Научная статья на тему 'Моделирование биржевых колебаний в низковолатильные и высоковолатильные периоды'

Моделирование биржевых колебаний в низковолатильные и высоковолатильные периоды Текст научной статьи по специальности «Математика»

CC BY
245
79
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
ARMA-GARCH МОДЕЛЬ / ARMA-GARCH MODEL / VALUE-AT-RISK (VAR) / AVERAGE VALUE-AT-RISK (AVAR) / ВРЕМЕННЫЕ РЯДЫ / TIME SERIES / РАСПРЕДЕЛЕНИЯ "С ТЯЖЁЛЫМИ ХВОСТАМИ" / HEAVY-TAILED DISTRIBUTIONS

Аннотация научной статьи по математике, автор научной работы — Кириллов Кирилл Валерьевич

Анализируется моделирование колебаний цен на акции. Применение статистических критериев позволяет сделать выводы о пригодности исследуемых моделей. Наряду с широко известными критериями Колмогорова-Смирнова и Андерсона-Дарлинга применяются критерии Кристофферсона и Берковича, которые были сравнительно недавно разработаны для оценки интервальных прогнозов. Критерий Берковича особенно ценен для оценки экстремальных скачков цен в высоковолатильные периоды, так как он даёт хорошие результаты и в том случае, когда количество наблюдений невелико. Показано, что традиционно применяемые модели временных рядов с нормальным распределением и распределением Стьюдента применимы только в относительно стабильные периоды. В условиях нестабильности на финансовых рынках необходимы модели, с помощью которых можно описать высокую вероятность больших скачков цен. Анализируется модель временного ряда с распределением «с тяжёлыми концами». На основе проведённых расчётов формулируются рекомендации по управлению фондовым портфелем в кризисные периоды.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

STOCK MARKET FLUCTUATIONS SIMULATION WITHIN LOWLY VOLATILE AND HIGHLY VOLATILE PERIODS

The simulation of stock price fluctuations is analyzed. The statistical criteria application allows drawing the conclusion on the investigated models’ validity. Alongside with well-known Kolmogorov-Smirnov and Anderson-Darling criteria, comparatively new Christoffersen and Berkowitz criteria are used to assess interval predictions. Berkowitz criterion is particularly effective when used to assess extreme price leaps within highly volatile periods, since it gives good results also for a small number of observations. It is shown that the customarily used time-series models with normal distribution and with Student distribution are applicable exclusively during relatively stable periods. Under the unstable conditions at the financial markets, models by means of which it is possible to describe a high probability of great price leaps are required. The time-series model with the heavy tailed distribution is studied. The recommendations on the portfolio management under the crisis time are provided on the basis of the performed calculations.

Текст научной работы на тему «Моделирование биржевых колебаний в низковолатильные и высоковолатильные периоды»

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

УДК 519.22:336.144.36 DOI: 10.12737/2014

Моделирование биржевых колебаний в низковолатильные и

*

высоковолатильные периоды К. В. Кириллов

(Кубанский государственный университет)

Анализируется моделирование колебаний цен на акции. Применение статистических критериев позволяет сделать выводы о пригодности исследуемых моделей. Наряду с широко известными критериями Колмогорова-Смирнова и Андерсона-Дарлинга применяются критерии Кристофферсона и Берковича, которые были сравнительно недавно разработаны для оценки интервальных прогнозов. Критерий Берковича особенно ценен для оценки экстремальных скачков цен в высоковолатильные периоды, так как он даёт хорошие результаты и в том случае, когда количество наблюдений невелико. Показано, что традиционно применяемые модели временных рядов с нормальным распределением и распределением Стьюдента применимы только в относительно стабильные периоды. В условиях нестабильности на финансовых рынках необходимы модели, с помощью которых можно описать высокую вероятность больших скачков цен. Анализируется модель временного ряда с распределением «с тяжёлыми концами». На основе проведённых расчётов формулируются рекомендации по управлению фондовым портфелем в кризисные периоды.

Ключевые слова: ARMA-GARCH модель, Value-at-Risk (VaR), Average Value-at-Risk (AVaR), временные ряды, распределения «с тяжёлыми хвостами».

