ВЕСТН. САМАР. ГОС. ТЕХН. УН-ТА. СЕР. ТЕХНИЧЕСКИЕ НАУКИ. 2021. Т. 29. № 3_
doi: 10.14498/tech.2021.3.3
УДК 665.637.88
МНОГОФАКТОРНЫЙ АНАЛИЗ ПРОЦЕССОВ ПРОИЗВОДСТВА ДОРОЖНЫХ БИТУМОВ ПУТЕМ ОКИСЛЕНИЯ ПРОДУКТОВ НЕФТЕПЕРЕРАБОТКИ *
Ю.Э. Плешивцева, А.В. Казаринов, М.Ю. Деревянов
Самарский государственный технический университет Россия, 443100, г. Самара, ул. Молодогвардейская, 244
Аннотация. На основе DEA-метода разработана методика многофакторного анализа процессов производства дорожных битумов, которая позволяет получить интегральные сравнительные оценки, обеспечивающие ранжирование процессов по различным разнородным критериям. Выбраны основные количественные характеристики, качественные показатели и технологические параметры процессов окисления гудронов для формирования целевых функций при решении задач математического программирования. На основе CCR и Super Efficiency моделей DEA-метода сформулированы и решены задачи многофакторного анализа эффективности процессов производства дорожных битумов для фактических значений характеристик сырья и параметров технологических процессов, проведен сравнительный анализ полученных оценок для 64 образцов битума. Результаты проведенных исследований позволяют существенно расширить область применения DEA-метода и создать на его основе программный комплекс для многофакторного анализа и оптимизации процессов производства битумов за счет улучшения качества конечного продукта, снижения ресурсов на его производство и уменьшения негативного воздействия на окружающую среду.
Ключевые слова: Data Envelopment Analysis, многофакторный анализ, дорожный битум, нефтепереработка, технологический процесс, эффективность.
Введение
Нефтепереработка является одной из ведущих отраслей промышленности Российской Федерации, поскольку нефть и нефтепродукты до настоящего времени остаются основным видом топлива, применяются практически во всех отраслях промышленного производства и в бытовых целях. Однако в настоящий момент в нефтяной промышленности Российской Федерации существуют глобальные проблемы, которые являются причинами технологического отставания страны в отдельных отраслях и вызывают серьезные негативные экологические последствия. Данные проблемы остаются нерешенными на фоне происходящего
* Работа выполнена при поддержке грантов РФФИ № 20-08-00353, 20-08-00240.
Плешивцева Юлия Эдгаровна (д.т.н., профессор), профессор кафедры «Управление и системный анализ теплоэнергетических и социотехнических комплексов». Казаринов Артем Витальевич, магистрант.
Деревянов Максим Юрьевич (к.т.н., доцент), доцент кафедры «Управление и системный анализ теплоэнергетических и социотехнических комплексов».
в мире постепенного снижения запасов нефтяного сырья при увеличении спроса на нефть и нефтепродукты.
Важнейшими задачами Концепции национальной безопасности России [1] являются переход на рациональное применение невозобновляемых ресурсов энергии, разработка и внедрение безопасных с экологической точки зрения производств, уменьшение техногенного загрязнения окружающей среды за счет повышения эффективности и глубины процессов нефтепереработки. В связи с этим на нефтеперерабатывающих предприятиях проводятся реконструкции блоков вакуумной перегонки мазута с целью максимального увеличения отбора вакуумных газойлей, являющихся ценным сырьем вторичных процессов переработки нефти. Получаемые в условиях повышенного отбора газойлей нефтяные остатки кардинально меняют свои свойства, в том числе из-за увеличения вязкостных характеристик, повышения коксуемости, снижения содержания в углеводородном составе масляных компонентов, увеличения содержания смол и асфальтенов. Все эти изменения в процессах нефтепереработки существенно влияют на свойства дорожного битума, производимого путем окисления гудрона. От качества производимого битума во многом зависит состояние дорог в целом, а от них, в свою очередь, зависит нормальное функционирование предприятий промышленности, сельского хозяйства, снабжения и торговли.
В настоящее время потребность России в качественном дорожном битуме велика, и ожидается, что спрос на него постоянно будет только возрастать. В этой связи особенно актуальной представляется рассматриваемая в данной работе задача многокритериальной оценки технологического процесса производства окисленных битумов с целью повышения его эффективности. Решение этой задачи позволит углубить процесс переработки тяжелых нефтяных остатков при одновременном решении проблемы повышения качества дорожных покрытий и других побочных и конечных продуктов нефтепереработки при снижении негативного воздействия на окружающую среду.
Анализ литературных источников показал, что как в зарубежных, так и в отечественных работах недостаточно полно представлены системные подходы к решению указанной проблемы, применение которых позволит повысить эффективность процессов нефтепереработки за счет улучшения качества конечного продукта при снижении ресурсопотребления и увеличении экологической безопасности при его производстве.
В работе предлагается новый подход к многофакторному анализу процессов производства дорожных битумов путем окисления продуктов нефтепереработки, который позволяет получить их интегральные сравнительные оценки, обеспечивающие ранжирование процессов по различным разнородным критериям.
С целью проведения многофакторного анализа были выбраны основные количественные характеристики, качественные показатели и технологические параметры процессов окисления гудронов для формирования целевых функций при решении задач математического программирования, сформулированных на основе CCR и Super Efficiency моделей DEA-метода.
