Научная статья на тему 'MITOCHONDRIAL GENOME OF THECAMOEBA QUADRILINEATA - THE FIRST MT GENOME AMONG THE REPRESENTATIVES OF THE ORDER THECAMOEBIDA (AMOEBOZOA, DISCOSEA)'

MITOCHONDRIAL GENOME OF THECAMOEBA QUADRILINEATA - THE FIRST MT GENOME AMONG THE REPRESENTATIVES OF THE ORDER THECAMOEBIDA (AMOEBOZOA, DISCOSEA) Текст научной статьи по специальности «Биологические науки»

CC BY
21
37
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Protistology
Область наук
Ключевые слова
AMOEBOZOA / THECAMOEBIDA / MITOCHONDRION / MITOCHONDRIAL GENOME

Аннотация научной статьи по биологическим наукам, автор научной работы — Bondarenko Natalya I., Nassonova Elena S., Mesentsev Yelisei S., Smirnov Alexey V.

We have sequenced and described the mitochondrial genome of Thecamoeba quadrilineata (Amoebozoa, Discosea, Thecamoebida). This is the first sequenced mitochondrial genome for amoebae of Thecamoebida lineage. The circular mitochondrial DNA of this species has 50942 bp in length and contains 23 protein-coding genes, 2 ribosomal RNAs, 18 transfer RNAs, and 26 open reading frames. In contrast with the shorter mitochondrial genomes of vannellid amoebae, it shows no evidence of RNA editing. This finding supports the hypothesis on the multiple origins of editing in different phylogenetic lineages of Amoebozoa.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MITOCHONDRIAL GENOME OF THECAMOEBA QUADRILINEATA - THE FIRST MT GENOME AMONG THE REPRESENTATIVES OF THE ORDER THECAMOEBIDA (AMOEBOZOA, DISCOSEA)»

Protistology 16 (2): 135-142 (2022) | doi:10.21685/1680-0826-2022-16-2-7 Pl'OtiStOlO&y

Original article

Mitochondrial genome of Thecamoeba quadrilineata - the first mt genome among the representatives of the order Thecamoebida (Amoebozoa, Discosea)

Natalya I. Bondarenko1*, Elena S. Nassonova2, Yelisei S. Mesentsev1, and Alexey V. Smirnov1

1 Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia

2 Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, 194064 St. Petersburg, Russia

| Submitted October 5, 2021 | Accepted December 8, 2021 |

Summary

We have sequenced and described the mitochondrial genome of Thecamoeba quadrilineata (Amoebozoa, Discosea, Thecamoebida). This is the first sequenced mitochondrial genome for amoebae of Thecamoebida lineage. The circular mitochondrial DNA of this species has 50942 bp in length and contains 23 protein-coding genes, 2 ribosomal RNAs, 18 transfer RNAs, and 26 open reading frames. In contrast with the shorter mitochondrial genomes of vannellid amoebae, it shows no evidence of RNA editing. This finding supports the hypothesis on the multiple origins of editing in different phylogenetic lineages of Amoebozoa.

Key words: Amoebozoa, Thecamoebida, mitochondrion, mitochondrial genome

Abbreviations: mt — mitochondria; cox1-3 — cytochrome oxidase subunit I, II, and III genes; tRNA — transfer RNA genes; rrnL, rrnS — ribosomal RNA genes; ORFs — open reading frames; PCGs — protein-coding genes; rps — small ribosomal subunit protein genes; rpl — large ribosomal subunit protein genes

Introduction

Mitochondrial genomes (mt genomes) ofAmoe-bozoa are sequenced for a limited number of phylogenetic lineages. The majority ofknown mt genomes belong to Centramoebida, Eumycetozoa and Van-nellida lineages; there are only a few genomes belonging to the representatives of other Amoebozoa clades. Until now, far not all phylogenetic lineages have been sampled (reviewed by Bondarenko et al.,

https://doi.org/10.21685/1680-0826-2022-16-2-7

© 2022 The Author(s)

Protistology © 2022 Protozoological Society Affiliated with RAS

2019a). The mitochondrial genome of Amoebozoa shows significant differences in size and gene composition. While closely related amoebozoan species show almost identical mt genomes (Bondarenko et al., 2019b; Karlyshev, 2019), the level ofmt genome synteny drops dramatically as the phylogenetic distance increases (Bondarenko et al., 2018a, 2018b, 2018c). Many of the sequenced mt genomes show extensive RNA editing, and among them the representative of Myxogastria — namely, Physarum

