Экономика и менеджмент предприятия
УДК 330.131.5
Д.С. Демиденко, Е.В. Никора, С.А. Агарков
МОДЕЛЬ ОПТИМИЗАЦИИ СТРАТЕГИЧЕСКИХ РЕШЕНИЙ РАЗВИТИЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ
D.S. Demidenko, E.V. Nikora, S.A. Agarkov
OPTIMIZATION MODEL OF STRATEGIC DECISION-MAKING DEVELOPMENT OF INDUSTRIAL ENTERPRISE
Предложена модель оптимизации стратегических решений предприятия, позволяющая повысить гибкость и адаптивность стратегического управления предприятием как в стадии планирования, так и в стадии реализации планов, обеспечивая оптимальный достижимый результат в ситуациях, когда возникшие отклонения являются результатом действия внешних обстоятельств. Предложенная модель реализует пошаговый режим оптимизации, поэтому на каждом шаге могут быть учтены происходящие существенные изменения, в частности изменение объема ресурсов, изменение характера зависимостей планируемых показателей от использования ресурсов, включение в анализ новых показателей, не связанных зависимостью с анализировавшимися ранее.
СТРАТЕГИЧЕСКОЕ ЦЕЛЕПОЛАГАНИЕ; СТРАТЕГИЧЕСКИЙ ПЛАН; ПРОМЫШЛЕННОЕ ПРЕДПРИЯТИЕ; ЗАДАЧА ОПТИМИЗАЦИИ; ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ.
The given paper proposes the model how to optimize strategic decisions of the enterprise. It allows increasing greater flexibility and adaptability of strategic management both at the planning stage and at the stage of plan implementation. It also provides an optimumal achievable result where deviations turn to be the result of external circumstances. The proposed model implements a stepwise optimization mode. So significant changes can be taken into account at every step, in particular, changes in the resource level, changes in the types of the dependences of the planned indicators on resource use and including new non-dependent indicators into the analysis.
STRATEGIC GOAL SETTING; STRATEGIC PLAN; INDUSTRIAL ENTERPRISE; PROBLEM OF OPTIMIZATION; ECONOMIC DEVELOPMENT.
Разработка проблем использования оптимизационных экономико-математических моделей в стратегическом управлении предприятием осуществлялась в работах многих отечественных и зарубежных ученых- экономистов, например [1—3, 5, 7, 9, 11]. Высоко оценивая результаты данных исследований и используя их в своей работе, отметим, что проблемы стратегической ориентации российской промышленности на достижение оптимальных экономических результатов практически оказались вне поля зрения экономической науки.
Стратегическое целеполагание развития промышленного предприятия осуществляется на основе системы факторов производства (природных ресурсов, человеческого капитала), инвестиций, инноваций путем согласования и выбора стратегических целей по их содержанию, измерителям и количественным значениям. Достижение целей осуществляется в рамках реализации соответствующих стратегий. Процесс целеполагания базируется на некоторых следующих концептуальных положениях: существует множество стратегических целей или пространство целей развития про-
мышленного предприятия; существует множество путей достижения этой цели при этом цели промышленного развития могут быть типовыми (общими) или специфическими, иметь разный масштаб времени, могут быть долгосрочными, среднесрочными и краткосрочными; цели и стратегии развития промышленности образуют иерархическую (многоуровневую) систему; разработка, выбор и реализация целей и стратегий промышленного развития образуют непрерывный процесс [1].
Модель действия экономических механизмов, обеспечивающих реализацию альтернативных стратегических решений, может быть достоверно описана с использованием ограниченного числа агрегированных переменных (показателей/индикаторов). В этой системе координат с достаточной для стратегических решений точностью можно обосновать оптимальность принимаемых решений. Как известно из экономической теории [1], с этой целью могут быть сформулированы линейные задачи оптимального стратегического решения в экономической системе. При этом если прямая задача определяет оптимальный план производства продукции, при котором максимизируется прибыль предприятия, то двойственная задача определяет минимальные затраты предприятия на производство продукции и двойственные оценки, которые показывают внутреннюю себестоимость (т.е. себестоимость, соответствующую оптимальному плану) потребляемых ресурсов.
