Научная статья на тему 'MOLECULARLY IMPRINTED POLYANILINE: SYNTHESIS, PROPERTIES, APPLICATION. A REVIEW'

MOLECULARLY IMPRINTED POLYANILINE: SYNTHESIS, PROPERTIES, APPLICATION. A REVIEW Текст научной статьи по специальности «Химические науки»

CC BY
65
29
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
POLYANILINE / MOLECULAR IMPRINTING / MOLECULARLY IMPRINTED POLYMERS / SENSORS

Аннотация научной статьи по химическим наукам, автор научной работы — Presnyakov Kirill Y., Pidenko Pavel S., Pidenko Sergey A., Biryukov Ilnur R., Burmistrova Nataliya A.

Molecular imprinting is a rapidly developing and promising approach for the selective recognition for target molecules of diff erent nature. In this review, we have collected works devoted to synthesis and application of polyaniline-based molecularly imprinted polymers (MIPANI) over the last 5 years. The manuscript provides brief descriptions of the main approaches to the synthesis of PANI MIPs and the advantages and disadvantages of each technique. We also discuss the eff ect of various factors on the process of MI-PANI synthesis, including polymerization methods, molecular weight of template molecules and the types of scaff olds. The analytical characteristics of the resulting sensors are also provided. Thus, it can be concluded that polyaniline is a very promising material for MIPs synthesis.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MOLECULARLY IMPRINTED POLYANILINE: SYNTHESIS, PROPERTIES, APPLICATION. A REVIEW»

Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, вып. 2. С. 142-149 Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 2, pp. 142-149

https://ichbe.sgu.ru

https://doi.org/10.18500/1816-9775-2022-22-2-142-149

Review

Molecularly imprinted polyaniline: Synthesis, properties, application. A review

K. Y. Presnyakov1, P. S. Pidenko12, S. A. Pidenko1, I. R. Biryukov1, N. A. Burmistrova1 ^ (TT If К ^ J kS^

1Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia 2University of Regensburg, Regensburg 93040, Germany

Kirill Y. Presnyakov, kirillpresnyakov1999@ya.ru, https://orcid.org/0000-0003-3137-7145 Pavel S. Pidenko, pidenkops@gmail.com, https://orcid.org/0000-0001-7771-0957 Sergey A. Pidenko, sapidenko@mail.ru, https://orcid.org/0000-0002-9087-4582 Ilnur R. Biryukov, biryukov_ilnur@mail.ru, https://orcid.org/0000-0002-1977-2807 Natalia A. Burmistrova, naburmistrova@mail.ru, https://orcid.org/0000-0001-8137-1599

Abstract. Molecular imprinting is a rapidly developing and promising approach for the selective recognition for target molecules of different nature. In this review, we have collected works devoted to synthesis and application of polyaniline-based molecularly imprinted polymers (MI-PANI) over the last 5 years. The manuscript provides brief descriptions of the main approaches to the synthesis of PANI MIPs and the advantages and disadvantages of each technique. We also discuss the effect of various factors on the process of MI-PANI synthesis, including polymerization methods, molecular weight of template molecules and the types of scaffolds. The analytical characteristics of the resulting sensors are also provided. Thus, it can be concluded that polyaniline is a very promising material for MIPs synthesis. Keywords: polyaniline; molecular imprinting; molecularly imprinted polymers; sensors

Acknowledgements. The work was carried out with the financial support of the Russian Foundation for Basic Research (project No. 18-29-08033). For citation: Presnyakov K. Y., Pidenko P. S., Pidenko S. A., Biryukov I. R., Burmistrova N. A. Molecularly imprinted polyaniline: Synthesis, properties, application. A review. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 2, pp. 142-149 (in Russian). https://doi. org/10.18500/1816-9775-2022-22-2-142-149

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0)

Обзорная статья УДК 543.05+543.065

Полианилин в молекулярном импринтинге: синтез, свойства, применение. Обзор К. Ю. Пресняков1, П. С. Пиденко1,2, С. А. Пиденко1, И. Р. Бирюков1, Н. А. Бурмистрова1 к

1Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83

2Университет г. Регенсбурга, Германия, 93040, Regensburg, UniversitatsstraBe 31

Пресняков Кирилл Юрьевич, магистр Института химии, kirillpresnyakov1999@ya.ru, https://orcid.org/0000-0003-3137-7145

Пиденко Павел Сергеевич, аспирант кафедры общей и неорганической химии Института химии, pidenkops@gmail.com, https://orcid. org/0000-0001-7771-0957

Пиденко Сергей Анатольевич, кандидат химических наук, доцент кафедры общей и нерганической химии Института химии, sapidenko@ mail.ru, https://orcid.org/0000-0002-9087-4582

