Научная статья на тему 'MORPHOCULTURAL CHARACTERISTICS OF MICROALGAE AND THEIR ISOLATION FROM NATURAL SOURCES OF ALGOLOGICAL PURE CULTURES.'

MORPHOCULTURAL CHARACTERISTICS OF MICROALGAE AND THEIR ISOLATION FROM NATURAL SOURCES OF ALGOLOGICAL PURE CULTURES. Текст научной статьи по специальности «Биологические науки»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
microalgae / air-dried biomass / photobioreactor cultivation / izolyat / algal pure culture / productivity. / микроводоросли / воздушно-сухая биомасса / фотобиореакторное культивирование / изолят / чистая культура водорослей / продуктивность.

Аннотация научной статьи по биологическим наукам, автор научной работы — I.V.Safarov, N.D.Karatayeva, U.G.Kutliyeva

In this article, research work was carried out to study biodiversity. The principle of rational and sustainable development of humanity, formulated by the World Commission on Environment and Development in 1987, postulated the need to strive to meet the needs of the present generation without compromising the opportunities of future ones generations to satisfy their own needs. During the research, microalgae of the genus Chlorococcus were isolated, found in water samples in the Tashkent region, and their morphocultural and other characteristics were studied. To study the microscopic structure of unicellular green algae, a preparation prepared from cultures grown in liquid and agar media was studied and photographed using a microscope. Microalgae cultures were grown in sterile photobiorifier conditions in «Chu-13» medium for 14 days at 25°C, and continuously illuminated with fluorescent white light. (200 µmol photon m 2 s – 1). Based on the results obtained, it was established that each of CHO sp1, CHD sp 1, AD sp 3, S sp 04, SO sp 11, NO sp 2 has special characteristics. Thus, based on the results, it was established that the CHO sp1 isolate belongs to the genus Chlorella, and the AD sp 3 isolates belong to the genus Chromococcum.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MORPHOCULTURAL CHARACTERISTICS OF MICROALGAE AND THEIR ISOLATION FROM NATURAL SOURCES OF ALGOLOGICAL PURE CULTURES.

В данной статье проведена исследовательская работа по изучению биоразнообразия. Принцип рационального и устойчивого развития человечества, сформулированный Всемирной комиссией по окружающей среде и развитию в 1987 году, постулировал необходимость стремиться к удовлетворению потребностей нынешнего поколения, не ставя под угрозу возможности будущих поколений по удовлетворению собственных потребностей. В ходе исследований были выделены микроводоросли рода Chlorococcus, обнаруженные в пробах воды Ташкентской области, изучены их морфокультуральные и другие характеристики. Для изучения микроскопического строения одноклеточных зеленых водорослей изучали и фотографировали с помощью микроскопа препарат, приготовленный из культур, выращенных на жидких и агаризованных средах. Культуры 6 INTERNATIONAL SCIENTIFIC JOURNAL "MODERN BIOLOGY AND GENETICS" 2024 №2 (8) ISSN: 2181-3396 микроводорослей выращивали в стерильных условиях фотобиорификатора на среде «Чу-13» в течение 14 дней при температуре 25°С и непрерывном освещении флуоресцентным белым светом. (200 мкмоль фотон м – 2 с – 1). На основании полученных результатов установлено, что каждый из CHO sp1, CHD sp 1, AD sp 3, S sp 04, SO sp 11, NO sp 2 обладает особыми характеристиками. Таким образом, на основании результатов установлено, что изолят CHO sp1 принадлежит к роду Chlorella, а изоляты AD sp 3 – к роду Chromococcum.

Текст научной работы на тему «MORPHOCULTURAL CHARACTERISTICS OF MICROALGAE AND THEIR ISOLATION FROM NATURAL SOURCES OF ALGOLOGICAL PURE CULTURES.»

Биотехнология Biotechnology

UDK: 575.111.2788.0624

MORPHOCULTURAL CHARACTERISTICS OF MICROALGAE AND THEIR

ISOLATION FROM NATURAL SOURCES OF ALGOLOGICAL PURE CULTURES.