Введение. В последнее время, в связи с усложнением механизмов, лежащих в основе финансовых рынков и институтов, для того, чтобы принять правильное, взвешенное решение и выработать грамотную стратегию поведения, необходимы математические модели, учитывающие всё большее количество факторов. Наибольший интерес с научной точки зрения представляет изучение изменчивости рыночного процесса. Ключевым параметром, который численно её характеризует, является волатильность. Aвторегрессионные гетероскедастичные модели определения вола-тильности (ARCH, GARCH, и др.) позволяют учесть эффект кластеров на рынке, когда торговля достаточно хорошо может быть разделена на периоды низкой и высокой волатильности. В модели авторегрессионной условной гетероскедастичности ARCH [1] каждому дню присваивается свой вес, убывающий по мере удаления от текущей даты. Модель GARCH [2] вовлекает в вычисления значения волатильностей, вычисленные на предыдущих шагах. Поскольку рынок обладает памятью, необходимо эту память учитывать. Для сравнения эффективности в настоящей работе была рассмотрена модель J. P. Morgan (1996) экспоненциально взвешенного скользящего среднего EWMA. Преимущество EWMA-модели заключается в том, что для её реализации необязательно хранить большое количество данных. В любой момент времени достаточно помнить только текущую оценку дисперсии и последнее измеренное значение рыночного показателя. Измерив новое значение рыночного показателя, можно вычислить новое суточное относительное изменение и получить новую оценку дисперсии. При этом вклад доходности каждого периода экспоненциально убывает по мере его удаления в прошлое.

Для того чтобы понять, какую же из существующих моделей выбрать в качестве основы при моделировании биржевых колебаний, необходимо проанализировать свойства соответствую-

* Работа выполнена при поддержке стипендии Президента России (2011—2012 гг.).

5

щих временных рядов. Множество проведённых исследований выявили целый ряд специфических особенностей временных рядов доходности финансовых активов и их волатильности — отсутствие автокорреляции, лептокуртозис (высокие пики и «толстые хвосты» распределения), длительная память, кластеризация волатильности, условная гетероскедастичность, эффект «рычага» и другие. Более подробный обзор этих особенностей можно найти в [3].

Дальнейшее развитие этих моделей пошло в двух направлениях. Некоторые исследователи сделали акцент на отслеживании резких скачков доходности с помощью модели Пуассоновских скачков [4]. Другой подход заключался в попытке заменить нормальное распределение распределением с более «тяжёлыми хвостами» [5—8]. Выше уже упоминалось, что финансовые ряды обычно характеризуются большой величиной куртозиса. Модель GARCH частично учитывает это, поскольку в ней безусловное распределение имеет «толстые хвосты». Это является результатом стохастического характера условной дисперсии. Однако, как правило, этот эффект не полностью улавливается моделью GARCH, что проявляется в том, что нормированные остатки модели всё ещё характеризуются большой величиной куртозиса. Таким образом, не выполняется одно из предположений модели GARCH о том, что нормированные остатки нормально распределены.

Альтернативой в этом случае может служить явное предположение об ином виде распределения. При этом зачастую выбирают распределение Стьюдента, поскольку при малых степенях свободы оно имеет большой куртозис. Часто распределение временных рядов является смещённым вправо. Для учёта этого обстоятельства следует использовать ассиметричные распределения с «тяжёлыми хвостами», которые описывают высокую вероятность больших скачков цен. Именно поэтому модели с таким распределением имеют явные преимущества перед классическими моделями (с нормальным распределением и распределением Стьюдента) в условиях нестабильности финансовых рынков.

Математические модели риска. Стоимостной мерой риска является величина, называемая VaR (Value-at-Risk). VaR даёт оценку величины, которую, с заданной доверительной вероятностью, не превысят ожидаемые в течение некоторого периода времени потери [9]. Согласно базельским документам, используется величина доверительного интервала 99 %, т. е. ожидаемые колебания цен с вероятностью 99 % не должны превышать установленной границы. VaR некоторой случайной величины X с заданной доверительной вероятностью п определяется следующим образом:

VaRn (X) = - inf [х е R р (X < х) > n}, (0,01-квантиль).

Для того чтобы оценить эффективность различных математических моделей временных рядов для прогнозирования колебаний цен на акции, проанализируем величину VaRtn (yt+1), где

(yt) 0 — временной ряд, описывающий дневное изменение цены на акцию. Он определяется

S

следующим образом: yt = log-^, где (St)ta0 — цена акции в момент времени t. Для моделиро-

St-i ~

вания колебаний цен на акции использовались модель экспоненциально взвешенного скользящего среднего (EWMA — exponentially weighted moving average) и ARMA(1,1)-GARCH(1,1)-модель с различными типами распределений. В рамках EWMA-модели дневная волатильность определяется соотношением:

а? = Ла?-1 +(1 - Л) yt-1, Л > 0. (1)

База данных RiskMetrics, созданная Дж. П. Морганом (J. P. Morgan) в 1994 году для оценки суточной волатильности, использует модель EWMA с показателем Л = 0,94. Оказалось, что при таком выборе параметра Л предсказанные значения дисперсии широкого спектра рыночных показателей очень близки к реальным. Такое же значение параметра использовалось и для проведённых расчётов.