Бирюков Ильнур Рушанович, бакалавр Института химии, biryukov_ilnur@mail.ru, https://orcid.org/0000-0002-1977-2807

Бурмистрова Наталия Анатольевна, доктор химических наук, профессор кафедры общей и неорганической химии Института химии, naburmistrova@mail.ru, https://orcid.org/0000-0001-8137-1599

Аннотация. Молекулярный импринтинг является быстро развивающимся и перспективным подходом селективного распознавания молекул-мишеней различной природы. В обзоре собраны работы, посвященные синтезу и применению молекулярно-импринтирован-ных полимеров на основе полианилина (МИ-ПАНИ) за последние 5 лет. Приведено краткое описание основных подходов к синтезу МИ-ПАНИ, а также рассмотрены их преимущества и недостатки. Обсуждено влияние различных факторов на процесс синтеза МИ-ПАНИ, в

том числе метода полимеризации, молекулярной массы молекул темплата и типа подложки. Особое внимание уделено аналитическим характеристикам сенсоров на основе МИ-ПАНИ. Показано, что полианилин является перспективным материалом для синтеза МИП. Ключевые слова: полианилин; молекулярный импринтинг; молекулярно-импринтированные полимеры, сенсоры

Благодарности. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-2908033).

Для цитирования: Presnyakov K. Y., Pidenko P. S., Pidenko S. A., Biryukov I. R., Burmistrova N. A. Molecularly imprinted polyaniline: Synthesis, properties, application. A review [Пресняков К. Ю., Пиденко П. С., Пиденко С. А., Бирюков И. Р., Бурмистрова Н. А. Полианилин в молекулярном импринтинге: синтез, свойства, применение. Обзор] // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, вып. 2. С. 142-149. https://doi.org/10.18500/1816-9775-2022-22-2-142-149 Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0)

Introduction

In recent years, molecular imprinting technique has become a powerful tool for the synthesis of lock and key systems that are very effective at capturing the target molecules. Molecularly imprinted polymers (MlPs) are highly cross-linked polymers containing artificially created cavities called recognition sites that selectively bind template molecules [1, 2, 3]. As synthetic receptors, MlPs are characterized by high stability, durability, and low synthesis costs. More than 10 000 molecules with different structure have been used as template molecules for the MIP synthesis [2], including inorganic ions [4], drugs [5], pesticides [6], proteins [7, 8], viruses [9], cellular structures [10] and various macromolecules and microorganisms [11, 12]. The current theoretical and experimental knowledge offers an opportunity to develop MIP-based systems to address a wide range of challenges in science and technology including analytical chemistry and separation science [13].

MIPs are based on polymers of various nature. There are polymers of natural origin, such as chitosan obtained from chitin [14], but the most common polymers used for MIP synthesis are those that contain monomers with basic (vinylpyridine), acidic (methacrylic acid) and hydrogen bonds (methacrylamide) or hydrophobic groups (styrene). Usually, MlPs are electrically insulating polymers, that may lead to low sensitivity and selectivity of analytical systems due to the electron transport barrier. This disadvantage of MIPs can be overcome by using conductive polymers with characteristic electrochemical activity [15]. Their synthesis can be carried out using simple, versatile and cost-effective approaches. Conductive polymers can assemble into supramolecular structures [16] turning them into a prospective matrix for MIPs design. One of the most interesting conductive polymers is polyaniline (PANI), characterized by good bio compatibility, high physical and chemical stability, adaptability of synthesis and high electrical conductivity. PANI is capable of self-assembly, leading to increases in the surface area to volume ratio, a fact that is relevant to the case of MIPs development. Moreover, PANI

is the only conductive polymer whose electronic structure, magnetic and optical properties, electrical conductivity and structural features can be adjusted by doping-dedoping process [17].

In this review, we considered the studies of the molecularly imprinted polyaniline (MI-PANI) over the past 5 years. We compared various methods of MI-PANI synthesis, and discussed their prospects and application fields.

Synthesis of Molecularly Imprinted Polyaniline

The synthesis of MIPs is based on the formation of a complex between the template molecule and the functional monomer through covalent or non-covalent interactions, followed by the removal of the template molecules from the polymer network. The functional monomer determines the method of polymerization, including electropolymerization, chemical polymerization, creation of composite membranes (MIPs particles and conductive material), phase inversion, lithography and surface stamping [1, 18].

PANI is a widely studied and the most interesting example among conductive polymers for MIPs synthesis. There is a large number of studies describing the properties of PANI, its synthesis methods and applications [19, 20]. The morphology of PANI structures ranges from nanoparticles (NPs) to micron-sized clusters. Depending on the purpose of the further application, PANI can be synthesized in different forms, such as films [21, 22, 23], nanotubes [24], nanospheres [25], nanowires [26], nanofibres [27, 28, 29] and multicomponent structures [30]. Much experience has been gained over the recent decade regarding the synthesis of different PANI structures that can be adapted to MIPs creation.