I.V.Safarov, N.D.Karatayeva, U.G.Kutliyeva

Chirchik State Pedagogical University Faculty of Natural Sciences email: ibrokhim.safarov.75@mail.ru Abctract. In this article, research work was carried out to study biodiversity. The principle of rational and sustainable development of humanity, formulated by the World Commission on Environment and Development in 1987, postulated the need to strive to meet the needs of the present generation without compromising the opportunities of future ones generations to satisfy their own needs. During the research, microalgae of the genus Chlorococcus were isolated, found in water samples in the Tashkent region, and their morphocultural and other characteristics were studied. To study the microscopic structure of unicellular green algae, a preparation prepared from cultures grown in liquid and agar media was studied and photographed using a microscope. Microalgae cultures were grown in sterile photobiorifier conditions in «Chu-13» - medium for 14 days at 25°C, and continuously illuminated with fluorescent white light. (200 |amol photon m - 2 s - 1). Based on the results obtained, it was established that each of CHO sp1, CHD sp 1, AD sp 3, S sp 04, SO sp 11, NO sp 2 has special characteristics. Thus, based on the results, it was established that the CHO sp1 isolate belongs to the genus Chlorella, and the AD sp 3 isolates belong to the genus Chromococcum.

Keywords: microalgae, air-dried biomass, photobioreactor cultivation, izolyat, algal pure culture, productivity.

МОРФОКУЛЬТУРАЛНАЯ ХАРАКТЕРИСТИКА МИКРОВОДОРОСЛЕЙ И ИХ ВЫДЕЛЕНИЕ ИЗ ПРИРОДНЫХ ИСТОЧНИКОВ АЛЬГОЛОГИЧЕСКИХ ЧИСТЫХ

КУЛЬТУР.

И.В.Сафаров, Н.Д.Каратаева, У.Г.Кутлиева

Чирчикский государственный педагогический университет факультет Естественных

наук, email: ibrokhim.safarov.75@mail.ru Аннотация. В данной статье проведена исследовательская работа по изучению биоразнообразия. Принцип рационального и устойчивого развития человечества, сформулированный Всемирной комиссией по окружающей среде и развитию в 1987 году, постулировал необходимость стремиться к удовлетворению потребностей нынешнего поколения, не ставя под угрозу возможности будущих поколений по удовлетворению собственных потребностей. В ходе исследований были выделены микроводоросли рода Chlorococcus, обнаруженные в пробах воды Ташкентской области, изучены их морфокультуральные и другие характеристики. Для изучения микроскопического строения одноклеточных зеленых водорослей изучали и фотографировали с помощью микроскопа препарат, приготовленный из культур, выращенных на жидких и агаризованных средах. Культуры

микроводорослей выращивали в стерильных условиях фотобиорификатора на среде «Чу-13» в течение 14 дней при температуре 25°С и непрерывном освещении флуоресцентным белым светом. (200 мкмоль фотон м - 2 с - 1). На основании полученных результатов установлено, что каждый из CHO spl, CHD sp 1, AD sp 3, S sp 04, SO sp 11, NO sp 2 обладает особыми характеристиками. Таким образом, на основании результатов установлено, что изолят CHO sp1 принадлежит к роду Chlorella, а изоляты AD sp 3 - к роду Chromococcum.

Ключевые слова: микроводоросли, воздушно-сухая биомасса, фотобиореакторное культивирование, изолят, чистая культура водорослей, продуктивность.

INTRODUCTION

The principle of rational and sustainable development of humanity, formulated by the World Commission on Environment and Development in 1987, postulated the need to strive to meet the needs of the present generation without compromising the opportunities of future ones generations to satisfy their own needs[9]. This principle is fully corresponds to those actively under construction in developed countries, a circular economy designed to change the classical linear model production, concentrating on creating technologies and production facilities that minimize waste and other types of pollution. One of the actively developing areas in recent decades that potentially meets the requirements of a circular economy is the development of technologies for obtaining and using microalgae for solving a wide range of tasks of human economic activity.

Microalgae are classified as microalgae based on their size. Microalgae are microscopic single-celled organisms. Microalgae are primarily autotrophic photosynthetic prokaryotes and eukaryotes that form the first link in the food chain. They are an important part of the aquatic ecosystem, since they are formed in the aquatic environment. Algae include prokaryotic and

eukaryotic divisions: prokaryotic algae Cyanophyta (blue-green algae) and eukaryotic: Rhodophyta, Phaeophyta, Chlorophyta, Pyrrophyta, Chrysophyta, Bacillariophyta, Xanthophyta,

Euglenophyta[1,2]. However, a particular difficulty of not knowing the exact number of algae in different groups is that we cannot carefully check their conservation status. Although this is a universal problem for all taxa, it is especially acute for algae[12]. Green algae or Chlorophyta are single-celled colonies or free-living autotrophic organisms that make up the majority of aquatic flora. They are found on Earth, where there is light and moisture. Some species have adapted to deserts, glaciers and hypersaline habitats, i.e. harsh conditions. Most of the unicellular microalgae with a simple structure are highly valued in the food industry and in the fields of agriculture, animal husbandry, poultry as a nutritious feed protein, and due to the pigments, antibiotics, and vitamins they contain, they are used in medicine, pharmacy, and cosmetics. used as additives in products. They are also food for humans and animals. They are consumed as a food source, especially in developing countries. As another alternative, microalgae are used as organic fertilizers agriculture. Overfishing and

in

unsustainable exploitation of the world's fish stocks have led to a significant increase in the production of commercially important shellfish, namely aquaculture research[1416].