Corresponding author: Natalya I. Bondarenko. Department oflnverte-brate Zoology, Faculty ofBiology, St. Petersburg State University, Univer-sitetskaya Emb. 7/9, 199034 St. Petersburg, Russia; n.bondarenko@spbu.ru

Fig. 1. Light microscopy of Thecamoeba quadrilineata strain CCAP 1583/10. A-C — Locomotive forms; D and E — higher magnification of the cell showing the granuloplasm and the nucleus. Abbreviations: cv — contractile vacuole, f — dorsal fold, n — nucleus, nu — nucleolus. Scale bars: A-C — 10 ^m, D and E — 5 ^m.

polycephalum — demonstrates one of the most complex and extensive patterns of RNA editing among eukaryotes (Takano et al., 2001; Houtz et al., 2018). However, lineages showing extensive editing are often located in the crown of the tree, while representatives of basal clades may show little or no editing (Bondarenko et al., 2019c). These data vote for the independent origin of editing in different lineages of Amoebozoa. It makes the study of the distribution, patterns and mechanisms of RNA editing among Amoebozoa especially fascinating and important and may lead to new findings in this field. However, these studies are seriously limited by the absence of a comprehensive picture of the distribution of RNA editing phenomena across the Amoebozoa tree.

The present paper reports data on the mitochondrial genome of Thecamoeba quadrilineata (Carter, 1856) Lep§i, 1960. This species shows no RNA editing. Ifwe assume the current phylogeny of Discosea clade (Kang et al., 2017; Melton et al., 2018), our finding further evidences for the independent origin of editing in different Amoebozoa lineages.

Material and methods

The studied strain Thecamoeba quadrilineata CCAP 1583/10 was obtained from Dr. RolfMichel. He maintained it as a host for Nucleophaga amoebae strain KTq2 (Michel, 2008; Michel et al., 2009). The culture was maintained on NN agar (Panreac agar-agar, American Type QB, Spain) as described by Page (1988) made on PJ medium (Prescott and James, 1955) on accompanying bacteria. Live cells

were photographed on object slides (wet mounts in PJ medium) using a Leica DM2500 microscope (Fig. 1). The SSU sequence of this strain was obtained by Claudia Wylezich and deposited in GenBank under the number DQ122381 (see Walochnik et al., 2003; Michel et al., 2006; Kamyshatskaya et al., 2018).

To obtain a DNA sample, individual amoebae cells were collected from culture dishes using a tapered-tip Pasteur pipette, washed three times in Millipore-sterilized (0.2 ^m pore) PJ medium, and placed with 1—2 ^l of the medium in 200-^l PCR tubes. DNA was extracted using the Arcturus PicoPure DNA Extraction Kit (Thermo Fischer Scientific, USA). The extraction mixture was prepared according to the manufacturer's instructions; 10 ^l of the mixture was added to the tube containing the single cell. Further, we performed whole genome amplification using the REPLI-g Single Cell DNA Amplification Kit (Qiagen, Hilden, Germany). Multiple Displacement Amplification (MDA) was performed according to the manufacturer's instructions. Approximately 127 million reads with a length of 150 bp were obtained using HiSeq 2500 sequencing system (Illumina). Quality control checking of raw sequence data was performed using FastQC (http:// www.bioinformatics.babraham.ac.uk/projects/ fastqc/), SPAdes assembler was used for de novo mitochondrial genome assembly (Bankevich et al., 2012). An annotation of the mitochondrial genome sequence was performed using the MITOS web server (Bernt et al., 2013a). Artemis was used to visualize annotation files, manual correction of gene boundaries, and open reading frames (ORFs) search (version 16.0; Rutherford et al., 2000). All

Table 1. Nucleotide composition characteristics of Thecamoeba quadrilineata

mitochondrial genome.

Species GC% A% T% G% C% AT-skew GC-skew

Thecamoeba quadrilineata 23.92 41.06 35.02 13.82 10.10 0.079 0.155

protein-coding genes (PCGs) boundaries were verified by manual comparison with the orthologs in other amoebozoans. Genes coding tRNAs were positioned with tRNAcan-SE Search Server v.1.21 (Lowe and Eddy, 1997). Strand asymmetry was calculated using the formulae: AT skew= [A-T]/ [A+T] and GC skew= [G-C]/ [G+C], for the H-strand (Perna and Kocher, 1995). The physical map of the mt genome was generated by our original script written in Python.