The important features of PANI are simplicity and low cost of synthesis compared to other polymers and commercial availability of reagents. Other benefits of PANI include low toxicity, high conductivity, good redox reversibility and environmental resistance [19, 31]. These properties provide the opportunity to develop low-cost analytical systems based on MI-PANI that meet the requirements of "green chemistry".

There are two main methods of MI-PANI synthesis [19]: electrochemical and chemical polymerization of aniline in the presence of various oxidants. The choice of the method depends upon the task and

various forms of MI-PANI can be obtained by varying the polymerization conditions. Comparison of electrochemical and chemical oxidative polymerization methods is provided in Table 1.

Table 1

Electrochemical and chemical polymerization of aniline

Comparison Electrochemical polymerization Chemical polymerization

Advantages High purity of the product High product yield (wt. %) Synthesis process control Simplicity of synthesis Wide choice of oxidants Wide scaffold types Semi-industrial yield of product

Disadvantages Limited electrode surface area Requires electrically conductive scaffold Leaching of MIPs The complexity of synthesis monitoring Costly and time-consuming purification of the product

Morphology of MI-PANI Nanowires [32, 33] Film [21, 31, 34, 35] Nanofibers [28, 29] Nanoparticles [33, 34, 35, 36, 37, 38] Film [22, 23, 39] Nanotubes [24]

The electrochemical polymerization of aniline is the most common approach for PANI synthesis [22]. The main disadvantage of the electrochemical synthesis of PANI is the need to use an electrically conductive scaffold for the synthesis of polymer films [40]. The main advantage of this method is the high quality of the final

product containing a low level of impurities, that does not require further purification from unre-acted monomer and initiator molecules. Table 2 shows the examples of MI-PANI synthesis via electrochemical polymerization methods in terms of the morphology of the resulting structures and the electrode materials.

Table 2

Electrochemical synthesis of molecularly imprinted polyaniline

MI-PANI structure Synthesis method Template Electrode material Ref.

Nanowires CA, CV Chloramphenicol [32]

Gold [33]

Histamine [41]

Cardiac troponin T Graphene [21]

CV [42]

Azithromycin Glassy carbon electrode [43]

Film Cefixime [44]

ß-Amyloid-42 Copper@carbon nanotubes [45]

L-ascorbic acid Graphite [34]

n/a Dapsone Platinum with nanoparticles of Fe3O4 [35]

PE Melamine Glassy carbon electrode [31]

Note. CA - Chronoamperometry, CV - Cyclic voltammetry, PE - Potentiodynamic electropolymerization.

According to the applied electrode voltage mode, three electrochemical polymerization reaction methods can be realized - cyclic voltammetry [21], differential voltammetry [46], and chronoamperometry [33]. Synthesis is carried out on the surface of electrodes made of an inert conducting material in aqueous solutions containing background

electrolytes and acids to increase ionic conductivity.

Electrochemical polymerization is mainly used for the synthesis of MI-PANI films on the electrode surface, and precise control of film thickness is possible. However, the synthesis of complex MI-PANI structures requires the use of special matrices [47]. In addition, obtaining MI-PANI in large quantities

via electrochemical polymerization is difficult, as the synthesis is only carried out on the area limited by the electrode surface.

Chemical polymerization of aniline is a simple method to produce PANI with different morphologies in large quantities [48]. The main advantages of chemical polymerization over the electrochemical method are the wide choice of monomers and the ability to synthesize the polymer matrix on any type of substrate or without substrates. Chemical polymerization of aniline is carried out in the presence of various oxidants [49] such as potassium dichromate, potassium permanganate, iron (III) chloride and others. The most widely used oxidant is ammonium persulfate [50], as it has good solubility in aqueous media and provides a high yield (~90 %) of products.

The method and conditions of aniline chemical polymerization leads to differences in the electromechanical, morphological, structural and physical properties of resulted PANI [51] and, therefore, MI-PANI properties. Chemical polymerization makes it possible to obtain MI-PANI in nanowires and films forms, similar to electro polymerization, as well

as a wide range of other MI-PANI nanostructures, including granules, nanotubes, microspheres, and nanospheres. MI-PANI nanostructures have several advantages over films, namely a large surface area and high porosity of particles that allows decreasing the cost of analysis and sample volume [52]. Moreover, the morphology of MI-PANI nanostructures facilitates the immobilization of various biocatalysts and bioreceptors on their surface, thereby increasing the sensitivity of analysis [53]. The wider linear range of analyte determination is obtained due to the large specific surface area of MI-PANI nanoparticles, while the low detection limit is attributed to the high electrical conductivity of PANI [15].