Методика многофакторного анализа на основе DEA-метода
В работе предлагается основанный на DEA-методе единый подход к решению задачи сравнительной оценки разнородных показателей (критериев), характеризующих процессы производства дорожных битумов путем окисления гудронов.
Выбор DEA-метода как основы для построения алгоритма многофакторной сравнительной оценки технологических процессов производства битумов объясняется прежде всего удобством его применения для решения аналогичных прикладных задач: возможностью получения сравнительных относительных многофакторных оценок и легкостью визуализации полученных результатов в наглядной форме. При этом DEA-метод широко применяется для получения сравнительных оценок эффективности сложных объектов, ключевые показатели функционирования которых определяются в терминах технико-экономических, эксплуатационных, логистических, энергетических и других разнородных характеристик.
Кроме того, данный метод обладает существенными преимуществами перед известными методами многофакторного анализа, сравнительная характеристика которых представлена на рис. 1. Указанные преимущества в основном сводятся к отсутствию необходимости учета субъективных экспертных мнений, которые могут приводить к противоречивым и необоснованным выводам при ранжировании анализируемых объектов по выбранным разнородным критериям эффективности. Кроме того, отдельного внимания заслуживает тот факт, что факторы, входящие в критерий эффективности и формирующие соответствующую целевую функцию, могут иметь совершенно разный физический смысл и измеряться в различных единицах.
Согласно теории DEA-метода, для сравнительного анализа численных оценок комплексного критерия (показателя) эффективности каждого из N объектов на основе CCR модели применяется следующий подход. Предполагается, что величины всех сравнительных оценок некоторого критерия эффективности f имеют конечные значения и необходимо проранжировать эти значения на числовом интервале [0, 1]. Тогда задача многофакторной сравнительной оценки группы образцов сводится к задаче математического программирования на максимум критерия эффективности f, который представляет собой отношение взвешенной суммы выходных факторов к взвешенной сумме входных параметров.
Выходные параметры Yi, Y г, ..., Yk подбираются так, чтобы каждый из них характеризовал положительный вклад в суммарный показатель эффективности объекта f. В качестве выходных параметров можно принять различные характеристики, которые характеризуют разнообразные аспекты функционирования объектов: производственно-технологические (объем и качество конечной продукции, надежность, долговечность), экономические (прибыль, доход, рентабельность), рыночные (емкость рынка, число связей с контрагентами) и другие.
Эти выходные факторы могут иметь существенно отличающиеся значения, быть несвязанными и несопоставимыми и даже противоречить друг другу. При этом требуется, чтобы выходные характеристики можно было охарактеризовать численным значением, а увеличение каждого из параметров Yi приводило бы к возрастанию суммарного показателя эффективности f
f> 0, i -1,2,. ..k. (1)
cYi
Входные параметры Xi, X2, ..., Xm подбираются так, чтобы уменьшение каждого из них увеличивало суммарный показатель эффективности f В основном входными параметрами являются разнообразные характеристики задействованных в осуществлении производственно-технологического процесса ресурсов. Входные параметры могут характеризовать финансовые, материальные, энергетические, информационные, трудовые, сырьевые, капитальные и другие ресурсы.
Методы скаляризации
(метод главного критерия, метод главных компоненти т.д.)
Введение единой целевой функции как свертки нескольких
функций с известными фиксированными (заданными) весовыми коэффициентами
\
Интерактивные методы
(МАИ, ELECTRE, PROMETHEE, TOPSIS итд.)
Назначение весовых коэффициентов и иерархии целевых функций (или ограничение их значений) в ходе
процедуры анализа и _оптимизации_
Субъективные оценки (экспертные мнения) учитываются заранее
■Решение принципиально зависит от весовых коэффициентов.
■ В некоторых классахзадач изменение весовых коэффициентов или целевых функций может привести к н е п ре дека зуе мы м ре зул ьтата м.
■Приконфли кту ющи х Крите р и я х ч а сто н а п ра кти ке н е во змо жн о вы брать ве совы е коэффициенты и целевые функции для объектов анализа.
Субъективные оценки (экспертные мнения) влияют на процесс решения задачи
■лица, принимающие решения, взаимодействуют процедурой оптимизации, как правило, путем определения предпочтений между несколькими критериями или представленными решениями; ■ тр е буются бол ьш и е усил ия от л и ца, принимающего решения, входе процедуры оптимизации.
Методы исследования пространства параметров
(оптимизация по Паретто)
Работа с большим набором
равнозначных решений (оптимальных по Парето) с использованием дополнительной
информации о субъективных _предпочтениях_
Субъективные оценки (экспертные мнения) учитываются после решения задачи
■ единообразная аппроксимация фронта Парето требует больших затрат времени и ресурсов;
■апостериорный анализ выбора единственного решения из большого недомин и руеплого множества, вероятно, будет трудным для любого лица, принимающего решения;
■ визуализация фронта Парето представляет собой специальную задачу для более чем 2-х задач.
Формулировка, процедура решения и анализ результатов основаны на субъективной
информации или зависят от лица, принимающего решения, что часто приводит к _необъективным и даже противоречащим истине результатам_
Data Envelopment Analysis (теоретическая основа исследований)
Весовые коэффициенты определяются в ходе решения задачи
Субъективные факторы не влияют на процедуру решения и анализ результатов
Ж.
