией приводят к существенному изменению морфологии их поверхности.

На рис. 2-4 в сравнении с рядами данных монофракталов и белого шума показано, что обработанные методом МФДФА исследуемые ряды данных функций распределения высоты

профилей обладают мультифрактальными характеристиками.

На рис. 4 различия между всеми среднеквад-ратическими отклонениями (СКО) постепенно уменьшаются с увеличением масштаба. Такое схождение неизбежно для мультифрактальных колебаний вследствие линейного сродства между всеми ^ и допущения монотонного убывания экспоненты Херста. Локальное схождение для локальных СКО используют для оценки локальной экспоненты Херста.

При значениях 0,5 < Н < 1 ряд демонстрирует персистентное поведение. Если персистентный ряд возрастал (убывал) в предыдущий период, то чем ближе показатель Херста к 1, тем с большей вероятностью будет сохраняться тенденция поведения этого ряда в течение такого же периода в будущем. Если взять в качестве исходных данных плотность распределения по высоте профиля, то интерпретация будет следующая: чем ближе показатель Херста к 1, тем выше повторяемость структуры на протяжении некоторого расстояния.

Анализ показал, что увеличение температуры и времени отжига приводит к увеличению показателя Херста, что свидетельствует о присутствии дальнодействующих корреляций в структуре поверхности пленок. Но высокий показатель Херста характерен как для структур с перепадом высот до 200 нм при относительно невысоких температурах отжига, так и для поверхности с меньшим перепадом. В первом случае пленки обладают высоким коэффициентом газочувствительности, во втором - низким.

При обработке методом МФДФА исследуемых образцов были обнаружены одинарный и двойной перегибы на мультифрактальном спектре, что свидетельствует о присутствии на поверхности пленок структур различной фрактальной размерности. Это может быть связано с присутствием в различных соотношениях в структуре тонких пленок ПАН оксидов одно- и двухвалентной меди, а также хлорида меди (I) [17]. Ранее образцы серебросодержащего полиакрилонитрила были исследованы с применением теории самоорганизации и теории информации [18]. Эффект присутствия структур разной размерности наблюдался по результатам исследования и этими методами. Подобная организация структуры способствует образованию дополнительных адсорбционных центров, что приводит к увеличению коэффициента газочувствительности материала.

ВЫВОДЫ

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Исследование поверхности тонких пленок металлсодержащего ПАН методом МФДФА подтвердило предположение о мультифрак-тальности их поверхности. Технологические особенности получения пленок определяют повторяемость встречаемости структур разной фрактальной размерности, что отражается на показателе Херста. Таким образом, получение АСМ-изображений поверхности при дальнейшей обработке данных методом МФДФА дает возможность анализа формирования в различных температурно-временных режимах полимерных нанокомпозитных пленок ПАН с целью изучения их функциональных свойств.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ЛИТЕРАТУРА

1. Asatkar A.K., Bedi A., Zade S.S. Isr J Chem. 2013, 53, 1-30. doi:10.1002/ijch.201400023.

2. Natarai S.K., Yang K.S., Aminabhavi T.M. Progr Polvm Sci. 2012, 37, 487-513. doi:10.1016/j.progpolymsci.2011.07.001.

3. Мурсалов С.М., Бодягин Н.В., Вихров С.П. Письма в ЖТФ. 2000, 26(15), 53-57.

4. Бодягин Н.В., Вихров С.П. Письма в ЖТФ. 1997, 23(19), 77-80.

5. Bodyagin N.V., Vikhrov S.P. Tech Phys Lett+. 1997, 23(10), 769-770.

6. Vikhrov S.P., Avacheva T.G., Bodyagin N.V., Grishankina N.V. et al. Semiconductors. 2012, 46(4), 415-421. doi:10.1134/S1063782612040240.

7. Zorick T., Mandelkern M.A. Plos One. 2013, 8(7), 1-7. doi: 10.1371/journal.pone.0068360.

8. Ihlen E.A.F. Front Physiol. 2012, 3, 1-18. doi:10.3389/fphys.2012.00141.

9. Biswas A., Zeleke T.B., Si B.C. Nonlinear Processes Geophys. 2012, 19, 227-238. doi: 10.5194/npg-19-227-2012.

10. Semenistaya T.V. Springer Proc Phys. 2016, 175, 61-77. doi:10.1007/978-3-319-26324-3 5.

11. Semenistaya T.V. Mater Phys Mech. 2018, 37, 109-117. doi:10.18720/MPM.3722018_1

12. Макеева Н.А., Пин Лу, Иванец В.А., Семенистая Т.В. и др. Известия ЮФУ. Технические науки. 2011, 117(4), 149-156.

13. Bashan A., Bartsch R., Kantelhardt J.W., Havlin S.

Physica A: Statistical Mechanics and its Applications. 2008, 387(21), 5080-5090.

doi: 10.1016/j.physa.2008.04.023

14. Kantelhardt J.W., Koscielny-Bunde E., Rego H.H.A., Havlin S. et al. Physica A. 2001, 295, 441-454. Doi: 10.1016/S0378-4371(01)00144-3

15. Oswiecimka P., Kwapin J., Drozdz S. Phys Rev E Stat Nonlin Soft Matter Phys. 2006, 74, 161-203. doi: 10.1103/PhysRevE.74.016103

16. Павлов А.Н., Анищенко В.С. Известия Саратовского университета. Серия «Физика». 2007, 7(1), 3-25. doi: https://doi.org/10.3367/UFNr.0177.200708d.0859

17. Королев А.Н., Семенистая Т.В., Аль-Хадрами И.С., Логинова Т.П. и др.

Перспективные материалы. 2010, 5, 52-56.

18. Petrov V., Plugotarenko N., Semenistaya T. Chaotic Model Simul. 2013, 4, 609-614.

Summary

In this paper, the study of the surface of thin films of copper-containing polyacrylonitrile (PAN) was carried out by atomic force microscopy. The distribution function over the height of the surface profile was analyzed by the method of multifractal detrended fluctuation analysis (MPDFA). The parameters for this analysis were: the fractal dimension, the correlation dimension, the scaling index, the Hurst index (H). Investigation of the surface of thin films of copper-containing PAN using MFDFA confirmed the assumption that the surface is multifractal. Technological features of the production of films determine the frequency of occurrence of structures of different fractal dimensions along the surface of the films, which is reflected in the Hurst index. The bend on the mulfractal spectrum is present in cases where the films have gas sensitivity with a coefficient S = 0.35 or more.

Keywords: thin films, polyacrylonitrile, self-organization theory, multifractal fluctuation analysis.

i Надоели баннеры? Вы всегда можете отключить рекламу.