Analytical Application of Molecularly Imprinted Polyaniline

MI-PANI has already found successful applications for analytical purposes. Its main purpose is modification of electrodes, as MI-PANI obtained by both electrochemical and chemical methods can be used for such purpose. Some examples of analytical systems based on MI-PANI are provided in Table 3.

Table 3

Analytical characteristics of molecularly imprinted polyaniline

MI-PANI structure Template LOD, цМ (ng-mL-1) LR, цМ (ng-mL-1) Ref.

Adrenaline 0.001 0.001-100 [54]

Azithromycin 0.1 • 10-3 {0.3-920} • 10-3 [43]*

ß-Amyloid-42 (400) (1-66) [45]*

Cardiac troponin T (8.0 • 10-3) (0.02-0.09) [21]*

(40) (100-8 103) [42]*

Film Cefixime 7.1 • 10-3 0.02-0.95 [44]*

Flucarbazone 5.8 100-1105 [55]*

Glucose 1.2 • 103 {2-11} • 103 [22]

Histamine 0.21 0.5-1000 [41]*

L-ascorbic acid 1.0 1-100 [34]*

Melamine 4.5 • 10-4 {0.6-16} • 10-3 [31]*

Nanotubes Horseradish peroxidase (3.6 • 10-4) (10-3-1102) [24]

(7 • 10-2) (0.05-10) [26]

Nanowires Chloramphenicol 1.0 ■ 10-4 - [32]*

1.2 • 10-3 10-2 - 103 [33]*

Nanofibers Aldicarb 5.0 • 10-4 {50-80} • 10-3 [28]

Calycosin 8.5 • 10-2 0.42-129 [29]*

Ovalbumin (1.0 • 10-9) (10-4 - 1) [36]

Nanoparticles p-Nitrophenol 20 60-140 [37]

Paracetamol 50 0.4-1103 [15]

* - MI-PANI synthesized by electrochemical methods; LOD - Limit of detection; LR - Linear range.

As we can see, the MI-PANI can be used for determination of low- and high molecular weight compounds on the nanomolar concentrations. The MI-PANI nanoparticles (NPs) for such purpose were synthesized via oxidative polymerization of aniline within the micelles [15] with ammonium persulfate used as an oxidizing agent. A selective recognition element based on MI-PANI NPs has been developed for paracetamol determination; this element is characterized by a particularly low detection limit. The developed approach has several advantages: polymerization is carried out in an aqueous medium and is harmless to the environment; simultaneous synthesis of NPs and imprinting reduce the time of MIPs creation; the approach is universal and can be adapted for other template molecules.

Various nanocomposites can be used as scaffold for MI-PANI synthesis. For example, a binary CuWO4@PANI nanocomposite has been used by Ponnaiah S.K. and Periakaruppan P. [30] to determine the quercetin level in blood, urine and natural samples without complicated pretreatment. Fatahi et al. have developed [56] an electrochemical sensor based on Fe3O4/PANI-Cun microspheres for dexamethasone monitoring in real samples, such as human urine and serum using differential pulse voltammetry. The urine sample was centrifuged and diluted 10 times without any further pretreatment. The serum sample was treated with methanol to precipitate proteins, and precipitated proteins were subsequently separated out by centrifugation.

Quantum dots are also an interesting nano-dimension scaffold. Li et al. [57] have reported the application of CdTe quantum dots as a selective and sensitive fluorescent nanosensor based on surface imprinting technology. The sensor was used for evaluation of rutin in fruits, vegetables and medicinal plants in the concentration range of 0.1-30 mM, with the detection limit being 0.04 mM. Authors of study [58] describe a nanocomposite probe based on quenching the fluorescence of quantum dots to detect lomefloxacin. The efficiency of the described probe is based on a combination of the quantum dots sensitivity, the MIP selectivity, and the high adsorption PANI affinity.

In some cases, expensive scaffolds and equipment are not required for sensor fabrication. For example, Chen el al. [22] report the procedure for chemical synthesis of MI-PANI performed on the surface of paper strips, that were then connected to the electrode surface. This manufactured electrochemical sensor can determine the concentration of glucose in the blood. The authors noted lower temperature and humidity influence, simplicity, and low cost of such sensors compared to existing ones.

Saksena K. et al. [34] describe the development of an enantioselective sensor for chiral and quantitative monitoring of L-ascorbic acid in serum medium. Polymerization has been performed using cyclic voltammetry on the surface of the graphite pencil rod resulting in formation of a uniform, homogeneous and ultrathin film of MI-PANI.