Results and discussion

The mitochondrial genome of Thecamoeba quadrilineata is a double-stranded circular DNA molecule with a length of 50942 bp (Fig. 2). It is the first sequenced mt genome among amoebae belonging to Thecamoebida lineage (order Thecamoebi-da). It shows GC content of23.92% (Table 1), which is a rather low level. The prevalence of adenine over thymine and guanine over cytosine in the majority strand provides both positive AT-skew and GC-skew. This picture ofAT-skew resembles the one observed in many other organisms (e.g., Bernt et al., 2013b; Bondarenko et al., 2019b). Therefore, the nucleotide composition of Thecamoeba quadrilineata mt genome is significantly biased toward A and T bases, which unavoidably leads to the predominance of certain codons and amino acids in proteins.

Thecamoeba quadrilineata mt genome contains the set of 23 PCGs (atpl, 6, 9, cob, cox1-3, nadl-5,7,9,11, rpl and rps genes), 18 tRNA, two rRNA genes (rrnL and rrnS) and 28 open reading frames (ORFs) (Table 2). All genes and ORFs are located on H-strand.

The set of PCG genes differs from other known Amoebozoa mt genomes by the absence of nad4l, nad5, nad6and cob genes. BLAST search for nad4l provides a set of low-significant matches in the region cor-responding to orf9 (Table 2, Fig. 2). The set of rpl and rps genes in the mt genome ofthis strain also differs from that in other known Amoebozoa mt genomes (Burger et al., 1995; Ogawa et al., 2000; Greninger et al., 2015; Tanifuji et al., 2017; Bondarenko et al., 2018a, 2018b, 2018c). The total

length of all PCGs in Thecamoeba quadrilineata mt genome, excluding termination codons, is 22022 bp, which constitutes 43.2% of the total genome length. It is due to the fact that over 40% of the mt genome is occupied by ORFs (total length is 20460 bp) and the remaining 6.5% are tRNA, rRNA and intergenic regions. This mt genome of Thecamoeba quadrilineata differs from other known Amoebozoa mt genomes by high density in genes and ORFs. The mt genome of this species has a significant number of gene overlaps and only two non-coding regions longer than 100 bp (Table 2). The largest overlap is 44 bp; it is located between orf7 and orf8. The non-coding regions constitute 1398 bp in total and 2.74% of the total mt genome size (Table 2). The largest non-coding region is 454 bp long; it is located between tRNAHis and orf5. Also, the mt genome contains two rather long ORFs with lengths 2163 and 3216 bp (orf3 and of 7, respectively). All ORFs are unique to this mt genome and have no homologs among other Amoebozoa.

There are two alternative start codons in Thecamoeba quadrilineata mt genome. Most PCGs and ORFs use ATG as a start codon, while orf8 uses ATA, and orf15 uses ATT as a start codon. There are only two stop codons in Thecamoeba quadrilineata mt genome (TAA and TAG); TGA stop codon was not found in this mt genome. In contrast to most of sequenced mt genomes of Amoebozoa, mt genome in Thecamoeba quadrilineata uses the genetic code 1 (the standard code).

The large and the small ribosomal RNA genes (rrnL and rrnS) in Thecamoeba quadrilineata mt genome are located close to each other between tRNAMetand tRNAAla (Table 2, Fig. 2). The length of rrnL and rrnS is 2874 bp and 1911 bp, respectively. tRNA genes have a total length of1191 bp, and most of them are located between rrnS and of5 genes. All tRNAs have the typical cloverleaf secondary structure. This mt genome contains additional arginine, serine, and three methionine tRNA genes. These features are not unique. Three methionine tRNA genes are also known in other Amoebozoa mt genomes (Pombert et al., 2013; Bondarenko et al., 2018c, 2021). We observed significant differences in the nucleotide composition between tRNAMet and the

Fig. 2. Mitochondrial genome map of Thecamoeba quadrilineata. The tRNA genes are labeled based on the IUPACIUB single-letter amino acid codes.

other two duplicates of this gene. These differences and location of obtained duplications suggest the ancient nature of tRNAMet duplication compared with tRNAArgg and tRNASer, which show much smaller differences in the nucleotide composition between the duplicates of these genes.