Процедуры анализа и оптимизации свободны от субъективной информации и экспертных мнений
Рис. 1. Сравнение методов многофакторного анализа и многокритериальной оптимизации
Повышение затрат приводит к снижению эффективности анализируемых объектов сравнения, поэтому для входных параметров должны выполняться условия:
8(X1,X2,...Хп) < 0, г = 12..т (2)
8X1
Конкретную численную величину оценки показателя эффективности / согласно CCR модели следует отыскивать для каждого из N объектов путем максимизации / на множестве значений весовых коэффициентов и, V, принадлежащих области определения G.
Тогда задача отыскания для /-го объекта оценки обобщенного показателя сравнительной эффективности Л и соответствующих весовых коэффициентов щ и VI/ может быть сформулирована следующим образом:
и, • X, + щ. -К. + щ, • К. +... + щ, • К
Т = --3—3-к—к— ^ тах (3)
' VI. • X. + У2. • Х2. + Уз. • Хз. + ... + • Хт^ при наличии ограничений:
u\j • Y\j + u2j • y2j + •••+uk • Yk <1 v V1 j ' Xj + V2j ' X2j + ••• + vmj ' Xmj
j = 1,N;i = 1,k; l = 1,m; ^ uij > 0;Vlj > 0
(4)
где Uj и vij - весовые коэффициенты, характеризующие относительный вклад каждого из выходных и входных параметров соответственно в суммарный показатель эффективности.
Система соотношений (1) и (2) представляет собой N задач математического программирования. В результате их решения определяются относительные показатели эффективности f для каждого из N объектов в виде ранжированных на единичном интервале [0, 1] численных оценок, а также происходит определение соответствующих весовых коэффициентов щ и vij (i = 1, 2...k, l = 1, 2...m) в функционале (1).
Модель Super-efficiency (суперэффективности) применяется в случаях, когда несколько объектов сравнения имеют оценки эффективности, равные 1, при этом необходимо выделить наилучший объект сравнения в анализируемой группе. Предлагается подход, основанный на использовании базовой модели Super-efficiency DEA-метода, который заключается в исключении из ограничений вида (2) эффективных объектов с оценкой, равной 1.
Формулировка ЗМП на основе модели Super-efficiency для получения сравнительных оценок эффективности объектов может быть представлена аналогично базовой CCR модели, однако задача определения эффективности объектов сравнения будет заключаться в максимизации функционала при исключении из рассмотрения ряда ограничений:
S- = иь'¥ь' + U2jY2j + ••• + UkYk ^ max ; (5)
J V1 jX1 j + V2 jX2 j + ••• + VmjXmj (uy eGj'
Uij¥ij + U2j¥2j + ••• + UjYj (j =1 N; j * n;i =1О
l = 1, m;% > 0; "Vij > 0
V1 jX1 j + V2 jX2 j + ••• + VmjXmj
V
Результатом решения ЗМП (3) и (4) являются сравнительные оценки, находящиеся в интервале [0, да), при этом объект сравнения, имеющий максимальную оценку эффективности, может считаться наилучшим в группе при заданных условиях. Неэффективные по базовой CCR модели объекты с оценкой меньше 1 не изменят свои сравнительные оценки по модели Super-efficiency.
Исходные данные для многофакторного анализа
Для проведения многофакторного анализа технологических процессов получения окисленного битума с помощью DEA-метода были собраны экспериментальные данные о 64 образцах битумов, произведенных путем окисления гудронов на Ачинском нефтеперерабатывающем заводе (АНПЗ), в Ангарской нефтехимической компании (АНХК) и Рязанской нефтеперерабатывающей компании (РНПК) из нефтесмесей Восточносибирского и Ванкорского месторождений. Эти данные содержат детализированные сведения о свойствах исходной нефти, химических, физико-механических свойствах сырья, технологических параметрах проведения процесса и физико-механических и химических свойствах окисленного битума.
Свойства битума как сложного объекта исследования определяются как соотношением входящих в его компонентный состав масел, смол и асфальтенов и др., так и свойствами исходного сырья, подвергаемого процессу окисления, и многими другими параметрами. Например, повышение содержания асфальтенов и смол влечет за собой возрастание твердости, температуры размягчения и хрупкости битума.
В ходе исследования были выбраны основные количественные характеристики, качественные показатели и технологические параметры процессов окисления гудронов для формирования целевых функций при решении задач математического программирования (3)-(4) и (5)-(6).
Вся собранная информация по указанным свойствам и технологическим параметрам проведения процесса окисления 64 образцов битумов была систематизирована и классифицирована так, как представлено в табл. 1-4 (для примера представлены 7 образцов).
Табл. 1 содержит следующие сведения о свойствах исходной нефти и физико-механических свойствах сырья для различных образцов: Сера общ. - содержание серы в нефти, %; Вязкость при 50 °С - вязкость нефти при 50 °С; Коксуемость по Конрадсону - коксуемость нефти, определяемая по методу Конрадсона по ГОСТ 19932-99, % мас; Ni - содержание никеля в нефти, ppm; V - содержание ванадия в нефти, ppm; Парафины - содержание парафинов в нефти, % мас; Плотность -плотность нефти, кг/м3; ВУ - условная вязкость нефти, с; Вязкость при 80 - вязкость нефти при 80 °С, мм2/с; КиШ - температура размягчения сырья, определяемая по методу кольца и шара, °C.