Wang et al. [24] describe the facile horseradish peroxidase electrochemical biosensor based on modification of a glassy carbon electrode with a MI-PANI nanotubes chemically synthesized in aqueous solution. Recently, we have also obtained nanowire structured MI-PANI for horseradish per-oxidase determination [26]. The developed approach has been used to determine the enzyme immobilized on the inner surface of glass polycapillary using optical detection via a chromogenic reaction with 3,3',5,5'-tetramethylbenzidine.

A large number of studies [32, 33, 35, 43, 58] is dedicated to the development of MI-PANI based antibiotic sensors. Compared to other means of antibiotic analysis, the use of molecular imprinting-based devices usually does not require a time-consuming stage of sample preparation. In addition, MIP based sensors are comparatively simple and cheap in manufacturing, have high selectivity and reproducibility, and can be used for electro-inactive compounds. The use of MI-PANI is not limited to antibiotics analysis in food and wastewaters, for example application of MI-PANI for clinically important substances has been reported by many studies [21, 22, 29, 31, 36, 42, 45, 46, 54].

Conclusion

Therefore, we have shown that PANI is the great potential material for MIPs synthesis for low- and high-molecular weight-targets including complex objects. The obvious advantages of PANI as a matrix polymer for MIPs synthesis are high stability and biocompatibility. Various procedures of MI-PANI synthesis result in obtaining MIPs layers with dramatically different structure and properties. These considerations suggest that PANI will remain the object of keen interest in the field of molecular imprinting for a long time.

References

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Belbruno J. J. Molecularly Imprinted Polymers. Chem. Rev., 2019, vol. 119, no. 1, pp. 94-119. https://doi. org/10.1021/acs.chemrev.8b00171

2. Ahmad O. S., Bedwell T. S., Esen C., Garcia-Cruz A., Piletsky S. A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotech-nol., 2019, vol. 37, no. 3, pp. 294-309. https://doi.org/ 10.1016/j.tibtech.2018.08.009

3. Dinc M., Esen C., Mizaikoff B. Recent advances on core-shell magnetic molecularly imprinted polymers for biomacromolecules. TrAC - Trends Anal. Chem., 2019, vol. 114, pp. 202-217. https://doi.org/10.1016/j. trac.2019.03.008

4. Nakatani N., Cabot J. M., Lam S. C., Rodriguez E. S., Paull B. Selective capillary electrophoresis separation of mono and divalent cations within a high-surface area-to-volume ratio multi-lumen capillary. Anal. Chim. Acta, 2019, vol. 1051, pp. 41-48. https://doi.org/10.1016/j. aca.2018.11.033

5. Adumiträchioaie A., Terti§ M., Cernat A., Sändulescu R., Cristea C. Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int. J. Electrochem. Sci., 2018, vol. 13, no. 3, pp. 2556-2576. https://doi.org/10.20964/2018.03.75

6. Mahmoudpour M., Torbati M., Mousavi M. M., de la Guardia M., Ezzati Nazhad Dolatabadi J. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC - Trends Anal. Chem., 2020, vol. 129. https://doi.org/10.1016/j. trac.2020.115943

7. Jahanban-Esfahlan A., Roufegarinejad L., Jahanban-Esfahlan R., Tabibiazar M., Amarowicz R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 2020, vol. 207. https://doi.org/10.1016/j.talanta.2019.120317

8. Ansari S., Masoum S. Molecularly imprinted polymers for capturing and sensing proteins: Current progress and future implications. TrAC - Trends Anal. Chem., 2019, vol. 114, pp. 29-47. https://doi.org/10.1016/j.trac.2019.02.008

9. Malik A. A., Nantasenamat C., Piacham T. Molecularly imprinted polymer for human viral pathogen detection. Mater. Sci. Eng. C, 2017, vol. 77, pp. 1341-1348. https:// doi.org/10.1016/j.msec.2017.03.209

10. Piletsky S., Canfarotta F., Poma A., Bossi A. M., Piletsky S. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol., 2020, vol. 38, no. 4, pp. 368-387. https://doi.org/10.1016Zj.tibtech.2019.10.002

11. Iskierko Z., Sharma P. S., Bartold K., Pietrzyk-Le A., Noworyta K., Kutner W. Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol. Adv., 2016, vol. 34, no. 1, pp. 30-46. https://doi.org/10.1016/j.bio-techadv.2015.12.002

12. Crapnell R. D., Hudson A., Foster C. W., Eersels K., Grinsven B., Cleij T. J., Banks C. E., Peeters M. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors (Switzerland), 2019, vol. 19, no. 5. https://doi. org/10.3390/s19051204