If we accept the current phylogeny of Discosea clade as revealed by Kang with coauthors (2017) and Melton with coauthors (2018), our finding further evidences for the independent origin of editing in different Amoebozoa lineages. Among the lineages constituting the Flabellinia clade, up

to now editing is known in Vannellida. Available data on Dactylopodida clade (sister clade to Vannellida) show no evidence of RNA editing in sequenced mitochondrial genomes (Bondarenko et al., 2019c). Yet, several sequences of the Cox I gene of Korotnevella spp. deposited with the GenBank suggest the presence of frameshift in poly-T areas. Also, it might be a sequencing problem (Zlatogurski et al. 2016). Another case of RNA editing is known in Acanthopodida, which belongs to Centramoebia clade (Burger et al., 1995; Fucikova and Lahr, 2016). The present finding is the first evidence

Table 2. Thecamoeba quadrilineata mitochondrial genome organization.

Gene Strain Position (start-stop) Length (bp) Intergenic space (bp) Start codon Stop codon

orf1 + 110-799 690 209 ATG TAG

rpl2 + 803-1807 1005 -3 ATG TAA

orf2 + 1788-2153 366 -20 ATG TAA

rps3 + 2159-4249 2091 -5 ATG TAA

rpl16 + 4242-4709 468 -8 ATG TAA

orf3 + 4710-6872 2163 0 ATG TAA

orf4 + 6875-7678 804 2 ATG TAA

trnE + 8771-8841 71 -8

trnM1 + 8860-8931 72 18

rrnL + 9077-11950 2874 45

rrnS + 11978-13890 1911 27

trnA + 13890-13961 72 -1

trnQ + 13970-14041 72 8

trnP + 14048-14119 72 6

trnK + 14125-14197 73 5

trnW + 14214-14284 71 16

trnS1 + 14291-14375 85 6

trnD + 14381-14453 72 5

trnS2 + 14463-14547 85 9

trnY + 14555-14637 83 7

trnC + 14644-14714 71 6

trnM2 + 14719-14790 72 4

trnF + 14795-14867 73 4

trnR1 + 14870-14944 75 2

trnR2 + 14944-15015 72 -1

trnM3 + 15027-15098 72 11

trnH + 15119-15189 71 20

orf5 + 15653-16015 363 454

orf6 + 16140-17657 1518 124 ATG TAA

nad1 + 17662-18675 1014 4 ATG TAA

orf7 + 18770-21961 3192 -6 ATG TAA

orf8 + 21918-22748 831 -44 ATA TAA

orf9 + 22773-23111 339 23 ATG TAA

cox3 + 23160-24005 846 48 ATG TAA

orf10 + 24025-24597 573 19 ATG TAA

orf11 + 24664-25818 1155 66 ATG TAA

nad3 + 25824-26237 414 5 ATG TAA

orf12 + 26221-26967 747 -17 ATG TAA

atp9 + 27042-27278 237 74 ATG TAG

rps4 + 27302-28039 738 23 ATG TAA

orf13 + 28052-28885 834 12 ATG TAA

orf14 + 28892-29713 822 6 ATG TAA

atp1 + 29790-31397 1608 76 ATG TAG

orf15 + 31402-32187 786 4 ATG TAA

cox1 + 32224-34326 2123 36 ATG TAA

orf16 + 34289-34744 456 -38 ATT TAA

Table 2. (Continuation).

orf17 + 34752-36962 2211 7 ATG TAG

nad4 + 36998-38449 1452 35 ATG TAA

orf18 + 38453-39187 735 3 ATG TAG

nad2 + 39194-40735 1542 6 ATG TAA

atp6 + 40790-41830 1041 54 ATG TAA

rpl14 + 41834-42262 429 3 ATG TAA

orf19 + 42282-42509 228 19 ATG TAA

orf20 + 42499-43095 597 -11 ATG TAA

orf21 + 43088-43936 849 -8 ATG TAA

orf22 + 43942-44199 258 5 ATG TAA

orf23 + 44206-44550 345 6 ATG TAA

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

orf24 + 44555-45169 615 4 ATG TAA

orf25 + 45172-45471 300 2 ATG TAA

rps8 + 45480-45854 375 8 ATG TAA

orf26 + 45859-46434 576 4 ATG TAA

rps13 + 46436-46918 483 1 ATG TAA

nad9 + 46930-47559 630 11 ATG TAA

nad7 + 47546-48727 1182 -14 ATG TAA

rpl11 + 48733-49386 654 5 ATG TAA

orf27 + 49379-50011 633 -8 ATG TAG

rps12 + 49972-50358 387 60 ATG TAG

orf28 + 50330-50842 513 -29 ATG TAA

for the absence of editing in Thecamoebida. The Thecamoebida clade belongs to Flabellinia, but branches earlier than Dactylopodida/Vannellida clade (Kang et al., 2017; Melton et al., 2018). So, if the absence of editing in Thecamoebida is further confirmed with sequences or a larger number of mt genomes, it would prove that the point of origin of RNA editing in Vannellida, belonging to Flabellinia clade, is isolated in the phylogenetic tree from that in Acanthopodida, which belongs to Centramoebia clade.