Как известно, потребительским ограничением для всего набора продуктов является максимально допустимая величина продаж всех выпускаемых продуктов, которая при фиксированных ценах продуктов не должна превышать имеющихся финансовых ресурсов, т. е. не может быть превышена предельно допустимая емкость рынка продуктов из определенного набора, заданная в стоимостном виде, или бюджет продаж.
Цена привлечения единицы капитала должна быть не больше (меньше или равна) величине отдачи (доходности) единицы вложенного капитала, иначе вложения нецелесообразны, чистый доход от них будет отрицательный. Отдача от вложенного капитала является в широком смысле его полезностью, а в конкретном выражении принимает форму рентабельности, доходности, произво-
дительности и т. д. Из условий двойственности следует, что цена привлечения капитала на предприятие одновременно является минимальным требованием к доходности вложений в производство.
Отдача от капитала, вложенного в производство продукта, должна превышать предельную полезность этого продукта. Это эквивалентно требованию, что продукт должно быть выгоднее производить, чем потреблять. В противном случае, если требование не выполнено, продукт выгоднее потреблять, чем производить, при этом от производства данного продукта следует отказаться. Отсюда следует, что доходность вложений в производство продуктов должна быть не меньше, чем предельная полезность потребления продукта. Инвестировать целесообразнее, чем потреблять, до тех пор, пока условие выполняется.
При линейной постановке задачи оптимизации потребления продукции проблема представляется в упрощенном виде: для достижения оптимального качества необходимо выполнить все ограничения по отдельным продуктам, в пределах ограничений предпочтение должно отдаваться продуктам с наибольшей полезностью (наибольшего качества). Причина — целочисленность переменных. Если план потребления предусматривает, например, 1,5 единицы продукции определенного качества, то такой план не может быть реализован, так как потребление одной единицы продукта не будет наилучшим решением, а потребление двух единиц продукции может оказаться недостижимым из-за ресурсных ограничений.
Таким образом, можно сформулировать следующее утверждение. Общественная (экспертная) оценка значимости каждого стратегического направления в рамках одной экономической системы (каждой агрегированной переменной) не должна быть больше, чем экономический результат от их субституции (взаимозамещения).
Доказательством этого утверждения является формулирование и решение прямой и двойственной задач. Для прямой задачи:
а1 Х1 + а2Х2 ^ тах, Х < ВД), Х2 < Х2(^ X, - Х2 < 0^з).
В скобках показаны двойственные переменные. По правилам математического программирования формулируется двойственная задача:
ZxXx + Z2 X2 ^ min,
Zx + Z3 > ax,
Z2 _ z3 > a2 .
Оптимальное стратегическое решение состоит в установлении планового соотношения между агрегированными переменными, обеспечивающего максимальную значимость результата или согласно двойственной задаче — минимум затрат на привлечение ресурсов при имеющихся ресурсных ограничениях. Ресурсные ограничения могут относиться как к потреблению продуктов, так и к их производству, ко всей совокупности производимых продуктов в целом, и к отдельным продуктам.
Как известно, прямая задача определяет оптимальный план потребления или производства продуктов, а двойственная — цены (оценки) оптимального плана.
При оптимизации потребления определяется количество потребляемых продуктов, которое обеспечивает получение максимального потребительского эффекта (полезности). Потребительским ограничением для оптимального набора потребляемых продуктов является максимально допустимая величина продаж всех выпускаемых продуктов, которая при фиксированных ценах продуктов не должна превышать имеющегося бюджета продаж. Имеются также ресурсные ограничения.
Смысл двойственной задачи — минимизация расходов производителя на оплату использования средств, получаемых из различных финансовых источников для приобретения дополнительных ресурсов.