ARMA(1,1)-GARCH(1,1)-модель описывается следующими уравнениями:

l>t = ayt-1 + bat-£t-1 + аЛ + c, (2)

Vt = а0 + a1a?t-1£?t-1 + P^V^

где е0 = 0 и (£t) — последовательность независимых и одинаково распределённых действительных случайных величин; at — стандартное отклонение; а, а0,а1,в1, b, c — параметры модели, которые подбираются, исходя из имеющихся наблюдений за некоторый временной период.

В дальнейшем будем называть ARMA-GARCH-модель (2) нормальной, если предполагается, что нормированные остатки et имеют нормальное распределение. Если рассматривается распределение Стьюдента (t-распределение) будем говорить о t-модели. Кроме этих двух широко используемых распределений исследуем также модель с CTS распределением (classical tempered stable distribution). Это так называемое распределение с «тяжёлыми хвостами». Нормированное CTS распределение задаётся следующей характеристической функцией [7]:

Фх (u) = ф^ (u; а, Л + ,Л-) = exp(-Л/СГ(1 - а)(Л+1 - Ла1) + СГ(-а)((Л+ - iu)a - Ла +(Л- + u)а - Ла)),

С =(Г (2 - а)( Л+2 + Л--2 ))-1,

с тремя параметрами а е (0,2) / [1}, Л +, Л_ > 0.

ARMA-GARCH-модель (2) c таким распределением будем называть CTS моделью.

Целью исследований является сравнение эффективности моделей с различными видами распределений. Для краткости EWMA-модель (1) и модель (2) с нормальным распределением будем называть «нормальными» моделями, а модель с распределением Стьюдента и CTS-распределением будем называть «ненормальными» моделями. Временные ряды строились на основе эмпирических наблюдений для американской биржи S&P 500 и двух российских бирж ММВБ и РТС. Параметры моделей рассчитывались на основе ежедневных изменений курса, которые определялись по цене закрытия. Параметры «нормальных» моделей и модели c ¿■-распределением находятся с помощью метода максимального правдоподобия. Для CTS-модели на первом шаге вычислялись параметры а0,а1,в1, a, b, c для модели (2) с распределением Стьюдента, с помощью метода максимального правдоподобия, а на втором шаге определялся временной ряд yt. Далее на основе полученных значений et подбирались параметры а, Л+, Л- для CTS распределения, используя метод максимального правдоподобия.

Для всех четырёх моделей (EWMA, нормальная ARMA-GARCH, t-ARMA-GARCH и CTS-ARMA-GARCH) были вычислены параметры временных рядов с 14 декабря 2004 года по 31 декабря 2008 года. Выбранные четыре года включают как низковолатильный (2005, 2006 год), так и высоково-латильный (2007, 2008 год) период, включающий в себя финансовый кризис в США 2008 года. Для каждого ежедневного прогноза изменения курса использовались наблюдения дневных курсов за 7 лет для S&P 500, ММВБ и РТС. На основе посчитанных значений yt были определены значения VaR для рассмотренных четырёх моделей VaRt n (yt+1) = - inf [x е R |Pt (yt1 < x) > n}. Полученные результаты сравнивались с исследованиями, проведёнными Рачевым и Ким для американской биржи S&P 500 [7]. Сравнение показало качественное совпадение вычисленных значений параметров для всех рассмотренных моделей.

Проверка выбранных моделей с помощью статистических критериев. Чтобы оценить качество выбранных моделей, было применено несколько статистических критериев. На рисунках 1, 2 приводятся значения критерия Колмогорова-Смирнова (KC-теста) для двух моделей с «не-

нормальным» распределением ошибок: и CTS-ARMA-GARCH-модели для биржи

РТС. Мы не приводим значения ^-теста для двух «нормальных» моделей (EWMA- и нормальной ARMA-GARCH-модели), потому что они были отвергнуты ^ критерием. На рис. 1, 2 показаны временные ряды статистики ^ и р-уровни значимости соответствующих ^ статистик. ^ статистика для CTS-ARMA-GARCH-модели имеет более низкие значения, чем у ¿-модели. Кроме того, р-уровни значимости CTS-ARMA-GARCH-модели, как правило, больше чем 1 %, в то время как ^ARMA-GARCH-модель имеет р-уровни, не превышающие 1 %. Расчёты, проведённые для бирж S&P 500 и ММВБ, дают аналогичные результаты.

