doi: 10.18720/MCE.81.5
Productivity of microalgae as biofuel for bioadaptive systems of facades
Продуктивность микроводорослей, как биотоплива для биоадаптивных систем фасадов
E.S. Zalata*, Y.Y. Shavrov, K.I. Strelets,
Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia M.S. Emelyanova,
St. Petersburg State University, St. Petersburg, Russia
Студент Е.С. Залата*,
студент Ю.Ю. Шавров,
канд. техн. наук, заместитель директора
по дополнительному профессиональному
образованию К.И. Стрелец,
Санкт-Петербургский политехнический
университет Петра Великого,
г. Санкт-Петербург, Россия
ведущий специалист М.С. Емельянова,
Санкт-Петербургский государственный
университет, г. Санкт-Петербург, Россия
Key words: energy efficient façade; microalgae; Ключевые слова: энергоэффективный фасад; biofuel; biogas микроводоросли; биотопливо; биогаз
Abstract. Microalgae are one of the promising fuel sources and many specialists associate it with the future of alternative energy. A promising area of application of photobiological devices is their conjugation with the architectural covers of a building and formation of bio-adaptive facades. The determining criteria for the organization of the microalgae biomass production process in the facade structure is solar radiation, ratio of light and dark growth phase and ambient temperature. The goal of this work is to study the productivity of microalgae Chlorella of CALU 157 strain at low temperatures and low illumination, as well as to calculate the amount of biofuel that can be produced under such climatic conditions. In the first stage of the experiment the algae cultivation was studied at different illumination values - 3500 lx, 1750 lx and 930 lx. In the second stage of the experiment cultivation of algae at different temperatures was studied: +2 °C, +10 °C, +19 °C and +25 °C. Total number of cells in the suspension was determined using the method of direct cell counting in Goryaev chamber. As a result of the experiment microalgae productivity data were obtained at different illumination and temperature. It was found that at a temperature of 2 °C and 10 °C, an almost stable state of algae was observed, the concentration increased very slowly, however the culture did not die. Also the calculation of the amount of energy and biogas, which can be obtained from the biomass of microalgae under the growing conditions of 3500 lx and 23 °C was also made.
Аннотация. Микроводоросли являются одним из перспективных топливных источников. Одним из направлений применения фотобиологических устройств на основе микроводорослей является сопряжение их с архитектурными оболочками здания и образование биоадаптивных фасадов. Определяющими критериями для организации процесса производства биомассы микроводорослей в фасадной конструкции является солнечная радиация, соотношение световой и темновой фазы роста, температура окружающей среды. Целью данной работы является изучение продуктивности микроводорослей Chlorella vulgaris Beijer., штамм CALU-157 при различных температурах и различном количестве освещения, а также расчет количества биотоплива, которое можно получить при таких условиях. Первый этап эксперимента заключался в расчете концентрации и продуктивности микроводорослей при освещенности 3500 Лк, 1750 Лк и 930 Лк. Второй этап эксперимента заключался в расчете концентрации и продуктивности микроводорослей при температурах +2 °C, +10 °C, +19 °C и +25 °C. Общее количество клеток в суспензии определялось с помощью метода прямого подсчета клеток в камере Горяева. В результате эксперимента получены данные продуктивности микроводорослей при различной освещенности и различной температуре. Было выявлено, что при температуре 2 °C и 10 °C состояние водорослей было стабильным, концентрация увеличивалась очень медленно, однако гибели культуры не произошло. Также сделан расчет количества энергии и биогаза, которое можно получить из биомассы микроводорослей при условиях выращивания 3500 Лк и 23 °C.
1. Introduction
In many countries the cost of heat network and boiler plants operation is increasing every year. The known problems of operation of centralized heat supply urgently require accelerated introduction of non-traditional methods of energy supply. The use of biofuel in recent decades has attracted increasing interest. At present, attention is drawn to the use of third-generation biofuel obtained on the basis of microalgae [1-5].
Microalgae are one of the promising fuel sources and many specialists associate it with the future of alternative energy [6]. They are tiny, mostly unicellular organisms about 5 micrometers in size. Like other plants, microalgae use sunlight as a source of energy to create biomass. This process is called photosynthesis which in nature occurs identically in all plants. However, microalgae are much more efficient in converting light energy into biomass than multicellular plants, since the microalgae are unicellular, and each individual cell performs photosynthesis. Microalgae can divide up to once a day doubling their biomass which is an energy carrier. 1 gram of dry biomass contains about 21 kJ of energy [7]. In the work [8] it is justified that microalgae will become the main raw renewable source of technical lipids for biofuel production.