Может быть сформулировано экономическое правило, согласно которому доходность вложений в приобретение продуктов и ресурсов должна быть не меньше, чем предельная полезность их потребления. Этому условию соответствует экономическое правило, которому можно дать следующую интерпретацию: инвестировать целесообразнее, чем потреблять, до тех пор, пока условие выполняется. Верно также, что цена привлечения единицы капитала должна быть не
больше величины отдачи (доходности) единицы вложенного капитала, иначе вложения нецелесообразны, чистый доход от них будет отрицательный.
Согласно известным положениям экономической науки [2] при определенных допущениях функцию полезности потребления набора продуктов можно представить в аддитивной форме как линейную. При соответствующих ресурсных ограничениях, также линейных, потребление продуктов в количествах, обеспечивающих максимизацию функции полезности, обеспечивает оптимальное потребление.
Условия оптимизации:
U(Xx...Xn) = ихXx + ... + unXn ^ max, hXx + ... + r„X„ < R, UXx + ...PnXn < M.
Здесь U — предельная полезность потребления продукта; r — расход производственных ресурсов на единицу продукта; P — цена продукта; R, M — лимит ресурсов и денежных средств, направляемых на расширение соответствующих активов предприятия.
Здесь нами предполагается наличие одного обобщенного производственного ресурса. В реальных условиях производства используется множество ресурсов, тогда модель оптимизации должна содержать соответствующее количество ограничений на использование ресурсов (больше одного). В случае линейной оптимизации может быть составлена двойственная модель:
zR + yM ^ min,
zrn + ypn ^ un ,
+ уРп > «1,
где I, У — двойственные переменные, отражающие по смыслу цены привлечения дополнительных производственных ресурсов и денег (процентная ставка) на расширение соответствующих активов.
Экономический смысл задачи минимизации издержек на привлечение производственных ресурсов и денежных средств следует из того, что цены ресурсов характеризуют не только цены привлечения дополнительных
активов, но одновременно и нормы требуемой отдачи от вложений в расширение этих активов. Ограничения двойственной задачи требуют, чтобы издержки или отдача от расширения активов (привлечения дополнительных производственных ресурсов и денежных средств) превышали предельную полезность потребления продуктов. Экономический смысл ограничений двойственной задачи сводится к простой формуле: инвестировать выгоднее, чем потреблять, если отдача от инвестиций превышает предельную полезность потребления продукта.
Из условий двойственности следует, что цена привлечения капитала на предприятие одновременно является минимальным требованием к доходности вложений в производство. Соответственно, отдача капитала, вложенного в производство продукта, должна превышать предельную полезность этого продукта. Инвестировать целесообразнее, чем потреблять, до тех пор, пока условие выполняется.
Модель оптимального стратегического плана в графической форме для двух аналитических показателей представлена на рисунке.
нии» до точки конечной цели; П1, П2 — показатели для стратегического анализа.
Принцип корректировки отклонений при выполнении стратегического плана в рамках ограниченного ресурса затрат:
ЛП = Пк1 - П
АП1
Корректировка отклонения от целевых показателей
Обозначения, используемые на рисунке: П0 — начальная точка траектории достижения цели стратегического плана; К — конечная точка траектории — цель стратегического плана; Д — промежуточная цель стратегического плана, точка траектории, соответствующая кратчайшему расстоянию от «бюджетной ли-
д1'
лп2 = пк2 - пд2.
Исходной точкой плана (начальной точкой траектории движения к стратегической цели) является П0. В ходе выполнения стратегического плана возможны случайные отклонения от запланированной траектории достижения стратегической цели. Оптимальный стратегический план должен обеспечить достижение поставленной стратегической цели с наименьшими отклонения и затратами ресурсов на управление в пределах установленного лимита.
Применительно к рассматриваемой нами ситуации все возможные промежуточные точки траектории движения к стратегической цели находятся на «бюджетной линии», соответствующей имеющемуся ограниченному ресурсу/лимиту средств на управление процессами. Оптимальное управление должно обеспечить «попадание» в точку на «бюджетной линии», находящуюся на ближайшем расстоянии от цели стратегического плана — точки К.