Рис. 1. КС статистика для биржи РТС

Рис. 2. р-уровни значимости для биржи РТС

Чтобы оценить точность прогнозирования VaR для рассмотренных моделей, было проведено тестирование с помощью критерия на правдоподобие Кристофферсона (CLR — Christoffersen's Likelihood Ratio) [10]. Периоды для проведения тестирований были выбраны следующие:

• 1-годичный тест:

2005: с 14 декабря 2004 г. до 15 декабря 2005 г.; 2006: с 16 декабря 2005 г. до 20 декабря 2006 г.; 2007: с 21 декабря 2006 г. до 27 декабря 2007 г.;

2008: с 28 декабря 2007 г. до 31 декабря 2008 г.;

• 2-годичный тест:

2005-2006: с 14 декабря 2004 г. до 20 декабря 2006 г.; 2007-2008: с 21 декабря 2006 г. до 31 декабря 2008 г.;

• 4-годичный тест:

2005-2008: с 14 декабря 2004 г. до 31 декабря 2008 г.

^к-тест показывает суммарное количество ошибочных прогнозов значений VaR. Ошибочные прогнозы означают, что фактические потери превышают прогнозируемые. ^к-тест состоит из трёх частей: ^^тест безусловного покрытия, ^к-тест независимости, совместный тест покрытия и независимости. В таблицах 1, 2 и 3 приводятся три ^к-статистики и соответствующие р-уровни значимости для VaRt 001 (yt+1) для четырёх рассмотренных моделей и различных перио-

дов времени.

Таблица 1

CLR тест для биржи S&P 500

Модель 1 год (255 дней)

2005 (14 дек. 2004 — 15 дек. 2005) 2006 (16 дек. 2005 - - 20 дек. 2006)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 2 0,219 0,719 0,031 0,858 0,161 0,922 4 0,710 0,399 0,128 0,720 0,838 0,657

Нормальная 0 5,125 0,023 X x x x 3 0,075 0,782 0,071 0,788 0,147 0,928

t 0 5,125 0,023 X x x x 2 0,129 0,719 0,031 0,858 0,161 0,922

СТЬ 0 5,125 0,023 X x x x 2 0,129 0,719 0,031 0,858 0,161 0,922

Модель 1 год (255 дней)

2007 (21 дек. 2006 — 27 дек. 2007) 2008 (28 дек. 2007 — - 31 дек. 2008)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 10 12,651 0,000 0,819 0,365 13,471 0,001 7 5,316 0,021 0,396 0,528 5,713 0,057

Нормальная 8 7,512 0,006 0,520 0,470 8,032 0,018 9 9,966 0,001 0,661 0,416 10,628 0,004

t 2 0,129 0,719 0,031 0,858 0,161 0,922 3 0,075 0,782 0,071 0,788 0,147 0,928

СТЬ 4 0,710 0,399 0,128 0,720 0,838 0,657 3 0,075 0,782 0,071 0,788 0,147 0,928

Модель 2 года (510 дней)

2005— 2006 (14 дек. 2004 — 20 дек. 2006) 2007— 2008 (21 дек. 2006 — 31 дек. 2008)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 6 0,151 0,696 0,143 0,705 0,295 0,862 17 17,417 0,000 1,175 0,278 18,592 0,001

Нормальная 3 1,025 0,311 0,035 0,850 1,060 0,588 17 17,417 0,000 1,175 0,278 18,592 0,001

t 2 2,474 0,115 0,015 0,900 2,490 0,287 5 0,002 0,964 0,099 0,752 0,101 0,950

СТЬ 2 2,474 0,115 0,015 0,900 2,490 0,287 7 0,640 0,423 0,195 0,658 0,835 0,658

Модель 4 года (1020 дней)

2005— 2008 (14 дек. 2004 — 31 дек. 2008)

N CLRuc p CLRind p CLRcc p

EWMA 24 13,661 0,001 1,157 0,281 14,819 0,001

Нормальная 20 7,429 0,006 0,800 0,370 8,230 0,016

t 7 1,139 0,285 0,096 0,755 1,236 0,538

СТЬ 9 0,148 0,700 0,160 0,688 0,308 0,856

Проанализировав значения, содержащиеся в таблицах, можно сделать следующие выводы: количество ошибочных прогнозов N (1-й столбец в каждой таблице) для всех периодов значительно выше для моделей с нормальным распределением ошибок, что говорит об их неэффективности для прогнозирования значений VaR в предкризисное время.