A promising area of application of photobiological devices is their conjugation with the architectural covers of a building and formation of bio-adaptive facades [9, 10-12]. Creating such building structures allows to reduce power consumption and to provide comfortable conditions in the premises. This direction is completely new in the world of architecture and has not yet become widespread [13, 14]. The use of such structures can significantly improve biosphere compatibility of modern megalopolises. However, many external factors affect their efficiency such as: level of solar radiation, temperature, amount of available nitrogen and phosphorus compounds and availability of carbon dioxide sources [15-18]. Therefore, one of the main criteria for the high efficiency of the photobioreactor is the choice of a suitable area.
The determining criteria for the organization of the microalgae biomass production process in the facade structure is solar radiation equal to 4.0 kWh/m2/day or approximately 14 MJ/m2, ratio of light and dark growth phase is not less than 6:18, ambient temperature is not lower than 12 °C [13]. Analysis of the cartographic material at the research initial stage showed that there are many places in Europe with suitable climate conditions however in the coldest days of the year it can be necessary to use additional heating. [13, 19] The climatic conditions can be found in such places as Nice, Marsel (France), Malta and Cyprus islands, San Remo, Sicily (Italy), Sochi (Russia) and others.
Further research was conducted using the example of climatic conditions of the city of Sochi which is located in Russia. The average annual solar radiation in Sochi is 4.0 kWh/m2/day. The maximum amount of solar radiation is in July and is 7.24 kWh/m2/day, the minimum amount is in December -1.29 kWh/m2/day. The average annual temperature is 15 °C. The average temperature in the hottest month (August) is 24.9 °C, in the coldest month - 6.95 °C [20]. Thus, this region fully meets the criteria for microalgae cultivation in summer but in winter additional heating may be necessary. To clarify this issue it is necessary to study the behavior of algae at low temperatures and low illumination. For this purpose, two stages of the experiment are planned:
1. Calculation of microalgae productivity with a small amount of illumination;
2. Calculation of microalgae productivity at low temperatures.
The experiment results will allow to determine under what climatic conditions the environment heating for microalgae is mandatory for the algae life.
In articles [21, 22] it is stated that the optimum temperature for chlorella is 33-36 °C. There are no data on the behavior of microalgae at low temperatures. Therefore, in this article, for the first stage of the experiment the following temperature values were chosen: +2 °C, +10 °C, +19 °C and +25 °C. In the article [21-23] it is stated that the optimal illumination for chlorella is 20-30 thousand lx. According to the data [24] the values of 20-30 lx are commensurable with a clear, sunny afternoon at noon in the middle latitudes. When cultivating microalgae in real weather conditions, the illumination will fluctuate from 0.2 lx at night to 30 k in the daytime. There are no data on the behavior of microalgae with a small amount of illumination (0-5000 lx). Therefore, in this article, for the second stage of the experiment the following values of illumination were chosen: 3500 lx, 1750 lx and 930 lx.
Thus, the goal of this work is to study the productivity of microalgae at low temperatures and low illumination, as well as to calculate the amount of biofuel that can be produced under such climatic conditions. To achieve the goal, the following tasks are set and solved:
- calculation of concentration and productivity of microalgae at illumination of 3500 lx, 1750 lx and 930 lx;
- calculation of concentration and productivity of microalgae at temperatures of +2 °C, +10 °C, +19 °C and +25 °C;
- calculation of amount of energy that can be obtained under the above-described growing conditions, as well as calculation of amount of biogas that can be obtained under the same conditions.
2.. Methods
Unicellular green alga Chlorella of CALU 157 strain was used as a test organism in the experiments. This alga was taken from the collection of algae of the Microbiology Laboratory of the Biological Institute of St. Petersburg University. It is not demanding to nutrient medium, carbon dioxide, mechanical stirring and has high productivity [25]. Sterility is not required for cultivation. During cultivation it observes the strain monoculture. In addition, it is widely spread in nature and well studied by scientists. [22, 26, 27].
Medium Tamiya was used as a nutrient medium which was singled out by many researchers as the most optimal for the growth of chlorella [28, 29]. The medium is characterized by the following composition of salts and microelements:
Table 1. Composition of nutrient medium Tamiya
No Components Per 1 liter of medium
1 K2HPO4 66.6 mg
2 MgSO4 * 7H2O 33.3 mg
3 KNO3 100 mg
4 Solution with microelements * 1000 1 ml
Table 2. Solution with microelements * 1000
No Components Per 1 liter of solution
1 NaBO3 x 4H2O 2.63 g
2 MnSO4 x 5H2O 1.81 mg
3 ZnSO4 x 7H2O 0.22 mg
4 (NH4)6Mo7O24 x 4H2O 1.0 ml
5 CuSO4 x 5H2O 0.079 g
6 Co(NO3)2 x 6H2O 0.02 g
7 CaCl2 1.2 g
8 FeSO4 x 7H2O 9.3 g
9 Na2EDTA x 2H2O (Trilon B) 10 g
The nutrient medium and salt solutions were prepared on distilled water and were not sterilized. To avoid precipitation the sample of each substance was first dissolved in a small amount of water, and then the solutions were poured together in the above sequence and the water was added to the desired volume.