The chemical composition of microalgae is not an internal constant factor, but varies within a wide range of factors depending on the species and cultivation conditions. Some microalgae can adapt to changes in environmental conditions by changing their chemical composition in response to environmental variability. A particularly impressive example is the ability to replace phospholipids with phosphorusfree membrane lipids in a phosphorus-depleted environment [8]. Changes in the concentration of biomass, changes in the amount and quality of lipids and proteins, productivity indicate the economic development of the use of microalgae for agricultural production. microalgae are the main source of nutrients for many commercially important aquatic organisms, especially in the larval stage of fish, and are a valuable protein-rich supplement used in poultry and livestock farming due to their high protein and fat content. Because microalgae are the first biological CO2/O2 converters of aquatic systems and the most important producers of biomass. Microalgae are expected to be the most important source of biotechnology in the future [5, 13].

In recent years, microalgae cultivation has received increasing attention for the production of biofuels, functional foods and nutraceuticals[15]. with a focus on adapting the biorefinery approach, which can be of different types, such as biomass-based biorefinery. A biorefinery based on biomass is a

manufacturing process and system in which biomass is fractionated into various chemical fragments, which are then converted into various end products (desired products). This can be achieved through biochemical or thermochemical routes for the production of value-added commodity metabolites, fuels, chemicals, etc[3]. Microalgae cells are capable of accumulating significant amounts of protein, carbohydrates, polar and neutral lipids with a rich set of fatty acids (FA), including essential «-3 polyunsaturated FA. These organisms are also capable synthesize pigments of different classes (carotenoids, chlorophyll), vitamins, sterols and antibiotics [4].

Moreover, they have a higher efficiency of photosynthesis compared to higher plants and flexible metabolism [16, 17]. Therefore, in the last decade, the interest of scientists in exploring the possibilities of using microalgae for reliable and predictable obtaining various food dyes, food and feed additives, components for cosmetic products, pharmaceuticals, biofuels (biodiesel, bioethanol, biomethane, aviation fuel [6], hydrogen, synthesis gas [11], bioplastics, bio-lubricants, bio-fertilizers, as well as their use for wastewater treatment and air regeneration [10].

The purpose of this research work is to determine the quantitative and qualitative composition of oils from local unicellular green algae.

MATERIALS AND METHODS

Growing microalgae. The study used water and microalgae samples from the Chirchik River in Uzbekistan. The following nutrient media were used to separate microalgae in alcohol purity

and cultivate them: "Chu-13" nutrient medium (g/l): KNO3 - 0.2, K2HPO4 - 0.4., MgSO4x7H2O - 0.1., CaCl2x6H2O - 0.08., iron citrate - 0.01, citric acid - 0.1., boron -0.5 ppm., MnSO4xH2O - 0.5 ppm., Na2MoO4x2H2O - 0.02 ppm, pH 7.5 [18]. Autoclaving: 1 atm., 121oC, 25 min;

To study the microscopic structure of unicellular green algae, a preparation prepared from cultures grown in liquid and agar media was studied and photographed using a microscope. Microalgae cultures were grown in sterile photobiorifier conditions in «Chu-13» - medium for 14 days at 25°C, and continuously illuminated with fluorescent white light. (200 |amol photon m - 2 s - 1) [7].

RESULTS AND DISCUSSION

In our experiment, water samples brought from Tashkent regions were added to 500 ml "Chu-13" liquid nutrient medium at a temperature of 26o-28oC and light. 3500-4000 Lk (Lux) was blown by air (figure 1). The samples became visually green in 14-20 days, allowing them to be seen under a light microscope. A stock culture of microalgae was grown to a titer of 103 h/ml. after that, they were diluted to 3*105-3.5*106, planted on 2% agar medium and grown at 26 oC-28 oC and 3500-4000 Lk of light. The resulting microalgae colonies were isolated by repeated cultivation in liquid mineral nutrient medium (figure 2).

Suspension of microalgae isolates was diluted and inoculated onto the top surface of an agar medium in a Petri dish under sterile conditions using a spatula and exposed to light intensity of 35004000 Lux until microalgae colonies grew. The grown colonies of microalgae were collected with a microbiological hook

and transferred to a liquid nutrient medium. These methods were repeated several times, as a result of which algologically and bacteriologically pure local unicellular green algae were isolated. The isolated active forms of microalgae were selected based on their growth rate, colony size, and biomass production in agar and liquid media (figure 3).