CLR-тест безусловного покрытия (CLRuc — the CLR test of unconditional coverage) дал следующие результаты:

• 1-годичные тесты за 2005 и 2006 год и 2-годичный тест за 2005—2006 годы не отвергают все четыре модели на 1 % уровне значимости;

• 1-годичные тесты за 2007 и 2008 год, а также 2-годичный тест за 2007-2008 годы две «ненормальные» модели не отвергают, а две «нормальные» модели (EWMA- и нормальная-ARMA-GARCH-модель) отклоняют на 1 % уровне значимости для биржи S&P 500. Для российских бирж только одногодичный тест 2008 года отвергает нормальные модели;

• 4-годичный тест для биржи S&P 500 за 2005—2008 годы две «ненормальные» модели принимает, а две «нормальные» модели отклонены при р = 0,01.

Таблица 2

CLR тест для биржи ММВБ

Модель 1 год (255 дней)

2005 (14 дек. 2004 - - 15 дек. 2005) 2006 (16 дек. 2005 — 20 дек. 2006)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 3 0,090 0,763 0,072 0,787 0,163 0,921 4 0,745 0,388 0,129 0,718 0,874 0,645

Нормальная 2 0,112 0,737 0,032 0,857 0,144 0,930 4 0,745 0,388 0,129 0,718 0,874 0,645

t 0 5,045 0,024 x x x x 1 1,200 0,273 0,008 0,928 1,208 0,546

СТЬ 0 5,045 0,024 x x x x 1 1,200 0,273 0,008 0,928 1,208 0,546

Модель 1 год (255 дней)

2007 (21 дек. 2006 - 27 дек. 2007) 2008 (28 дек. 2007 — 31 дек. 2008)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 2 0,125 0,723 0,031 0,858 0,157 0,924 8 7,555 0,006 0,522 0,469 8,078 0,017

Нормальная 2 0,125 0,723 0,031 0,858 0,157 0,924 11 15,614 0,000 1,000 0,317 16,614 0,000

t 1 1,225 0,268 0,007 0,929 1,233 0,539 5 1,876 0,170 0,201 0,653 2,078 0,353

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

СТЬ 1 1,225 0,268 0,007 0,929 1,233 0,539 5 1,876 0,170 0,201 0,653 2,078 0,353

Модель 2 года (510 дней)

2005- 2006 (14 дек. 2004 — 20 дек. 2006) 2007—2008 (21 дек. 2006 — 31 дек. 2008)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 7 0,694 0,404 0,198 0,656 0,892 0,640 10 3,873 0,049 0,407 0,523 4,280 0,117

Нормальная 6 0,178 0,673 0,145 0,703 0,323 0,850 13 8,908 0,002 0,692 0,405 9,601 0,008

t 1 4,861 0,027 0,004 0,949 4,865 0,087 6 0,181 0,669 0,145 0,702 0,327 0,849

СТЬ 1 4,861 0,027 0,004 0,949 4,865 0,087 6 0,181 0,669 0,145 0,702 0,327 0,849

Модель 4 года (1020 дней)

2005- 2008 (14 дек. 2004 — 31 дек. 2008)

N CLRuc p CLRind p CLRcc p

EWMA 18 5,144 0,023 0,657 0,417 5,801 0,055

Нормальная 19 6,381 0,011 0,733 0,391 7,114 0,028

t 7 1,046 0,306 0,098 0,753 1,144 0,564

СТЬ 7 1,046 0,306 0,098 0,753 1,144 0,564

CLR-тест независимости (CLRind — the CLR test of independence) дал следующие результаты:

• все четыре модели не отвергаются на 1 % уровне значимости;

• две «ненормальные» модели не дают ошибочных прогнозов в 2005 году, поэтому невозможно выполнить тест на независимость. Это означает, что «ненормальные» модели могут переоценивать будущие убытки, что эквивалентно тому, что требуемый запас капитала будет больше, чем необходимо.

Совместный тест покрытия и независимости (CLRcc — the joint test of coverage and independence) дал следующие результаты:

• 1-годичный тест за 2008 год отвергает модель с нормальным распределением для всех трёх бирж;

• для биржи S&P 500 также отвергаются «нормальные» модели на основе 1-годичного теста за 2007 год, 2-годичного теста за 2007—2008 годы и 4-годичного теста за 2005—2008 годы.

Четыре 1-годичных периода можно разделить на две группы: первая — 2005 и 2006 годы и вторая — 2007 и 2008 годы. В 2005 и 2006 году рынок не был очень изменчивым и, как следствие, EWMA- и нормальная АкМА^АкСН-модель не отвергаются. Напротив, в 2007 и 2008 году рынок был неустойчивым и две «нормальные» модели были отвергнуты.