Табл. 2 содержит следующие данные о химических свойствах сырья и параметрах окисления для различных образцов: ПНУ - содержание парафино-нафте-новых углеводородов в сырье, %; Смолы - содержание смол в сырье, %; Асфаль-тены - содержание асфальтенов в сырье, %; Легкая ароматика - содержание мо-ноциклоароматических углеводородов в сырье, %; Средняя ароматика - содержание бициклоароматических углеводородов в сырье, %; Тяжелая ароматика - содержание полициклоароматических углеводородов в сырье, %; Ароматика (общ) - общее содержание ароматических углеводородов в сырье, %; АУ/ПНУ - отно-
шение содержания в сырье ароматических углеводородов к парафино-нафтено-вым углеводородам; Асф/См - отношение содержания в сырье асфальтенов к смолам; Т - температура проведения процесса окисления, °С; Расход воздуха - расход воздуха при проведении процесса окисления, м3/ч; Продолжительность - продолжительность проведении процесса окисления, ч.
В табл. 3 представлены следующие физико-механические свойства окисленного битума для различных образцов: Тхр - температура хрупкости сырья, °С; ДКиШ - изменение температуры размягчения сырья по методу кольца и шара после его прогрева, °С; Тхр после прогр - температура хрупкости сырья после прогревания, °С; К ^60 - коэффициент возрастания динамической вязкости; П25 - пе-нетрация битума при 25 градусах, 0,1 мм; П0 - пенетрация битума при 0 градусах, 0,1 мм; Д25 - дуктильность битума при 25 °С, см; Д0 - дуктильность битума при 0 градусах, см; п60 - динамическая вязкость битума, Пас; v135 - кинематическая вязкость битума, мм2/с; П25 - Остаточная пенетрация битума, %; Д25 после прогр - дуктильность битума при 25 °С после прогревания, см.
Табл. 4 содержит следующие данные о химических свойствах окисленного битума для различных образцов: ПНУ - содержание парафино-нафтеновых углеводородов в битуме, %; Смолы - содержание смол в битуме, %; Асфальтены - содержание асфальтенов в битуме, %; Ароматика (общ) - общее содержание ароматических углеводородов в битуме, %; АУ/ПНУ - отношение содержания в битуме ароматических углеводородов к парафино-нафтеновым углеводородам; Асф/См -отношение содержания в битуме асфальтенов к смолам; Легкая ароматика - содержание моноциклоароматических углеводородов в битуме, %; Средняя арома-тика - содержание бициклоароматических углеводородов в битуме, %; Тяжелая ароматика - содержание полициклоароматических углеводородов в битуме, %.
Таблица 1
Свойства исходной нефти и физико-механические свойства сырья для различных образцов
Наименование образца № Образца Нефть Физ-мех свойства сырья
Выход, % от нефти Сера общ, % мас. Вязкость при 50 °С, мм2/с Коксуе мость по Конрадсо ррт V, ррт Парафи ны, % мас. Плот ность, кг/м3 ВУ80, с Вязкость при 80, мм2/с КиШ, ° С
гудрон 17 с (обр №1) 1 100 0,55 3,71 2,21 6,20 5,20 2,70 846,20 17 339,8 21,5
гудрон 22 с (обр №2) 2 100 0,55 3,71 2,21 6,20 5,20 2,70 846,20 22 466,9 24
гудрон 29,7 с (обр №3) 3 100 0,55 3,71 2,21 6,20 5,20 2,70 846,20 29,7 625 22,4
Гудрон 34 с (обр №4) 4 100 0,55 3,71 2,21 6,20 5,20 2,70 846,20 34,1 778,67 25,6
Гудрон 38 с (обр №5) 5 100 0,55 3,71 2,21 6,20 5,20 2,70 846,20 38 882,1 25,7
Гудрон 59 с (обр №6) 6 100 0,55 3,71 2,21 6,20 5,20 2,70 846,20 58,7 1381 26,3
Гудрон 64,2 с (обр №7) 7 100 0,55 3,71 2,21 6,20 5,20 2,70 846,20 64,2 1411 26,5
Таблица 2
Химические свойства сырья и параметры процесса окисления для различных образцов
№ Образца Химические свойства сырья Параметры окисления, °С
ПНУ Смолы Асфальтены Легкая ароматика Средняя ароматика Тяжелая ароматика Ароматика (общ) АУ/ПНУ Асф/См Т, "С Расход воздуха, мз/ч Продолжит., ч
1 30,1 18,9 3,1 14,8 6,6 26,5 47,9 1,59136 0,16402 250 5 11
2 29,8 19,9 3,2 12,8 6,5 27,8 47,1 1,58054 0,16080 250 5 10,5
3 28,4 21,8 5,4 7,3 5,6 31,5 44,4 1,56338 0,24771 250 5 9,2
4 27,1 20,9 3,4 14 4,9 29,7 48,6 1,79336 0,16268 250 5 9,5
5 25,3 22,2 4,3 9,5 5,9 32,8 48,2 1,90514 0,19369 250 5 9,4
6 18,3 29,6 6,1 6,7 5,1 34,2 46 2,51366 0,20608 250 5 9
7 18 31 6,5 6,2 3,8 34,5 44,5 2,47222 0,20968 250 5 8,5
Таблица 3
Физико-механические свойства окисленного битума для различных образцов
и Физико-химические свойства окисленного биту ма
са ю О й Тхр, °С АКиШ, °С Тхр после прогр, °С К п60 П25, 0,1 мм П0, 0,1 мм Д25, см Д0, см П60, Пас v135, мм2/с П25, % ост Д25 после прогр, см
1 -28 8,5 -26 6 71 31 60 3,5 203 453 49 12