To prepare 1 liter of medium, sample of K2HPO4 was dissolved in 800 ml of distilled water. Sample of MgSO4 * 7H2O was dissolved separately in 100 ml of water and poured into K2HPO4 solution while stirring. Sample of KNO3 was added to the mixture. After the sample complete dissolution, 1 ml of microelement solution was added. After that the volume was brought to a liter with distilled water. Total number of cells in the suspension was determined using the method of direct cell counting in Goryaev chamber [30] for 10 days. For the biomass cultivation 250 ml conical flasks were used.
The first stage of the experiment was conducted in the educational and scientific center for the utilization of industrial and domestic waste in St.Petersburg Polytechnic University. The algae cultivation was studied at different illumination values - 3500 lx, 1750 lx and 930 lx. For this purpose, 30 W fluorescent lamp LBU 30 (U-shaped) was used. Temperature of all three samples was the same: 23 °C. Initial concentration in all three flasks was 2.125 million of cells/ml. Position of each flask with the suspension was determined with a luxmeter. The first flask was at a distance of 50 mm from the lamp, the illumination was 3500 lx. The second flask was at a distance of 170 mm, the illumination was 1750 lx. The third flask was at a distance of 245 mm, the illumination was 930 lx. All three flasks were illuminated for 12 hours per day.
The second stage of the experiment was conducted in the Microbiology Laboratory of the Biological Institute of St. Petersburg University. Cultivation of algae at different temperatures was studied: +2 °C, +10 °C, +19 °C and +25 °C. Chlorella suspension was placed in a thermostat, while the illumination for all samples was the same: 600 lx (Figure 1). Initial concentration of all samples was 130 thousand of cells/ml. The suspension was illuminated for 24 hours a day.
Figure 1. Cultivation of algae at the temperature +2 °C
3. Results and Discussion
The results of the first stage are given in Table 3 and Figure 2.
Table 3. Concentration of microalgae as a function of illumination, mln. of cells/ml
Illumination\t, days 1 2 3 4 5 6 7 8 9 10
3500 lx 2.125 2.76 3.56 4.61 5.12 5.41 6.3 7.02 6.75 6.61
1750 lx 2.125 2.48 3 3.55 3.78 4.02 4.7 5 4.9 5
930 lx 2.125 2.34 2.68 2.96 3.07 3.3 3.6 4.11 4.02 4
Dependence of cell concentration on illumination
6
t, days
10
12
—3500 lx 1750 lx 930 lx
Figure 2. Dependence of cell concentration on illumination
0
2
4
8
Figure 2 shows that as the amount of illumination increases, the growth rate of microalgae increases, which coincides with the results of other investigators [22]. It can also be noted that the maximum concentration was observed on day 8, after which it began to decrease. This may be due to the onset of a stationary phase of growth. On day 8, the number of algae under illumination of 3500 lx was 7.02 million of cells/ml, with illumination of 1750 lx - 5 million of cells/ml, with illumination of 930 lx - 4.11 million of cells/ml.
In the article [16] it is said that the optimal illumination of chlorella lies within 20-25 klx, the threshold of light saturation is (25...90) 103 lx. Also, the authors note that chlorella can adapt to different light intensities, while the value of optimal illumination is closely related to the design of the photobioreactor. In the article [22] it is noted that the strain growth occurs more intensively with uniform illumination and a small thickness of the suspension. In our experiment illumination was carried out from one side of the flask, the diameter of the flask was 12 cm, i.e. the results can be improved by uniform illumination and by choosing a vessel with a smaller diameter. Another way to optimize the insolation can be to maintain intensive bubbling of the suspension so that all cells were in the area with a high level of illumination for sufficient time.
The microalgae biomass productivity was calculated based on the results of the first stage.
Productivity (P) is the amount of biomass formed by growing and multiplying microalgae cells per 1 day in 1 liter of cell suspension. [PRODUCTIVITY OF MICROALGAE CULTIVATION SYSTEM AT NATURAL LIGHTING]
P = Bz-B,, [P] = [million of cells/(l • day)],
where B1 is the suspension density on the first day of measurement, million of cells/l; B2 is the suspension density on the last day of measurement, million of cells/l; t is the duration of measurements, days.