13. Schirhagl R. Bioapplications for molecularly imprinted polymers. Anal. Chem., 2014, vol. 86, no. 1, pp. 250-261. https://doi.org/10.1021/ac401251j

14. Zouaoui F., Bourouina-Bacha S., Bourouina M., Jaffrezic-Renault N., Zine N., Errachi A. Electrochemical sensors based on molecularly imprinted chitosan: A review. TrAC - Trends Anal. Chem., 2020, vol. 130. https://doi. org/10.1016/j.trac.2020.115982

15. Luo J., Sun J., Huang J., Liu X. Preparation of water-compatible molecular imprinted conductive polyaniline nanoparticles using polymeric micelle as nanoreactor for enhanced paracetamol detection. Chem. Eng. J., 2016, vol. 283, pp. 1118-1126. https://doi.org/10.1016/j. cej.2015.08.041

16. Nezakati T., Seifalian A., Tan A., Seifalian A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev., 2018, vol. 118, no. 14, pp. 6766-6843. https://doi.org/10.1021/acs. chemrev.6b00275

17. Lai J., Yi Y., Zhu P., Shen J. Polyaniline-based glucose biosensor: A review. J. Electroanal. Chem., 2016, vol. 782, pp. 138-153. https://doi.org/10.1016/j.jel-echem.2016.10.033

18. Wioch M., Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. Compr. Anal. Chem., 2019, vol. 86, pp. 17-40. https://doi.org/10.1016/ bs.coac.2019.05.011

19. Ciric-Marjanovic G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met., 2013, vol. 177, no. 3, pp. 1-47. https://doi.org/10.1016/j. synthmet.2013.06.004

20. Shoaie N., Daneshpour M., Azimzadeh M., Mahshid S., Khoshfetrat S.M., Jahanpeyma F., Gholaminejad A., Omidfar K., Foruzandeh M. Electrochemical sensors and biosensors based on the use of polyaniline and its nano-composites: A review on recent advances. Microchim. Acta, 2019, vol. 186, no. 7. https://doi.org/10.1007/ s00604-019-3588-1

21. Karimi M., Rabiee M., Tahriri M., Salarian R., Tayebi L. A graphene based-biomimetic molecularly imprinted polyaniline sensor for ultrasensitive detection of human cardiac troponin T (cTnT). Synth. Met., 2019, vol. 256. https://doi.org/10.1016/j.synthmet.2019.116136

22. Chen Z., Wright C., Dincel O., Chi T. Y., Kameoka J. A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode. Sensors (Switzerland), 2020, vol. 20, no. 4, pp. 1-11. https://doi.org/10.3390/ s20041098

23. Ayadi C., Anene A., Kalfat R., Chevalier Y., Hbaieb S. Molecularly imprinted polyaniline on silica scaffold for the selective adsorption of benzophenone-4 from aqueous media. Colloids Surfaces A Physicochem. Eng. Asp, 2019, vol. 567, pp. 32-42. https://doi.org/10.1016/j. colsurfa.2019.01.042

24. Wang Q., Xue R., Guo H., Wei Y., Yang W. A facile horseradish peroxidase electrochemical biosensor with surface molecular imprinting based on polyaniline nanotubes. J. Electroanal. Chem., 2018, vol. 817, pp. 184-194. https://doi.org/10.1016/j.jelechem.2018.04.013

25. Tian X., Zhang B., Hou J., Gu M., Chen Y. In Situ Preparation and Unique Electrical Behaviors of Gold@ Hollow Polyaniline Nanospheres through Recovery of Gold from Simulated e-Waste. Bull. Chem. Soc. Jpn., 2020, vol. 93, no. 3, pp. 373-378. https://doi.org/10.1246/ bcsj.20190286

26. Pidenko P. S., Pidenko S.A., Skibina Y. S., Zachare-vich A. M., Drozd D. D., Goryacheva I. Yu., Burmistro-

va N. A. Molecularly imprinted polyaniline for detection of horseradish peroxidase. Anal. Bioanal. Chem., 2020, vol. 412, no. 24, pp. 6509-6517. https://doi.org/10.1007/ s00216-020-02689-3

27. Cao F., Liao J., Yang K., Bai P., Wei Q., Zhao C. Self-assembly molecularly imprinted nanofiber for 4-HA recognition. Anal. Lett., 2010, vol. 43, no. 17, pp. 2790-2797. https://doi.org/10.1080/00032711003731480

28. Saxena S., Lakshmi G. B. V. S., Chauhan D., Solanki P. R. Molecularly Imprinted Polymer-based Novel Electrochemical Sensor for the Selective Detection of Aldicarb. Phys. Status Solidi Appl. Mater. Sci., 2020, vol. 217, no. 9, pp. 1-8. https://doi.org/10.1002/pssa.201900599