Таблица 3

CLR тест для биржи РТС

Модель 1 год (255 дней)

2005 (14 дек. 2004 - - 15 дек. 2005) 2006 (16 дек. 2005 — 20 дек. 2006)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 3 0,090 0,763 0,072 0,787 0,163 0,921 6 3,498 0,061 0,293 0,587 3,792 0,150

Нормальная 2 0,112 0,737 0,032 0,857 0,144 0,930 4 0,745 0,388 0,129 0,718 0,874 0,645

t 0 5,045 0,024 X X X X 1 1,200 0,273 0,008 0,928 1,208 0,546

СТЬ 1 1,188 0,275 0,008 0,928 1,196 0,549 3 0,087 0,768 0,072 0,787 0,159 0,923

Модель 1 год (255 дней)

2007 (21 дек. 2006 - 27 дек. 2007) 2008 (28 дек. 2007 — 31 дек. 2008)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 2 0,125 0,723 0,031 0,858 0,157 0,924 8 7,555 0,006 0,522 0,469 8,078 0,017

Нормальная 1 1,225 0,268 0,007 0,929 1,233 0,539 9 10,018 0,001 0,664 0,415 10,682 0,004

t 1 1,225 0,268 0,007 0,929 1,233 0,539 3 0,079 0,777 0,072 0,788 0,151 0,927

СТЬ 1 1,225 0,268 0,007 0,929 1,233 0,539 5 1,876 0,170 0,201 0,653 2,078 0,353

Модель 2 года (510 дней)

2005— 2006 (14 дек. 2004 — 20 дек. 2006) 2007— 2008 (21 дек. 2006 — 31 дек. 2008)

N CLRuc p CLRind p CLRcc p N CLRuc p CLRind p CLRcc p

EWMA 9 2,564 0,109 0,328 0,5666 2,892 0,235 10 3,873 0,049 0,407 0,523 4,280 0,117

Нормальная 6 0,178 0,673 0,145 0,703 0,323 0,850 10 3,873 0,049 0,407 0,523 4,280 0,117

t 1 4,861 0,027 0,004 0,949 4,865 0,087 4 0,225 0,635 0,064 0,799 0,289 0,865

СТЬ 4 0,229 0,632 0,064 0,799 0,293 0,863 6 0,181 0,669 0,145 0,702 0,327 0,849

Модель 4 года (1020 дней)

2005— 2008 (14 дек. 2004 — 31 дек. 2008)

N CLRuc p CLRind p CLRcc p

EWMA 19 6,381 0,011 0,733 0,391 7,114 0,028

Нормальная 16 3,016 0,082 0,518 0,471 3,534 0,170

t 5 3,144 0,076 0,050 0,823 3,194 0,202

СТЬ 10 0,001 0,987 0,201 0,653 0,201 0,904

Сравнительный анализ рассмотренных моделей. Для всех четырёх периодов две «ненормальные» модели обычно имеют более высокие значения VaR, чем две «нормальные» модели. Для изучения этих различий проанализируем среднюю относительную разницу (ARD — the average of the relative difference) между VaR значениями для «нормальных» и «ненормальных» моделей. ARD вычисляется следующим образом:

ARD E WaR™—' (Vt i)~VaR™i )"

" [ VaR™;™' (yt+1) _

где VaR™™ (yt+1) — значение VaR, основанное на одной из двух «нормальных» моделей;

VaR""";™' (yt+1) — значение VaR, основанное на одной из двух «ненормальных» моделей.

С практической точки зрения, ARD-значения связаны с расходами на управление рисками. Например, если менеджер использует «ненормальную» модель с ARD-значением, равным 30 % по сравнению с моделью EWMA, это означает, что этому менеджеру нужно на 30 % больше капитала, чем менеджеру, который использует модель EWMA. Следовательно, более низкое значение VaR является экономически более эффективным. Тем не менее, эти сбережения капитала в периоды стабильности на рынке могут иметь серьёзные последствия при падении рынка. Запас капи-

тала, необходимый менеджеру, который использует «нормальную» модель, не может быть достаточным, чтобы покрыть убытки от падающего рынка. Даже если «ненормальные» модели могут быть неэффективными в период стабильности, они могли бы в значительной степени повысить надёжность инвестиций в случае коллапса на финансовых рынках.