Based on the results of the experiment, the average productivity of microalgae at an illumination of 3500 lx before the onset of the stationary phase (day 8) is:
7.02 - 2.125
P =-7-« 0.7 million of cells/(ml • day) = 700 million of cells/(l • day)
The average productivity of microalgae at an illumination of 1750 lx before the onset of the stationary phase is:
5.0 - 2.125
P =-7-« 0.411 million of cells/(ml • day) =411 million of cells/(l • day)
The average productivity of microalgae at an illumination of 930 lx before the onset of the stationary phase is:
4.11 - 2.125
P =-7-« 0.283 million of cells/(ml • day) = 283 million of cells/(l • day)
The results of the second stage are given in Table 4 and Figure 3.
Table 4. Concentration of microalgae as a function of temperature, thous. of cells/ml
Temperature\t, days 1 2 3 4 5 6 7 8 9 10 11
2°C 130 300 360 460 210 420 500 450 510 540 500
10°C 130 320 430 520 370 550 600 620 700 750 800
19°C 130 500 700 880 870 1300 1700 2500 2900 3100 3470
25°C 130 560 800 940 1150 1480 2230 2850 3340 3670 4100
4500
E 4000
3500
U
4- O 3000
W T 2500
o
t 2000
£ o 1500
+J a 1000
£ O 500
u 0
Dependence of cell concentration on temperature
4 6
t, days
10
12
2°C
10°C
19°C
25°C
Figure 3. Dependence of cell concentration on temperature
Figure 3 shows that as the temperature increases, the growth rate of biomass increases, which coincides with the results of other investigators [21]. The maximum increase in biomass was at a temperature of 25 °C and amounted to 4.1 million of cells/ml. on day 11 of cultivation. At a temperature of 2 °C and 10 °C, an almost stable state of algae is observed, the concentration increases very slowly but the cells remain active, the culture does not die. In the article [27] it is stated that different species of microalgae grow in a wide range of temperatures, but as a rule, they are all sensitive to freezing, and therefore, the temperature shall not drop below 0 °C, at which the culture will die.
The microalgae biomass productivity was calculated based on the results of the second stage.
The average productivity of microalgae at a temperature of 25 °C is: 4.1 - 0.13
P =-10-= 0.397 million of cells/(ml • day) = 397 million of cells/(l • day)
The average productivity of microalgae at a temperature of 19°C is: 3.47 - 0.13
P =
10
= 0.334 million of cells/(ml • day) = 334 million of cells/(l • day)
The average productivity of microalgae at a temperature of 10 °C is: 0.8 - 0.13
P =-10-= 0.067 million of cells/(ml • day) = 67 million of cells/(l • day)
The average productivity of microalgae at a temperature of 10 °C is: 0.5 - 0.13
P =-10-= 0.037 million of cells/(ml • day) = 37 million of cells/(l • day)
After that the amount of biofuels that can be obtained from the microalgae biomass was calculated. To calculate the maximum amount of biofuel under the conditions tested in the experiment, we take the results of growth of microalgae from the first stage with an illumination of 3500 lx. As it was already calculated above, the productivity in this case was 700 million of cells/(l-day).
In the publication [27] it is said that 100 million of cells in a dry form weigh 1.3 gram, which allows these calculations:
P=
700 100
• 1.3 = 9.1 g of dry biomass/(l • day)
0
2
8
Thus, 700 million of cells is 9.1 grams of dry biomass. The average caloric value of 1 gram of dry biomass of microalgae Chlorella, Spirulina, Synechococcus and Platymonas is 5 kcal (21 kJ) [7], then the amount of energy will be:
kJ kJ kWh
9.1 • 21 = 191.1—:— = 191100 „ , = 53083—=—-— l • day m3 • day m3 • day
Taking into account all losses during processing of biomass into biogas, it can be assumed that 1 g of dry biomass corresponds to 0.68 liter of methane [31, 32]. Thus, the amount of biogas will be equal to:
l of methane 9.1 • 0.68 = 6.188—---—
l of medium • day
4. Conclusions
1. As the illumination increases, the growth rate of microalgae increases. On day 8, the number of algae under illumination of 3500 lx was 7.02 million of cells/ml, with illumination of 1750 lx - 5 million of cells/ml, with illumination of 930 lx - 4.11 million of cells/ml. The productivity of microalgae at an illumination of 3500 lx is 700 million of cells/(l-day), at an illumination of 1750 lx is 411 million of cells/(l-day), at an illumination of 930 lx is 283 million of cells/(lday).