After light microscopy of the isolated microalgae isolates and confirmation of their algal purity, the morphology of microalgae in various growth phases was determined microscopically. Based on the morphological parameters of this algae isolate CHO sp1 (figure 3a) it was established that it belongs to the Chlorella species of the Chlorellaceae family, chlorella is a genus of about thirteen species of single-celled green algae of the division Chlorophyta. The cells are spherical in shape, about 2 to 10 |am in diameter, and are without flagella. Their chloroplasts contain the green photosynthetic pigments chlorophyll-a and -b. When studying the morphocultural characteristics of CHD sp 1 isolates, it was established that they belong to the genus chlorococcum. they consist of single and sometimes small groups of spherical cells; During colonization, a thin layer of mucus is sometimes present. The cells contain one cup-shaped parietal chloroplast with one pyrenoid (figure 3b). AD sp 3 isolates cells are granular, sometimes from ellipsoid to spherical. The bark is smooth and thickens over time. The chloroplast is single, goblet-shaped, spherical, with or without pores, entire or with slightly wavy edges, usually with one pyrenoid. Reproduction occurs by zoospores of

equal length, 2-khivchins, and sometimes aplanospores. Zygospores have a smooth or patterned skin. Zoospores are released when the mucous membrane of the mother cell is destroyed. Sexual reproduction is isogamy. The vegetative cell is elliptical, with a diameter of 22-30 microns (figure 3c). When S sp 04, SO sp 11, NO sp 2 isolates were subjected to microscopy

Figure 2. Isolation of algal pure isolates of algae from water bodies of different climatic conditions of Uzbekistan: a) CHO sp1, b) CHD sp 1, c) AD sp 3, d) S sp 04Figure 3. Cell structure of algae isolates isolated from water bodies of

these isolates of about thirteen species of single-celled green algae of the division Chlorophyta. The cells are spherical in shape, about 2 to 10 |am in diameter, and are without flagella. Their chloroplasts contain the green photosynthetic pigments chlorophyll-a and -b. In ideal conditions cells of Chlorella multiply rapidly, requiring only carbon dioxide, water, sunlight, and a small amount of minerals to reproduce [19] (figure 3d, 3e, 3j).

Figure 1. Isolation of algal isolates of algae from water bodies of different climatic conditions of Uzbekistan.

different climatic conditions of Uzbekistan: a) CHO sp1, b) CHD sp 1, c) AD sp 3, d) S sp 04, e) SO sp 11, J) NO sp 2

CONCLUSIONS

Based on research results and scientific data, it is concluded that. The algal flora of the Chirchik River catchment is extremely rich in chlorella, which belongs to the genus Chlorella, Chlorococcum.

To develop an effective microalgae bioprocessing system, it is important to develop effective process

intensification strategies and

downstream processing technologies. Technologically feasible production of nutraceuticals and pharmaceuticals from microalgae can be achieved by integrating upstream and downstream processes, helping to balance energy and production costs. Research results and analysis of scientific sources show that a more thorough study of the flora of microalgae in the Tashkent regions catchment can become the basis for the development of agriculture,

pharmaceuticals and the food industry in Uzbekistan.

REFERENCES

1. Aydin, G.S., Kocatas, A., Buyukisik, B. 2009. Effects of light and temperature on the growth rate of potentially harmful marine diatom: Thalassiosira allenii Takano (Bacillariophyceae), African Journal of Biotechnology 8 (19): 49834990.

2. Aydin-Sisman G., "Mikroalg Teknolojisi ve ^evresel Kullanimi", Harran Universitesi Muhendislik Dergisi, 4(1): 81- 92, (2019).

3. Awasthi MK, Ferreira JA, Sirohi R, et al. A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. Renew Sustain Energy Rev. 2021;143: 110972.

4. Alam M.A., Xu J., Wang Z. Microalgae biotechnology for food, health and high value products. Gateway: Springer Nature Singapore Pte Ltd, 2020.

5. Borowitzka M.A., 1992. Algal biotechnology products and processes: matching science and economics. J Appl Phycol 4; 267-279.

6. Bwapwa J.K., Mutanda T., Anandraj A.A Sustainable Approach for Bioenergy and Biofuel Production from Microalgae.

Abingdon-on-Thames: CRC Press, Taylor & Francis Group, 2019.