2 -27 8 -26 5,5 68 30 72 3,4 213 465 52 16
3 -26 7,3 -26 5 67 27 65 3,3 224 456 52 18
4 -26 8,1 -24 5,7 68 30 67 3,4 243 487 56 16
5 -26 7,8 -24 5,9 68 29 68 3,6 256 489 54 18
6 -25 6,8 -23 3,7 64 26 92 2 314 505 64 22
7 -24 6 -24 3 62 25 102 2 356 523 65 37
Таблица 4
Химические свойства окисленного битума для различных образцов
№ Образца Химические свойства окисленного битума
ПНУ Смолы Асфальтены Ароматика (всего) Ау/ПНУ Асф/См Легкая ароматика Средняя ароматика Тяжелая ароматика
1 30 17,8 23,1 29,1 0,97000 1,29775 5 3,6 20,5
2 29,8 19,5 20,2 30,5 1,02349 1,03590 5,9 3,8 20,8
3 28 20,7 21,4 29,9 1,06786 1,03382 3,3 2,6 24
4 27 19,9 20,1 33 1,22222 1,01005 4 3,3 25,7
5 25,4 21,9 19,7 33 1,29921 0,89954 3,7 3,5 25,8
6 18,2 30 16,1 35,7 1,96154 0,53667 3,7 2,1 29,9
7 18 31,6 16,5 33,9 1,88333 0,52215 3,1 2,6 28,2
Многофакторный анализ влияния технологических параметров окисления на качество конечной продукции
На основе DEA-метода предлагается сформулировать задачу многофакторного анализа влияния технологических параметров процессов окисления на качество дорожного битума как ЗМП.
Для многофакторного анализа влияния параметров процессов окисления предлагается провести сравнение образцов с учетом температуры и длительности процесса окисления, поскольку эти параметры не только влияют на показатели качества конечного продукта, но и характеризуют затраты ресурсов на проведение процесса. Здесь и далее для оцениваемых по эффективности их функционирования объектов сравнения будет принято сокращение DMU (с англ. decision making unit) - единица принятия решения.
Для многофакторного анализа влияния технологических параметров окисления на качество конечной продукции каждый образец битума, являющийся объектом сравнения (DMU), может быть представлен в виде блока (рис. 2).
В качестве компонентов вектора входа, входящих в формулировку ЗМП, предлагается рассматривать следующие параметры, характеризующие затраты на реализацию технологического процесса:
Xi - температура проведения процесса окисления, оС;
Х2 - продолжительность проведения процесса окисления, часы.
Температура пмс Объект сравнения Пенетрация при 25 С
Пенетрация при 0 °С
-► Продолжительность Дуктильность
Остаточная пенетрация
Температура хрупкости
Рис. 2. Задача многофакторного анализа влияния технологических параметров процесса окисления на качество дорожного битума
В качестве выходных параметров, положительно влияющих на оценку эксплуатационных характеристик битума, предлагается рассматривать следующие параметры, которые наиболее существенно влияют на оцениваемое качество битума:
У1 - пенетрация битума при 25 градусах, 0,1 мм;
У2 - пенетрация битума при 0 градусах, 0,1 мм;
Уз - дуктильность битума при 25 градусах, см;
У4 - остаточная пенетрация после прогрева в тонкой пленке, %;
У5 - температура хрупкости битума, оС.
Для указанных параметров были решены задачи многофакторного анализа, сформулированные согласно ББЛ-методу как ЗМП (3)-(4) и (5)-(6) на основе ССЯ модели и модели 8иреге£йс1епсу соответственно. Как показано выше, решение задачи многофакторного анализа сводится к решению N задач математического программирования, которые позволяют получить сравнительные оценки для каждого образца битума и соответствующие входным и выходным параметрам весовые коэффициенты, определяемые в ходе решения данной задачи.
Результаты расчетов сравнительных оценок образцов, полученные в ходе решения задачи (3)-(4) на основе модели ССЯ, представлены на рис. 3, а результаты решения задачи (5)-(6) на основе модели 8иреге£йс1епсу - на рис. 4.
1,20 1,00
^
Б 0,80
0 х со
ь 0,60
:£ Ш
■е- 0,40
т
П5
1 0,20
О
0,00
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 Номер образца сравнения
Рис. 3. Сравнительный анализ влияния параметров процесса окисления на качество готового битума на основе модели ССЯ
1,60 1,40
^ 1,20
13
° 1,00
т
I 0,80
ш
§ 0,60
т
П5
* 0,40
ш
О 0,20 0,00
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 Номер образца сравнения
Рис. 4. Сравнительный анализ влияния параметров процесса окисления на качество готового битума на основе модели Superefficiency
Как видно из представленных выше диаграмм (рис. 3 и 4), модель Supereffi-шепсу гораздо более информативна для выявления наилучших образцов, поэтому в дальнейших расчетах применяется только эта модель.