Таблица 4 содержит ARD значения, вычисленные на основе двух «нормальных» моделей и двух «ненормальных» моделей для четырёх периодов. По сравнению с VaR-значениями для модели EWMA:

• f-ARMA-GARCH-модель обладает значением VaR за 2005 и 2006 год, большим на 32 % для S&P 500 и на 40 % для российских бирж;

• CTS-ARMA-GARCH-модель обладает примерно на 22 % большим VjR-значением за 2005 и 2006 год;

• f-ARMA-GARCH- и CTS-ARMA-GARCH-модель характеризуются VaR-значением за 2007 год, большим, соответственно, на 26 % и 16 % для S&P 500 и на 53 % и 32 % для российских бирж;

• f-ARMA-GARCH- и CTS-ARMA-GARCH-модель характеризуются VaR-значением за 2008 год, большим, соответственно, на 23 % и 15 % для S&P 500 и на 42 % и 23 % для российских бирж.

По сравнению с VR-значениями для нормальной ARMA-GARCH-модели:

• f-ARMA-GARCH-модель обладает значением VaR за 2005 и 2006 год, большим на 17 % для

S&P 500 и на 34 % для российских бирж;

• CTS-ARMA-GARCH-модель характеризуется значением VaR за 2005 и 2006 год, на большим 7 % для S&P 500 и на 15 % для российских бирж;

• f-ARMA-GARCH- и CTS-ARMA-GARCH-модели характеризуются значением VaR за 2007 год, большим, соответственно, на 21 % и 10 % для S&P 500 и на 34 % и 16 % для российских бирж;

• f-ARMA-GARCH- и CTS-ARMA-GARCH-модели характеризуются значением VaR за 2008 год, большим, соответственно, на 24 % и 16 % для S&P 500 и на 35 % и 18 % для российских бирж.

В таблице 4 CTS-ARMA-GARCH-модель имеет меньшие ARD-значения, чем f-ARMA-GARCH-

модель.

Таблица 4

ARD значения

Индекс «Нормальная» модель «Ненормальная» модель 2005 2006 2007 2008

S&P 500 EWMA f 0,3555 0,3199 0,2679 0,2358

CTS 0,2349 0,2133 0,1620 0,1549

ММВБ EWMA f 0,4619 0,3994 0,5318 0,4040

CTS 0,2664 0,2052 0,3325 0,2223

РТС EWMA f 0,4192 0,4037 0,5333 0,4593

CTS 0,2376 0,2009 0,3167 0,2538

S&P 500 норм. f 0,1719 0,1782 0,2152 0,2452

CTS 0,0708 0,0831 0,1070 0,1646

ММВБ норм. f 0,3577 0,3442 0,3489 0,3469

CTS 0,1757 0,1583 0,1733 0,1724

РТС норм. f 0,3085 0,3438 0,3433 0,3892

CTS 0,1413 0,1497 0,1535 0,1940

Заключение. Проведённые исследования свидетельствуют о том, что СГС-АкМА^АкСН-модель является самой устойчивой к колебаниям на рынке среди четырёх исследованных моделей по

трём причинам. Во-первых, KC-статистики для CTS-ARMA-GARCH-модели имеют более низкие значения, чем у f-ARMA-GARCH-модели за все четыре года исследований. Во-вторых, тест Кристоф-ферсона отвергает две исследуемые «нормальные» модели для периодов неустойчивого рынка (2007 и 2008 гг.), a CTS-ARMA-GARCH-модель не отвергается тестом CLR как для низковолатиль-ных периодов (2005 и 2006 гг.), так и для высоковолатильных периодов (2007 и 2008 гг.). В-третьих, с точки зрения двух «нормальных» моделей, CTS-ARMA-GARCH-модель имеет более низкие ARD-значения, чем f-ARMA-GARCH-модель. Проанализировав значения таблицы 4, можно заметить, что ARD-значения для всех периодов и моделей для американской биржи ниже, чем для российских бирж. Это говорит о том, что для обеспечения стабильности в кризисные периоды российским биржам нужны более высокие объёмы капитала.

Автор выражает признательность профессору С. T. Рачеву и доктору Ю. Ш. Ким за внимание к работе и ценные замечания. Библиографический список

1. Engle, R. Autoregressive conditional heteroscedasticity with estimates of VaRance of united kingdom inflation / R. Engle // Econometrica. — 1982. — Vol. 50. — Pp. 987-1008.

2. Bollerslev, T. Generalized autoregressive conditional heteroskedasticity / T. Bollerslev // Journal of Econometrics. — 1986. — Vol. 31. — No. 3. — Pp. 307-327.