В частном случае кратчайшее расстояние от точки с координатами (Мх, Му) до прямой ах + Ьу + с = 0 на плоскости, как известно из аналитической геометрии, определяется длиной перпендикуляра, опущенного из точки на прямую:
аМх + ЬМу + с
ё =-' у-.
В общей постановке задачи, когда количество анализируемых стратегических показателей больше двух, минимизация отклонения точки на бюджетной линии от точки стратегической цели для двух показателей, как показано на рисунке, может быть представлена в следующем виде:
(Пк1 - Пд1)2 + (Пк2 - Пд2)2 + ...
... + (пкп - пдп)2 ^ т^
при условии
1 (Пд1 - ПО1) + ... + /2(ПД„ - П0л) < Z,
где 11, 12 — стандарт затрат на перевод единицы стратегических показателей 1 и 2 из начальной точки траектории в конечную точку Д; Z — лимит ресурсов.
Таким образом, можно заключить, что использование предложенной модели позволит повысить гибкость и адаптивность стратегического управления на промышленном предприятии как в стадии планирования, так и в стадии реализации планов, обеспечивая оптимальный достижимый результат в ситуациях, когда возникшие отклонения являются результатом действия внешних обстоятельств. Отметим, что предложенная модель реализует
пошаговый режим оптимизации, поэтому на каждом шаге могут быть учтены происходящие существенные изменения, в частности изменение объема ресурсов, изменение характера зависимостей планируемых показателей от использования ресурсов, включение в анализ новых показателей, не связанных зависимостью с анализировавшимися ранее.
Предложенная модель может использоваться для повышения качества стратегического управления предприятием, а также в целом для развития промышленного сектора экономики региона на долгосрочную перспективу, имеет достаточно общую математическую форму и может быть конкретизирована с учетом региональных особенностей и конкретного этапа промышленного развития.
СПИСОК ЛИТЕРАТУРЫ
1. Маршалл А. Принципы экономической науки. В 3-х т. М.: Прогресс, 1993.
2. Brealey R.A., Myers S.C., Allen F.A. Principles of Corporate Finance, Global Edition, 2012.
3. Обросова Н.К., Шананин А.А. Экономическая интерпретация двойственности в задачах линейного программирования. М.: Ун-т Дружбы народов, 2007.
4. Демиденко Д.С., Малевская-Малевич Е.Д., Шитиков И.Е. Specific Aspects of the Optimum Financial Plan of the Company's Output Expansion // Ebes 2013 Istanbul conference program and abstract book, may 23—25, Istanbul, Turkey, 2013.
5. Демиденко Д.С., Гаджиев М.М. Анализ эффективности экономических решений при оценке деятельности промышленных предприятий // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Экономические науки. 2011. № 2(119). С. 101—106.
6. Karlik A.E., Demidenko D.S., Iakovleva E.A., Gadzhiev M.M. Russian practice of financial man-
agement of the enterprise // Life Sci J, 2014, no. 11(10), pp. 589—594.
7. Томпсон А.А., Стрикленд А.Дж. Стратегический менеджмент, искусство разработки и реализации стратегии: учебник для вузов: пер. с англ. / под ред. Л.Г. Зайцева, М.И. Соколовой. М.: Банки и биржи, ЮНИТИ, Х998. 576 с.
8. Стратегии макрорегионов России: методологические подходы, приоритеты и пути реализации / под ред. А.Г. Гранберга. М.: Наука, 2004. 720 с.
9. Карлик А.Е., Кондратьева А.В., Рохчин В.Е. Стратегическое планирование развития промышленности в пределах федерального округа: вопросы теории и методологии. СПб.: СПбГУЭФ, 20ХХ. Х47 с.
10. Друкер П. Эффективное управление: экономические задачи и оптимальные решения : пер с англ. М.: Гранд, Фаир-пресс, 2003. 288 с.