Анализ полученных результатов показал, что лучшими образцами с точки зрения наименьших затрат ресурсов на реализацию технологических процессов при обеспечении требуемого качества готовой продукции являются образцы № 8, 12, 17, 22, 39, 45 и 64. При этом величина сравнительной оценки образца 64 свидетельствует о том, что соотношение затраченных на его производство ресурсов и качества конечного продукта является наилучшим по сравнению со всеми остальными образцами в анализируемой группе. Данный вывод можно объяснить оптимальным составом сырья и правильно подобранными параметрами технологического процесса. Это обеспечивает высокое качество продукции при наименьших затратах на проведение технологического процесса.
Представленные результаты позволяют определить, что образцы № 20, 49 и 63 имеют наименьшую сравнительную оценку, требуют пересмотра технологического режима и других модификаций производственного процесса.
Многофакторный анализ влияния состава исходного сырья на качество
конечной продукции
Различные эксплуатационные показатели качества окисленного дорожного битума во многом зависят от его группового углеводородного состава, определяемого углеводородным составом вводимого в колонну окисления исходного гудрона.
На основе ББЛ-метода предлагается сформулировать задачу многофакторного анализа влияния физико-химических свойств сырья на качество дорожного битума.
Данная задача позволяет выявить многофакторные зависимости группового углеводородного состав сырья на качество образцов битума, при этом сравнение
может быть проведено по отклонениям от рекомендуемого состава сырья и свойствам готового продукта.
Для многофакторного анализа влияния состава исходного сырья процесса окисления на качество конечной продукции каждый образец битума, являющийся объектом сравнения (БМЦ), может быть представлен в виде блока (рис. 5).
Отклонение соотношения Асф/См ом и Объект сравнения Пенетрация при 25 "С
Пенетрация при 0 "С
Отклонение соотношения Ар/ПНУ Дуктильность
Температура размягчения Динамическая вязкость
-► Температура хрупкости
Рис. 5. Задача многофакторного анализа влияния состава исходного сырья на качество
дорожного битума
В качестве компонентов вектора входа, входящих в формулировку ЗМП для сравнительной оценки качества образцов в зависимости от свойств сырья, предлагается рассматривать следующие параметры, отрицательно влияющие на свойства битума:
Х1 - отклонение между оптимальным соотношением асфальтенов к смолам и их фактическим значением;
Х2 - отклонение между оптимальным соотношением ароматических углеводородов к парафино-нафтеновым углеводородам и их оптимальным значением;
Хз - температура размягчения сырья по КиШ, оС.
В качестве выходных параметров, положительно влияющих на оценку эксплуатационных характеристик битума, предлагается рассматривать следующие параметры, которые наиболее существенно влияют на оцениваемое качество битума:
У1 - пенетрация битума при 25 градусах, 0,1 мм;
У2 - пенетрация битума при 0 градусах, 0,1 мм;
Уз - дуктильность битума при 25 градусах, см;
У4 - динамичекая вязкость битума, Па-с;
У5 - температура хрупкости битума, оС.
Для многофакторного анализа влияния физико-химических свойств сырья на качество дорожного битума в соответствии с представленным на рис. 5 выбором параметров была сформулирована согласно ББЛ-методу ЗМП (5)-(6) на основе модели Superefficiency. В результате решения ЗМП (5)-(6) были получены сравнительные оценки в интервале [0, да), которые представлены на рис. 6.
Анализ полученных результатов показал, что лучшими образцами с точки зрения соотношения качества исходного сырья и качества готовой продукции являются образцы под номерами № 1, 3, 8, 12, 15, 18, 25, 43, 48, 50 и 57. При этом образец № 57 является наилучшим в анализируемой группе, поскольку его сравнительная оценка равна максимальной величине 1,5. Этот результат объясняется оптимальным составом исходного сырья, включающим гудрон и введенный затемненный вакуумный газойль, что позволяет обеспечить высокие эксплуатационные характеристики получаемого битума.
1,60
^ 1,40
13
£ 1,20
т
ь 1,00
! 0,80
т 0,60
П5
I 0,40
О 0,20 0,00
13 5 7 9 111315171921232527293133353739414345474951535557596163
Номер образца
Рис. 6. Сравнительные оценки влияния состава сырья на качества готового битума
на основе модели 8Б
Представленные результаты позволяют определить, что образцы № 20, 29, 34, 55, 59, 60 имеют наименьшую сравнительную оценку, следовательно, необходимо провести модификацию углеводородного состава, оптимизировать параметры технологического режима или принять другие меры.
Выводы
Результаты демонстрируют необходимость дальнейших модификаций и оптимизации технологий получения дешевого качественного дорожного битума из утяжеленного сырья.
Подтверждена эффективность применения ББЛ-метода для сравнения характеристик образцов битума по моделям многофакторного анализа при условии правильного подбора входных и выходных параметров.
Выявлено, что при большом количестве объектов и параметров сравнения анализ сравнительной характеристики рекомендуется выполнять на основе модели суперэффективности ББЛ-метода для получения наиболее показательных относительных оценок лучших образцов.