2. As the temperature increases, the biomass increases. The maximum concentration of biomass was at a temperature of 25 °C and amounted to 4.1 million of cells/ml. on day 11 of cultivation. At a temperature of 2 °C and 10 °C, an almost stable state of algae is observed, the concentration increases very slowly, however the culture does not die. The productivity of microalgae at a temperature of 25 °C was 397 million of cells/(lday), at a temperature of 19 °C - 334 million of cells/(lday), at a temperature of 10 °C - 67 million of cells/(lday), at a temperature of 2 °C - 37 million of cells/(lday).
3. The amount of energy that can be obtained from the microalgae biomass under the growing conditions of 3500 lx and 23 °C is 53083 (kWh)/(m3day). The biogas amount that can be obtained from the same amount of biomass is 6.188 l of methane/(l of medium-day).
References Литература
1. Lundquist T.J., Woertz I.C., Quinn N.W.T., Benemann J.R. A Realistic Technology and Engineering Assessment of Algae Biofuel // Energy Biosciences Institute University of California. 2010. Pp. 37-125.
2. Дворецкий Д.С., Дворецкий С.И., Темнов М.С., Пешкова Е.В., Акулинин Е.И. Технология получения липидов из микроводорослей. Тамбов.: Изд-во ФГБОУ ВПО ТГТУ. 2015. 99 с.
3. Dvoretsky D.S. Optimization of the Process of Cultivation of Microalgae Chlorella Vulgaris Biomass with High Lipid Content for Biofuel Production // Chemical Engineering Transactions. 2015. № 43. Pp. 361-366.
4. Li Y., Horsman M., Lan C.Q., Dubois-Calero N. Biofuels from microalgae // Biotechnol Prog. 2008. № 24. Pp. 815-820.
5. Темнов М.С., Санталов Р. Д., Андросова А. А. Разработка технологии культивирования биомассы микроводорослей chlorella vulgaris с повышенным содержанием липидов // Успехи в химии и химической технологии. 2015. T. 29. № 8. С. 116-117.
6. Котелев М.С., Новиков А.А., Афонин Д.С., Винокуров В.А. Получение высокоэнергонасыщенной биомассы микроводорослей Botryococcus braunii и Chlorella в фотобиореакторе // Химия и технология топлив и масел. 2012. № 1(569).
7. Зареи Дарки Б., Король О.Н., Геворгиз Р.Г. Производительность системы культивирования микроводорослей при естественном освещении // Biotechnologia Acta. 2014. № 3. C. 109-114.
8. Gouveia L. Microalgae as a Feedstock for Biofuels // Springer. 2011. Pp. 68-100.
9. Wilkie Ann C., Smith P.H., Bordeaux F.M. An economical bioreactor for evaluating biogas potential of particulate
1. Lundquist, T.J., Woertz, I.C., Quinn, N.W.T., Benemann, J.R. A Realistic Technology and Engineering Assessment of Algae Biofuel. Energy Biosciences Institute University of California. 2010. Pp. 37-125.
2. Dvoretskiy, D.S., Dvoretskiy, S.I., Temnov, M.S., Peshkova, Ye.V., Akulinin, Ye.I. Tekhnologiya polucheniya lipidov iz mikrovodorosley [Technology of obtaining lipids from microalgae]. Tambov.: Izd-vo FGBOU VPO TGTU. 2015. 99 p. (rus)
3. Dvoretsky, D.S. Optimization of the Process of Cultivation of Microalgae Chlorella Vulgaris Biomass with High Lipid Content for Biofuel Production. Chemical Engineering Transactions. 2015. No. 43. Pp. 361-366.
4. Li, Y., Horsman, M., Lan, C.Q., Dubois-Calero, N. Biofuels from microalgae. Biotechnol Prog. 2008. No. 24. Pp. 815-820.
5. Temnov, M.S., Santalov, R.D., Androsova, A.A. Razrabotka tekhnologii kultivirovaniya biomassy mikrovodorosley chlorella vulgaris s povyshennym soderzhaniyem lipidov [Development of technology for cultivation of biomass of microalgae chlorella vulgaris with an increased lipid content]. Uspekhi v khimii i khimicheskoy tekhnologii. 2015. Vol. 29. No. 8. Pp. 116-117. (rus)
6. Kotelev, M.S., Novikov, A.A., Afonin, D.S., Vinokurov, V.A. Polucheniye vysokoenergonasyshchennoy biomassy mikrovodorosley Botryococcus braunii i Chlorella v fotobioreaktore [Production of high-energy-saturated biomass of microalgae Botryococcus braunii and Chlorella in a photobioreactor]. Khimiya i tekhnologiya topliv i masel. 2012. No. 1(569). (rus)
7. Zarei Darki, B., Korol, O.N., Gevorgiz, R.G. Proizvoditelnost sistemy kultivirovaniya mikrovodorosley pri yestestvennom osveshchenii [Productivity of the
microalgae cultivation system under natural light]. Biotechnologia Acta. 2014. No. 3. Pp. 109-114. (rus)
8. Gouveia, L. Microalgae as a Feedstock for Biofuels. Springer. 2011. Pp. 68-100.
9. Wilkie Ann, C., Smith, P.H., Bordeaux, F.M. An economical bioreactor for evaluating biogas potential of particulate biomass. Bioresourse Technology. 2004. No. 92. Pp. 103-109.