29. Sun B., Wang C., Cai J., Li D., Li W., Gou X., Gou Y., Hu F. Molecularly Imprinted Polymer-Nanoporous Carbon Composite-Based Electrochemical Sensor for Selective Detection of Calycosin. J. Electrochem. Soc., 2019, vol. 166, no. 6. https://doi.org/10.1149Z2.0971906jes

30. Ponnaiah S. K., Periakaruppan P. A glassy carbon electrode modified with a copper tungstate and poly-aniline nanocomposite for voltammetric determination of quercetin. Microchim. Acta, 2018, vol. 185, no. 11. https://doi.org/10.1007/s00604-018-3071-4

31. Regasa M. B., Soreta T. R., Femi O. E., Ramamurthy P. C., Kumar S. Molecularly imprinted polyaniline molecular receptor-based chemical sensor for the electrochemical determination of melamine. J. Mol. Recognit., 2020, vol. 33, no. 7, pp. 1-11. https://doi.org/10.1002/jmr.2836

32. Chu T.-X., Vu V.-P., Tran H.-T., Tran T.-L., Tran Q.-T., Manh T. L. Molecularly Imprinted Polyaniline Nanowire-Based Electrochemical Biosensor for Chloramphenicol Detection: A Kinetic Study of Aniline Electropolymeriza-tion. J. Electrochem. Soc., 2020, vol. 167, no. 2. https:// doi.org/10.1149/1945-7111/ab6a7e

33. Vu V.-P., Tran Q.-T., Pham D.-T., Tran P.-D., Thierry B., Chu T.-X., Mai A.-T. Possible detection of antibiotic residue using molecularly imprinted polyaniline-based sensor. Vietnam J. Chem., 2019, vol. 57, no. 3, pp. 328-333. https://doi.org/10.1002/vjch.201900026

34. Saksena K., Shrivastava A., Kant R. Chiral analysis of ascorbic acid in bovine serum using ultrathin molecular imprinted polyaniline/graphite electrode. J. Electroa-nal. Chem., 2017, vol. 795, pp. 103-109. https://doi. org/10.1016/j.jelechem.2017.04.043

35. Essousi H., Barhoumi H. Electroanalytical application of molecular imprinted polyaniline matrix for dapsone determination in real pharmaceutical samples. J. Electroanal. Chem., 2018, vol. 818, pp. 131-139. https://doi.org/10.1016/j.jelechem.2018.04.039

36. Luo J., Huang J., Wu Y., Sun J., Wei W., Liu X. Synthesis of hydrophilic and conductive molecularly imprinted polyaniline particles for the sensitive and selective protein detection. Biosens. Bioelectron., 2017, vol. 94, pp. 39-46. https://doi.org/10.1016/j.bios.2017.02.035

37. Saadati F., Ghahramani F., Shayani-jam H., Piri F., Yaft-ian M. R. Synthesis and characterization of nanostruc-ture molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for

detection of p-nitrophenol. J. Taiwan Inst. Chem. Eng., 2018, vol. 86, pp. 213-221. https://doi.org/10.1016/j. jtice.2018.02.019

38. Rao H., Lu Z., Ge H., Liu X., Chen B., Zou P., Wang X., He H., Zeng X., Wang Y. Electrochemical creatinine sensor based on a glassy carbon electrode modified with a molecularly imprinted polymer and a Ni@polyaniline nanocomposite. Microchim. Acta, 2017, vol. 184, no. 1, pp. 261-269. https://doi.org/10.1007/s00604-016-1998-x

39. Li Y., Jiang C. Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96-well microplates. Biosens. Bioelectron., 2018, vol. 119, pp. 18-24. https://doi.org/10.1016Zj.bios.2018.07.067

40. Boeva Z. A., Sergeyev V. G. Polyaniline: Synthesis, properties, and application. Polym. Sci. - Ser. C, 2014, vol. 56, no. 1, pp. 144-153. https://doi.org/10.1134/ S1811238214010032

41. Serrano V. M., Cardoso A. R., Diniz M., Sales M. G. F. In-situ production of Histamine-imprinted polymeric materials for electrochemical monitoring of fish. Sensors Actuators, B Chem., 2020, vol. 311. https://doi. org/10.1016/j.snb.2020.127902

42. Phonklam K., Wannapob R., Sriwimol W., Thavarung-kul P., Phairatana T. A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection. Sensors Actuators, B Chem., 2020, vol. 308. https://doi.org/10.1016/j.snb.2019.127630