3. Engle, R. F. What good is a volatility model? / R. F. Engle, A. Patton // Quantitative Finance. — 2001. — Vol. 50. — Pp. 237-245.

4. Белоусов, С. M. Моделирование волатильности со скачками : применение к российскому и американскому фондовым рынкам / С. М. Белоусов // Квантиль. — 2006. — № 1. — C. 101-110.

5. Kim, Y. S. Tempered stable and tempered infinitely divisible GARCH models / Y. S. Kim et al. // Journal of Banking and Finance. — 2010. — No. 34. — Pp. 2096-2109.

6. Kim, Y. S. The modified tempered stable distribution, GARCH-models and option pricing / Y. S. Kim et al. // Probability and Mathematical Statistics. — 2009. — Vol. 29. — No. 1. — Pp. 91-117.

7. Kim, Y. S. Time series analysis for financial market meltdowns / Y. S. Kim et al. // Journal of Banking and Finance. — 2011. — No. 35. — Pp. 1879-1891.

8. Bianchi, M. L. Tempered infinitely divisible distributions and processes / M. L. Bianchi et al. // Theory of Probability and Its Applications, Society for Industrial and Applied Mathematics. — 2010. — Vol. 55. — No. 1. — Pp. 58-86.

9. Булдашев, С. В. Статистика для трейдеров / С. В. Булдашев. — Москва : Компания Спутник, 2003. — 244 c.

10. Christoffersen, P. F. Evaluating interval forecasts / P. F. Christoffersen // International Economic Review. — 1998. — Vol. 39. — No. 4. — Pp. 841-862.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Материал поступил в редакцию 18.06.2013.

References

1. Engle, R. Autoregressive conditional heteroscedasticity with estimates of VaRance of united kingdom inflation. Econometrica, 1982, vol. 50, pp. 987-1008.

2. Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 1986, vol. 31, no. 3, pp. 307-327.

3. Engle, R. F., Patton, A. What good is a volatility model? Quantitative Finance, 2001, vol. 50, pp. 237-245.

4. Belousov, S. M. Modelirovaniye volatilnosti so skachkami: primeneniye k rossiyskomu i ameri-kanskomu fondovym rynkam. [Simulation of volatility with discrete steps: applying to the Russian and American stock markets.] Kvantil, 2006, no. 1, pp. 101-110 (in Russian).

5. Kim, Y. S., et al. Tempered stable and tempered infinitely divisible GARCH models. Journal of Banking and Finance, 2010, no. 34, pp. 2096-2109.

6. Kim, Y. S., et al. The modified tempered stable distribution, GARCH-models and option pricing. Probability and Mathematical Statistics, 2009, vol. 29, no. 1, pp. 91-117.

7. Kim, Y. S., et al. Time series analysis for financial market meltdowns. Journal of Banking and Finance, 2011, no. 35, pp. 1879-1891.

8. Bianchi, M. L., et al. Tempered infinitely divisible distributions and processes. Theory of Probability and Its Applications, Society for Industrial and Applied Mathematics, 2010, vol. 55, no. 1, pp. 58-86.

9. Buldashev, S. V. Statistika dlya treyderov. [Statistics for traders.] Moscow : Kompaniya Sputnik, 2003, 244 p. (in Russian).

10. Christoffersen, P. F. Evaluating interval forecasts. International Economic Review, 1998, vol. 39, no. 4, pp. 841-862.

STOCK MARKET FLUCTUATIONS SIMULATION WITHIN LOWLY VOLATILE AND HIGHLY VOLATILE PERIODS*

K. V. Kirillov

(Kuban State University)

The simulation of stock price fluctuations is analyzed. The statistical criteria appiication allows drawing the conclusion on the investigated models' validity. Alongside with well-known Kolmogorov-Smirnov and Anderson-Darling criteria, comparatively new Christoffersen and Berkowitz criteria are used to assess interval predictions. Berkowitz criterion is particularly effective when used to assess extreme price leaps within highly volatile periods, since it gives good results also for a small number of observations. It is shown that the customarily used time-series models with normal distribution and with Student distribution are applicable exclusively during relatively stable periods. Under the unstable conditions at the financial markets, models by means of which it is possible to describe a high probability of great price leaps are required. The time-series model with the heavy tailed distribution is studied. The recommendations on the portfolio management under the crisis time are provided on the basis of the performed calculations.

Keywords: ARMA-GARCH model, Value-at-Risk (VaR), Average Value-at-Risk (AVaR), time series, heavy-tailed distributions.

* The research is done with the support of the Russian Presidential Scholarship (2011—2012).

14

i Надоели баннеры? Вы всегда можете отключить рекламу.