10. Petrichenko, M.R., Nemova, D.V., Kotov, E.V., Tarasova, D.S., Sergeev, V.V. Ventilated facade integrated with the HVAC system for cold climate. Magazine of Civil Engineering. 2018. No. 1. Pp. 47-58. doi: 10.18720/MCE.77.5.
11. Petrichenko, M.R., Kotov, E.V., Nemova, D.V., Tarasova, D.S., Sergeev, V.V. Numerical simulation of ventilated facades under extreme climate conditions. Magazine of Civil Engineering. 2018. No. 1. Pp. 130-140. doi: 10.18720/MCE.77.12.
12. Petritchenko, M.R., Subbotina, S.A., Khairutdinova, F.F., Reich, E.V., Nemova, D.V., Olshevskiy, V.Ya., Sergeev, V.V. Impact of rustication joints interval on air mode in the air gap of ventilated facades. Magazine of Civil Engineering. 2017. No. 5. Pp. 40-48. doi: 10.18720/MCE.73.4.
13. Zalata, Ye.S., Shavrov, Yu.Yu., Marichev, A.P., Maslikov, V.l., Strelets, K.I. Ispolzovaniye fotobiologicheskikh ustroystv v razlichnykh sistemakh zdaniy [The use of photobiological devices in various building systems]. Materialy V Mezhdunarodnoy nauchno-prakticheskoy konferentsii Komsomolsk-na-Amure. 2017. Pp. 468-474. (rus)
14. Janssen, M., Tramper, J., Mur, L.R., Wijffels, R.H. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng. 2003. No. 81. Pp. 193-210.
15. Chernova, N.I., Kiseleva, S.V., Rafikova, Yu.Yu. Vliyaniye klimaticheskikh i infrastrukturnykh faktorov na resursnyy potentsial proizvodstva biotopliva iz mikrovodorosley [The influence of climatic and infrastructural factors on the resource potential of biofuel production from microalgae]. Kongress reencon - XXI «Vozobnovlyayemaya energetika XXI VEK». 2016. Pp. 45-49. (rus)
16. Dvoretskiy, D.S., Peshkova, Ye.V., Temnov, M.S. Eksperimentalnoye opredeleniye tekhnologicheskikh rezhimov rosta biomassy mikrovodorosli khlorella s povyshennym soderzhaniyem lipidov [Experimental determination of technological regimes of growth of biomass of microalgae chlorella with a high content of lipids]. Tekhnologii pishchevoy i pererabatyvayushchey promyshlennosti aPk - produkty zdorovogo pitaniya. 2014. No. 2. Pp. 32-38. (rus)
17. Fedyukhin, A., Sultanguzin, I., Gyul'Maliev, A., Sergeev, V. Biomass pyrolysis and gasification comprehensive modeling for effective power generation at combined cycle power plant. Eurasian Chemico-Technological Journal. 2017. Vol. 19(3). Pp. 245-253.
18. Anikina, I.D., Sergeyev, V.V., Amosov, N.T., Luchko, M.G. Use of heat pumps in turbogenerator hydrogen cooling systems at thermal power plant. International Journal of Hydrogen Energy. 2017. Vol. 42(1). Pp. 636-642.
19. Andreyenko, T.I., Gabderakhmanova, T.S., Danilova, O.V. Atlas resursov vozobnovlyayemoy energii na territorii Rossii: nauch. Izdaniye [Atlas of renewable energy resources in Russia: scientific. Edition]. RKhTU im. D.I. Mendeleyeva. Moskva. 2015. P. 160. (rus)
20. SP 131.13330.2012 Stroitelnaya klimatologiya. Aktualizirovannaya redaktsiya SNiP 23-01-99* [SP 131.13330.2012 Construction climatology. Updated edition of SNiP 23-01-99 *]. (rus)
21. Nagornov, S.A., Meshcheryakova, Yu.V. Issledovaniye usloviy kultivirovaniya mikrovodorosli khlorella v trubchatom fotobioreaktore [Investigation of the
biomass // Bioresourse Technology. 2004. № 92. Pp. 103-109.