43. Jafari S., Dehghani M., Nasirizadeh N., Azimzadeh M. An azithromycin electrochemical sensor based on an aniline MIP film electropolymerized on a gold nano ur-chins/graphene oxide modified glassy carbon electrode. J. Electroanal. Chem., 2018, vol. 829, pp. 27-34. https:// doi.org/10.1016/j.jelechem.2018.09.053

44. Dehghani M., Nasirizadeh N., Yazdanshenas M. E. Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/ electropolymerized molecular imprinted polymer. Mater. Sci. Eng. C, 2019, vol. 96, pp. 654-660. https://doi. org/10.1016/j.msec.2018.12.002

45. Moreira F. T. C., Rodriguez B. A. G., Dutra R. A. F., Sales M. G. F. Redox probe-free readings of a B-amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sensors Actuators, B Chem., 2018, vol. 264, pp. 1-9. https://doi.org/10.1016/j. snb.2018.02.166

46. Mostafavi M., Yaftian M. R., Piri F., Shayani-Jam H. A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectron., 2018, vol. 122, pp. 160-167. https://doi.org/10.1016/j.bios.2018.09.047

47. Heinze J., Frontana-Uribe B. A., Ludwigs S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev., 2010, vol. 110, no. 8, pp. 4724-4771. https://doi.org/10.1021/cr900226k

48. Trchova M., Stejskal J. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical report). Pure Appl. Chem., 2011, vol. 83, no. 10, pp. 1803-1817. https://doi.org/10.1351/PAC-REP-10-02-01

49. Erdem E., Karakiçla M., Saçak M. The chemical synthesis of conductive polyaniline doped with dicarboxylic acids. Eur. Polym. J., 2004, vol. 40, no. 4, pp. 785-791. https:// doi.org/10.1016/j.eurpolymj.2003.12.007

50. Sapurina I., Stejskal J. The mechanism of the oxidative polymerization of aniline and the formation of supra-molecular polyaniline structures. Polym. Int., 2008, vol. 57, pp. 469-478. https://doi.org/10.1002/pi.2476

51. Sapurina I. Y., Stejskal J. The effect of pH on the oxida-tive polymerization of aniline and the morphology and properties of products. Russ. Chem. Rev., 2011, vol. 79, no. 12, pp. 1123-1143. https://doi.org/10.1070/rc2010v-079n12abeh004140

52. Sen T., Mishra S., Shimpi N. G. Synthesis and sensing applications of polyaniline nanocomposites: A review. RSCAdv., 2016, vol. 6, no. 48. https://doi.org/10.1039/ c6ra03049a

53. Tahir Z. M., Alocilja E. C., Grooms D. L. Polyaniline synthesis and its biosensor application. Biosens. Bio-electron., 2005, vol. 20, no. 8, pp. 1690-1695. https:// doi.org/10.1016/j.bios.2004.08.008

54. Dhanjai Yu. N., Mugo S. M. A flexible-imprinted capacitive sensor for rapid detection of adrenaline. Talanta,

2019, vol. 204, pp. 602-606. https://doi.org/10.1016/j. talanta.2019.06.016

55. Kamel A. H., Amr A. E. G. E., Abdalla N. S., El-Naggar M., Al-Omar M. A., Alkahtani H. M., Sayed A. Y. A. Novel solid-state potentiometric sensors using Polyaniline (PANI) as a solid-contact transducer for flucarbazone herbicide assessment. Polymers (Basel), 2019, vol. 11, pp. 1-11. https://doi.org/10.3390/polym11111796

56. Fatahi A., Malakooti R., Shahlaei M. Electrocata-lytic oxidation and determination of dexamethasone at an Fe3O4/PANI-CuII microsphere modified carbon ionic liquid electrode. RSC Adv., 2017, vol. 7, no. 19, pp. 11322-11330. https://doi.org/10.1039/c6ra26125f

57. Li D., Wang N., Wang F., Zhao Q. Boronate affinity-based surface-imprinted quantum dots as novel fluorescent nanosensors for the rapid and efficient detection of rutin. Anal. Methods, 2019, vol. 11, no. 25, pp. 3212-3220. https://doi.org/10.1039/c9ay00787c

58. Orachorn N., Bunkoed O. A nanocomposite fluorescent probe of polyaniline, graphene oxide and quantum dots incorporated into highly selective polymer for lome-floxacin detection. Talanta, 2019, vol. 203, pp. 261-268. https://doi.org/10.1016Zj.talanta.2019.05.082

Поступила в редакцию 19.11.21; одобрена после рецензирования 29.12.21; принята к публикации 30.12.21 The article was submitted 19.11.21; approved after reviewing 29.12.21; accepted for publication 30.12.21

i Надоели баннеры? Вы всегда можете отключить рекламу.