Выявлена необходимость дальнейших исследований влияния изменений параметров технологического процесса и свойств сырья на сравнительную оценку образцов битума в анализируемой группе.
В целом в работе получены следующие результаты:
- проведен комплексный анализ производства дорожных битумов; собрана, классифицирована и проанализирована информация по 64 образцам исходного сырья и получаемого из них окисленного битума;
- выбраны и обоснованы основные количественные характеристики, качественные показатели и технологические параметры процессов нефтепереработки при производстве дорожных битумов;
- обоснована необходимость многофакторного анализа существующих процессов производства дорожных битумов на нефтеперерабатывающих предприятиях;
- разработана методика анализа процессов производства дорожных битумов на основе DEA-метода с целью выявления их принципиальных закономерностей, количественного и качественного оценивания их основных характеристик и свойств;
- на основе CCR и Super Efficiency моделей DEA-метода сформулированы и решены задачи многофакторного анализа эффективности процессов производства дорожных битумов для фактических значений характеристик сырья и параметров технологических процессов, проведен сравнительный анализ полученных решений.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. О Концепции национальной безопасности Российской Федерации. Указ Президента Российской Федерации от 10.01.2000 № 24.
2. Орлов В.П. Государство и недропользование // Минеральные ресурсы России. Экономика и управление, 2001.
3. Муртазин Т.М., Ризванов Т.М., Нигматуллин В.Р., Кутьин Ю.А., Теляшев Э.Г. Оперативное управление процессом компаундирования битумов // Нефтепереработка и нефтехимия. - 2006.
- C. 4-6.
4. ВасильевА.В., ПименовА.А. Анализ динамики современных требований к нефтяным дорожным битумам // XV Всероссийская конференция «Химия и инженерная экология» с международным участием. - 2015. - С. 81-82.
5. Сибгатуллина Р.И., Абдуллин А.И., Емельянычева Е.А., Бикмухаметова Г.К. Влияние параметров окисления гудронов на свойства конечного битумного материала. Кинетические особенности окисления нефтяных остатков до битума // Вестник технологического университета. -2016. - № 2. - С. 41-43.
6. Руденская И.М. Нефтяные битумы. - М.: Высшая школа; МАДИ, 1964.
7. Производство окисленных битумов: Метод. пособие. - Казань: Казанский федеральный университет, 2013.
8. Баннов П.Г. Процессы переработки нефти. - М.: ЦНИИТЭнефтехим, 2001.
9. Гун Р.Б. Нефтяные битумы. - М.: Химия, 1973.
10. Танашев С.Т., Умбетов У.У., Токтагулова У.С., ДилдабаеваМ.С. Возможность прогнозирования оптимальной технологии производства окисленных битумов по химическому составу перерабатываемой нефти. - Шымкент: Юж.-Казахстанский госуниверситет, 2020.
11. Пажитова Н.П., Потапова Т.В. Исследование свойств битумов, применяемых в дорожном строительстве. - М.: Труды СоюзДорНИИ, 1970.
12. Thierry Post, Jaap Spronk. Performance benchmarking using interactive data envelopment analysis. Eur. J. Opl. Res. 115. 1999.
13. Norio Hibiki, Toshiyuki Sueyoshi. DEA sensitive analysis by changing a reference set: regional contribution to Japanese industrial development. Omega, Int. J. Mgmt. Sci. 27. 1999.
14. Кривоножко В.Е., Пропой А.И., Сеньков Р.В., Родченков И.В., Анохин П.М. Анализ эффективности функционирования сложных систем // Автоматизация проектирования. - 1999. - № 1.
15. Сиразетдинов Т.К. Методы решения многокритериальных задач синтеза технических систем. -М.: Машиностроение, 1988. - 156 с.
16. BankerR.D., CharnesA., Cooper W.W. Some models for estimating technical and scale efficiency in Data Envelopment Analysis. Management Science 30/9, 1984.
17. Лескин А.И. Улучшение качества дорожного вязкого нефтяного битума на стадии его производства при снижении температуры окисления: дис. ... канд. техн. наук: 05.17.07. - Волгоград, 2006.
18. Тюкилина П.М. Производство нефтяных дорожных битумов на основе модифицированных утяжеленных гудронов: дис. ... канд. техн. наук: 05.17.07. - Уфа, 2015.
19. Евдокимова Н.Г., Лобанов В.В., Хивинцев А.В. Влияние параметров окисления гудронов на долговечность нефтяных битумов // Химия и технология топлив и масел. - 2000.
20. РябовВ.Г., Ширкунов А.С., КудиновА.В., НечаевА.Н. и др. Получение качественных дорожных битумов с использованием высоковязких гудронов // Нефтепереработка и нефтехимия. - 2008.
Статья поступила в редакцию 7 мая 2021 г.