10. Петриченко М.Р., Немова Д.В., Котов Е.В., Тарасова Д.С., Сергеев В.В. Вентилируемые фасады, интегрированные с инженерными системами здания для холодного климата // Инженерно-строительный журнал. 2018. № 1(77). С. 47-58.
11. Петриченко М.Р., Котов Е.В., Немова Д.В., Тарасова Д.С., Сергеев В.В. Численное моделирование вентилируемых фасадов в экстремальных климатических условиях // Инженерно-строительный журнал. 2018. № 1(77). С. 130-140.
12. Петриченко М.Р., Субботина С.А., Хайрутдинова Ф.Ф., Рейх Е.В., Немова Д.В., Ольшевский В.Я., Сергеев В.В. Влияние рустов на воздушный режим в вентилируемом фасаде // Инженерно-строительный журнал. 2017. № 5(73). С. 40-48.
13. Залата Е.С., Шавров Ю.Ю., Маричев А.П., Масликов
B.И., Стрелец К.И. Использование фотобиологических устройств в различных системах зданий // Материалы V Международной научно-практической конференции Комсомольск-на-Амуре. 29 - 30 ноября 2017 года.
C. 468-474.
14. Janssen M., Tramper J., Mur L.R., Wijffels R.H. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects // Biotechnol Bioeng. 2003. № 81. Pp. 193-210.
15. Чернова Н.И., Киселева С.В., Рафикова Ю.Ю. Влияние климатических и инфраструктурных факторов на ресурсный потенциал производства биотоплива из микроводорослей // Конгресс reencon-XXI «Возобновляемая энергетика XXI ВЕК». C. 45-49.
16. Дворецкий Д.С., Пешкова Е.В., Темнов М.С. Экспериментальное определение технологических режимов роста биомассы микроводоросли хлорелла с повышенным содержанием липидов // Технологии пищевой и перерабатывающей промышленности АПК - продукты здорового питания. 2014. № 2. С. 32-38.
17. Fedyukhin, A., Sultanguzin, I., Gyul'Maliev, A., Sergeev, V. Biomass pyrolysis and gasification comprehensive modeling for effective power generation at combined cycle power plant // Eurasian Chemico-Technological Journal. 2017. Vol. 19(3). Pp. 245-253.
18. Anikina, I.D., Sergeyev, V.V., Amosov, N.T., Luchko, M.G. Use of heat pumps in turbogenerator hydrogen cooling systems at thermal power plant // International Journal of Hydrogen Energy. 2017. Vol. 42(1). Pp. 636-642.
19. Андреенко Т.И., Габдерахманова Т.С., Данилова О.В. Атлас ресурсов возобновляемой энергии на территории России: науч. издание. РХТУ им. Д.И. Менделеева. Москва. 2015. 160 с.
20. СП 131.13330.2012 Строительная климатология. Актуализированная редакция СНиП 23-01 -99*
21. Нагорнов С.А., Мещерякова Ю.В. Исследование условий культивирования микроводоросли хлорелла в трубчатом фотобиореакторе // Вестник ТГТУ. 2015. Т. 21. № 4. C. 653-659.
22. Мещерякова Ю.В., Нагорнов С.А. Культивирование микроводоросли хлорелла с целью получения биотоплива // Вопросы современной науки и практики. 2012. Специальный выпуск (43). С. 33-36.
23. Яковлев А.Н., Савинова Д.М., Кругликова Л.Л. Влияние фотометрических характеристик источника излучения на эффективность выращивания микроводоросли chlorella // Высокие технологии в современной науке и технике. 2014. С. 225-228.
24. Прохоров А.М. Люкс. M.: Советская энциклопедия.1990. Т. 2. С. 623.