XX. Бабкин А.В. Задачи принятия решений по развитию предпринимательских систем // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Экономические науки. 20X3. № 3(X73). С. XX9—X30.
REFERENCES
1. Marshall A. Printsipy ekonomicheskoi nauki. V 3-kh t. M.: Progress, 1993. (rus)
2. Brealey R.A., Myers S.C., Allen F.A. Principles of Corporate Finance, Global Edition, 2012.
3. Obrosova N.K., Shananin A.A. Ekonomicheskaia interpretatsiia dvoistvennosti v zadachakh lineinogo programmirovaniia. M.: Un-t Druzhby narodov, 2007. (rus)
4. Demidenko D.S., Malevskaia-Malevich E.D.,
Shitikov I.E. Specific Aspects of the Optimum Financial Plan of the Company's Output Expansion. Ebes 2013 Istanbul conference program and abstract book, may 23—25, Istanbul, Turkey, 2013. (rus)
5. Demidenko D.S., Gadzhiev M.M. Analiz effektivnosti ekonomicheskikh reshenii pri otsenke deiatel'nosti promyshlennykh predpriiatii. St. Petersburg State Polytechnical University Journal. Economics, 2011, no. 2(119), pp. 101—106. (rus)
6. Karlik A.E., Demidenko D.S., Iakovleva E.A., Gadzhiev M.M. Russian practice of financial management of the enterprise. Life Sci J, 2014, no. 11(10), pp. 589-594.
7. Tompson A.A., Striklend A.Dzh. Strategicheskii menedzhment, iskusstvo razrabotki i realizatsii strategii: uchebnik dlia vuzov: per. s angl. Pod red. L.G. Zaitseva, M.I. Sokolovoi. M.: Banki i birzhi, IuNITI, 1998. 576 s. (rus)
8. Strategii makroregionov Rossii: metodologicheskie podkhody, prioritety i puti realizatsii. Pod red. A.G. Granberga. M.: Nauka,
2004. 720 s. (rus)
9. Karlik A.E., Kondrat'eva A.V., Rokhchin V.E.
Strategicheskoe planirovanie razvitiia promyshlennosti v predelakh federal'nogo okruga: voprosy teorii i metodologii. SPb.: SPbGUEF, 2011. 147 s. (rus)
10. Druker P. Effektivnoe upravlenie: ekonomicheskie zadachi i optimal'nye resheniia : per s angl. M.: Grand, Fair-press, 2003. 288 s. (rus)
11. Babkin A.V. The problem of decision making on the development of business systems. St. Petersburg State Polytechnical University Journal. Economics, 2013, no. 3(173), pp. 119-130. (rus)
ДЕМИДЕНКО Даниил Семенович — профессор Санкт-Петербургского государственного политехнического университета, доктор экономических наук, профессор.
195251, Политехническая ул., д. 29, Санкт-Петербург, Россия. E-mail: [email protected]
DEMIDENKO Daniil S. — St. Petersburg Polytechnic University.
195251. Politechnicheskaya str. 29. St. Petersburg. Russia. E-mail: [email protected]
НИКОРА Евгений Викторович — руководитель Мурманского регионального отделения Всероссийского Совета местного самоуправления, Мурманская областная дума, без степени.
183016, ул. Софьи Перовской, д/ 2. г. Мурманск, Россия. E-mail: [email protected]
NIKORA Evgenii V. — Murmansk Regional Duma.
183016, Sofia Perovskoj str. 2. Murmansk. Russia. E-mail: [email protected]
АГАРКОВ Сергей Анатольевич — исполняющий обязанности ректора Мурманского государственного технического университета, доктор экономических наук.
183010, ул. Спортивная, д. 13, г. Мурманск, Россия. E-mail: [email protected]
AGARKOV Sergei A. — Murmansk State Technical University.
183010. Sport str. 13. Murmansk. Russia. E-mail: [email protected]
© Санкт-Петербургский государственный политехнический университет, 2014