MULTI-CRITERIA ANALYSIS OF ROAD BITUMEN PRODUCTION PROCESSES BY OXIDATION OF REFINED PETROLEUM PRODUCTS
Yu.E. Pleshivtseva, А. V. Kazarinov, M. Yu. Derevyanov
Samara State Technical University
244, Molodogvardeyskaya st., Samara, 443100, Russian Federation
Abstract. Based on the DEA method, an approach has been developed for the multivariate analysis of the road bitumen production processes, allowing obtaining integral comparative assessments that ensure the ranking of processes according to various heterogeneous criteria. The main quantitative characteristics, qualitative indicators, and technological parameters of the oxidation processes are selected to form target functions when solving mathematical programming problems. Based on the CCR and Super Efficiency models of the DEA method, the problems of multivariate analysis of the efficiency of road bitumen production processes for the actual values of the characteristics of raw materials and parameters of technological processes were formulated and solved, a comparative analysis ofthe estimates obtainedfor 64 bitumen samples was carried out. The results of the studies carried out make it possible to significantly expand the scope of the DEA method application and create on its basis a software package for multivariate analysis and optimization of bitumen production processes by improving the quality of the final product, reducing the resources for its production and reducing the negative impact on the environment.
Keywords: Data Envelopment Analysis, multivariate analysis, road bitumen, oil refining, technological process, efficiency.
REFERENCES
1. On the Concept of National Security of the Russian Federation. Decree of the President of the Russian Federation No. 24 of 10.01.2000 (In Russian).
2. Orlov V.P. Gosudarstvo i nedropol'zovanie // Mineral'nye resursy Rossii. Ekonomika i upravlenie, 2001 (In Russian).
3. Murtazin T.M., Rizvanov T.M., Nigmatullin V.R., Kut'in Yu.A., Telyashev E.G. Operativnoe upravlenie processom kompaundirovaniya bitumov // Neftepererabotka i neftekhimiya. 2006 (In Russian).
4. Vasil'ev A.V., Pimenov A.A. Analiz dinamiki sovremennyh trebovanij k neftyanym dorozhnym bi-tumam // XV vserossijskaya konferenciya \"himiya i inzhenernaya ekologiya\" s mezhdunarodnym uchastiem - 2015 (In Russian).
5. Sibgatullina R.I., Abdullin A.I., Emel'yanycheva E.A., Bikmuhametova G.K. Vliyanie parametrov okisleniya gudronov na svojstva konechnogo bitumnogo materiala. Kineticheskie osobennosti okisleniya neftyanyh ostatkov do bituma // Vestnik tekhnologicheskogo universiteta - 2016 (In Russian).
6. Rudenskaya I.M. Neftyanye bitumy. M.: Vysshaya shkola. MADI, 1964 (In Russian).
7. Proizvodstvo okislennyh bitumov: Metodicheskoe posobie, Kazan: Kazanskij federal'nyj universitet, 2013 (In Russian).
8. Bannov P.G. Processy pererabotki nefti. M.: CNIITEneftekhim, 2001.
9. Gun R.B. Neftyanye bitumy. M.: Himiya, 1973 (In Russian).
10. Tanashev S.T., Umbetov U.U., Toktagulova U.S., Dildabaeva M.S. Vozmozhnost' prognozirovaniya optimal'noj tekhnologii proizvodsva okislennyh bitumov po himicheskomu sostavu pererabatyvaemoj nefti. Shymkent, Kazahstan (In Russian).
11. Pazhitova N.P., Potapova T.V. Issledovanie svojstv bitumov, primenyaemyh v dorozhnom stroitel'stve. M.: Trudy SoyuzDorNII, 1970 (In Russian).
Yuliya E. Pleshivtseva (Dr. Sci. (Techn.)), Professor. Artem V. Kazarinov, Graduate Student.
Maksim Yu. Derevyanov (Ph.D. (Techn.)), Associate Professor.
12. Thierry Post, Jaap Spronk. Performance benchmarking using interactive data envelopment analysis. Eur. J. Opl. Res. 115. 1999.
13. Norio Hibiki, Toshiyuki Sueyoshi. DEA sensitive analysis by changing a reference set: regional contribution to Japanese industrial development. Omega, Int. J. Mgmt. Sci. 27. 1999.
14. Krivonozhko V.E., Propoj A.I., Sen'kov R.V., Rodchenkov I.V., Anohin P.M. Analiz effektivnosti funkcionirovaniya slozhnyh sistem. Avtomatizaciya proektirovaniya. 1999 (In Russian).
15. Sirazetdinov T.K. Metody resheniya mnogokriterial'nyh zadach sinteza tekhnicheskih sistem. M.: Mashinostroenie, 1988 (In Russian).
16. Banker R.D., Charnes A., Cooper W.W. Some models for estimating technical and scale efficiency in Data Envelopment Analysis. Management Science 30/9, 1984.
17. Leskin A.I. Uluchshenie kachestva dorozhnogo vyazkogo neftyanogo bituma na stadii ego proizvod-stva pri snizhenii temperatury okisleniya: dis. ... kand. tekhn. nauk: 05.17.07. - Volgograd, 2006 (In Russian).
18. Tyukilina P.M. Proizvodstvo neftyanyh dorozhnyh bitumov na osnove modificirovannyh utyazhelen-nyh gudronov (In Russian).
19. Evdokimova N.G., Lobanov V.V., Hivincev A.V. Vliyanie parametrov okisleniya gudronov na dol-govechnost' neftyanyh bitumov. Himiya i tekhnologiya topliv i masel, 2000 (In Russian).
20. Ryabov V.G., Shirkunov A.S., Kudinov A.V., Nechaev A.N. i dr. Poluchenie kachestvennyh dorozh-nyh bitumov s ispol'zovaniem vysokovyazkih gudronov. Neftepererabotka i neftekhimiya. 2008.