7. Бозорова Д.С., Сафаров И.В. MMKp0B040p0^M, встречающиеся в части водораздела амударьи, протекающей через термезжий регион и некоторые их морфо -культуральные свойства // Universum: химия и биология: электрон. научн. журн. 2021. 1(91). URL: https://7universum.com/ru/nature/archiv e/item/12915.

8. Venkatamaran, L. V., 1986. Blue-green algae as biofertilizer. In: Richmond, A. (Ed.), CRC Handbook of Microalgal Mass Culture. CRC Pres, Boca Raton, FL; 455-471.

9. Дворецкий Д.С., Темнов М.С., Маркин И.В., Устинская Я.В., Еськова М.А. Вопросы разработки эффективной биотехнологии синтеза ценных компонентов из биомассы микроводорослей теоретические основы химической технологии, 2022, том 56, № 4, с. 418-433.

10. Gifuni I., Pollio A., Safi C., Marzocchella A., Olivieri G. Current Bottlenecks and Challenges of the Microalgal Biorefinery // Trends in Biotechnol. 2019. V. 37. P. 242.

11. Liu G., Liao Y., Wu Y., Ma X. Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive // Applied Energy. 2018. V. 212. P. 955.

12. Michael D. Guiry "How many species of algae are there?" how many species of algae are there?J. Phycol. 48, 1057-1063 (2012).

13. Pulz, O., 2001. Photobioreactors: production systems for phototrophic microorganisms. IGV Institute for Cereal Processing, Arthur- ScheunertAllee

40/41, 14558 Bergholz-Rehbrucke, Germany.

14. Safarov Ibrahim Valievich Production of microalgae and their possibilities of production oil under different conditions international scientific journal "modern biology and genetics" 2023 №4 (6) issn: 2181-3396 p. 6-11.

15. Tsukada, O., Kawahara, T., Miyachi, S., 1977. Mass culture of Chlorella in Asian countries. In: Mitsui, A., Miyachi, S., San Pietro, A., Tamura, S. (Eds.), Biological Solar Energy Conversion. Academic Pres, New York; 363-365.

16. Tsoglin and Gabel 2000. The technology of production of biomass labeled with stable isotopes. Abstracts of

the 4th European workshop on biotechnology of microalgae. BergholzRehbrücke, Germany.

17. Chisti Y. Constraints to commercialization of algal fuels // J. Biotechnol. 2013. V. 167. P. 201.

18. Y.P. Nagaraja., Chandrashekhar Biradar., K.S. Manasa and H.S. Venkatesh Production of biofuel by using micro algae (Botryococcus braunii) Int.J.Curr.Microbiol. App.Sci (2014) 3(4): 851-860.

19. Krienitz, Lothar; Huss, Volker A.R.; Bock, Christina (2015). ""Chlorella: 125 years of the green survivalist". Trends in Plant Science. 20 (2): 67-69.

УДК:579.61

КАЧЕСТВЕННЫЙ АНАЛИЗ ВТОРИЧНЫХ МЕТАБОЛИТОВ ЭНДОФИТНЫХ ГРИБОВ С АНТИКОАГУЛЯНТНЫМИ СВОЙСТВАМИ

Н.Х.Кузиева1, Л.И.Абдульмянова1, З.М.Хамиджонова2

Института микробиологии Академия Наук Республика Узбекистан, 1001258, г. Ташкент, улица Абдуллы Кадири 7 Б 2Национальный университет Узбекистана имени Мирзо Улугбека,100174, г.Ташкент,

улица Университетская, 174.

*Соответствующий автор email: nilufar xg@bk.ru Адреса электронной почты соавторов: a l i 2020@mail.ru, xamidjonovazebiniso@gmail.com

Аннотация. Пандемия показала необходимость и востребованность большого количества антикоагулянтных препаратов, так как при ковиде в первую очередь страдала кровеносная система и, в большинстве случаев, наблюдался смертельный исход от тромбозов. Кроме этого учитывая, что болезни сердечнососудистой системы стоят на первом месте по смертности в целях профилактики проведение антикоагулянтной терапии крайне необходимо для большинства населения. Высокая стоимость синтетических лекарств, ограниченность их поставки в сельские районы во многих развивающихся странах приводят к использованию населением народной медицины с применением лекарственных трав и растений. Это, в свою очередь, способствует исчезновению редких, эндемичных растений с уникальными свойствами. В этом случае эндофитные грибы, способные синтезировать те же вещества, что и растение-хозяин, в том числе и антикоагулянтные, становятся незаменимым и перспективным источником исследований. В наших исследованиях для определения качественного состава этих

i Надоели баннеры? Вы всегда можете отключить рекламу.