25. Ауджанова В.К. Морфологические и систематические характеристики хлореллы. Ее производство и
conditions for the cultivation of chlorella microalgae in a tubular photobioreactor]. Vestnik TGTU. 2015. No. 4. Pp. 653-659. (rus)
22. Meshcheryakova, Yu.V., Nagornov, S.A. Kultivirovaniye mikrovodorosli khlorella s tselyu polucheniya biotopliva [Cultivation of chlorella microalgae to produce biofuels]. Voprosy sovremennoy nauki i praktiki. Spetsialnyy vypusk. 2012. No. 43. Pp. 33-36. (rus)
23. Yakovlev, A.N., Savinova, D.M., Kruglikova, L.L. Vliyaniye fotometricheskikh kharakteristik istochnika izlucheniya na effektivnost vyrashchivaniya mikrovodorosli chlorella [The effect of the photometric characteristics of the radiation source on the growth efficiency of chlorella]. Vysokiye tekhnologii v sovremennoy nauke i tekhnike. Tomsk.: Izd-vo Natsionalnyy issledovatelskiy Tomskiy politekhnicheskiy universitet. 2014. Pp. 225-228. (rus)
24. Prokhorov, A.M. Lyuks [Lux]. M.: Sovetskaya entsiklopediya. 1990. P. 623. (rus)
25. Audzhanova, V.K. Morfologicheskiye i sistematicheskiye kharakteristiki khlorelly. Yee proizvodstvo i primeneniye [Morphological and systematic characteristics of chlorella. The production and use]. Nauchnyy vestnik. 2014. No. 1(1). Pp. 113 - 126. (rus)
26. Sorokina, K.N. Potentsial primeneniya mikrovodorosley v kachestve syrya dlya bioenergetiki [The potential of microalgae as a raw material for bioenergy]. Kataliz v promyshlennosti. 2012. No. 2. Pp. 63-72. (rus)
27. Bodnar, O.I., Burega, N.V., Palchyk, A.O., Viniarska, H.B., Grubinko, V.V. Optimization of Chlorella vulgaris Beij. Cultivation in a bioreactor of continuous action. Biotechnologia acta. 2016. No. 4. Pp. 42-49.
28. Tamiya, H. Mass culture of algae. Ann Rev Plant Physiol.1957. No. 8. Pp. 309-334.
29. Temnov, M.S. Razrabotka tekhnologii polucheniya biotopliva iz mikrovodorosli chlorella vulgaris [Development of technology for biofuel production from microalgae chlorella vulgaris]. Tezisy doklada na konferentsii. Tambovskiy gosudarstvennyy tekhnicheskiy universitet, Tambov. 2015. No. 8. Pp. 201-202. (rus)
30. Sirenko, L.A. Metody fiziologo-biologicheskogo issledovaniya vodorosley v gidrobiologicheskoy praktike [Methods of physiological and biological study of algae in hydrobiological practice]. Kiyev.: Nauk. Dumka.1975. 247 p. (rus)
31. Smart Material House BIQ. Published by: IBA Hamburg GmbH. July 2013.
32. Baltrénas, P., Misevicius, A. Biogas production experimental research using algae. Journal of Environmental Health Science and Engineering. 2015. URL: https://doi.org/10.1186/s40201-015-0169-z
Ekaterina Zalata*,
+7(921)407-81-84; ekaterinazalata@gmail.com
применение // Научный вестник. 2014. № 1(1). С. 113-126.
26. Сорокина К.Н. Потенциал применения микроводорослей в качестве сырья для биоэнергетики // Катализ в промышленности. 2012. № 2. С. 63-72.
27. Bodnar O.I., Burega N.V., Palchyk A.O., Viniarska H.B., Grubinko V.V. Optimization of Chlorella vulgaris Beij. Cultivation in a bioreactor of continuous action // Biotechnologia acta. 2016. Vol. 9. № 4. Pp. 42-49.
28. Tamiya H. Mass culture of algae // Ann Rev Plant Physiol. 1957. № 8. Pp. 309-334.
29. Темнов М.С. Разработка технологии получения биотоплива из микроводоросли chlorella vulgaris // Тезисы доклада на конференции. Тамбовский государственный технический университет, Тамбов. С. 201-202.
30. Сиренко Л.А. Методы физиолого-биологического исследования водорослей в гидробиологической практике. Киев.: Наук. Думка.1975. 247 с.
31. Smart Material House BIQ. Published by: IBA Hamburg GmbH. July 2013.
32. Baltrenas P., Misevicius A. Biogas production experimental research using algae // Journal of Environmental Health Science and Engineering. 2015. URL: https://doi.org/10.1186/s40201-015-0169-z
Екатерина Сергеевна Залата*, +7(921)407-81-84;
эл. почта: ekaterinazalata@gmail.com
Юрий Юрьевич Шавров,
+7(981)937-11-13; эл. почта: Sharohka@mail.ru
Ксения Игоревна Стрелец, +7(812)552-94-60; эл. почта: kstrelets@mail.ru
Мария Сергеевна Емельянова, +7(812)428-40-10; эл. почта: margar9@mail.ru
Yurii Shavrov,
+7(981)937-11-13; Sharohka@mail.ru Kseniya Strelets,
+7(812)552-94-60; kstrelets@mail.ru
Maria Emelyanova, +7(812)428-40-10; margar9@mail.ru
© Zalata E.S.,Shavrov Y.Y.,Strelets K.I.,Emelyanova M.S., 2018