Acknowledgments

The research was supported by the RSF project 20-14-00195. This study utilized equipment of the Core Facilities Centers "Centre for Culture Collection of Microorganisms," "Centre for Molecular and Cell Technologies," "Biobank," and "Computing Centre" of the Research Park of St Petersburg State University. This paper is dedicated to the Year of Zoology 2022 in St. Petersburg State University.

References

Bankevich A., Nurk S., Antipov D., Gurevich A. et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5): 455-477. http:// doi.org/10.1089/cmb.2012.0021

Bernt M., Donath A., Jühling F., Externbrink F. et al. 2013a. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phyloge-net. Evol. 69 (2): 313-319. https://doi.org/10.1016/j. ympev.2012.08.023

Bernt M., Bleidorn C., Braband A., Dambach J. et al. 2013b. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol. Phy-logenet. Evol. 69 (2): 352-364. https://doi.org/10. 1016/j.ympev.2013.05.002

Bondarenko N.I., Nassonova E.S., Mijanovic O., Glotova A.A. et al. 2018a. Mitochondrial genome of Vannella croatica (Amoebozoa, Discosea, Vannellida). J. Eukaryot. Microbiol. 65 (6): 820827. https://doi.org/10.1111/jeu.12523

Bondarenko N., Glotova A., Nassonova E., Ma-sharsky A. et al. 2018b. The complete mitochondrial

genome of Vannella simplex (Amoebozoa, Discosea, Vannellida). Europ. J. Protistol. 63 (6): 83-95. https://doi.org/10.1016/j.ejop.2018.01.006

Bondarenko N., Glotova A., Kamyshatskaya O., Mesentsev Y. et al. 2018c. The complete mitochondrial genome of Clydonella sawyeri (Amoebozoa, Discosea, Vannellida). Protistology. 12 (1): 47-54. doi:10.21685/1680-0826-2018-12-1-4

Bondarenko N., Smirnov A., Nassonova E., Glotova A. and Fiore-Donno A.-M. 2019a. Mito-chondrial genomes of Amoebozoa. Protistology. 13 (4): 179-191. doi:10.21685/1680-0826-2019-13-4-1

Bondarenko N., Glotova A., Nassonova E., Ma-sharsky A. et al. 2019b. The complete mitochondrial genome of Paravannella minima (Amoebozoa, Discosea, Vannellida). Europ. J. Protistol. 68: 80-87. https://doi.org/10.1016/j.ejop.2019.01.005

Bondarenko N., Volkova E., Masharsky A., Kudryavtsev A. and Smirnov A. 2019c. A comparative characterization of the mitochondrial genomes of Paramoeba aparasomata and Neoparamoeba pema-quidensis (Amoebozoa, Paramoebidae). J. Euka-ryot. Microbiol. 67 (2): 167-175. https://doi.org/ 10.1111/jeu.12767

Bondarenko N.I., Glotova A.A., Nassonova E.S., Masharski A. and Smirnov A.V. 2021. The complete mitochondrial genome of an unusual strain of tiny vannellid amoeba (Amoebozoa, Discosea, Vannellida) isolated from the Niagara River (Canada). Protistology. 15 (4): 304-311. doi:10.21 685/1680-0826-2021-15-4-8

Burger G., Plante I., Lonergan K.M. and Gray M.W. 1995. The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J. Mol. Biol. 245 (5): 522-537. https://doi. org/10.1006/jmbi.1994.0043

Fucikovâ K. and Lahr D.J. 2016. Uncovering cryptic diversity in two amoebozoan species using complete mitochondrial genome sequences. J. Eu-karyot. Microbiol. 63 (1): 112-122. https://doi. org/10.1111/jeu.12253

Houtz J., Cremona N. and Gott J.M. 2018. Editing of mitochondrial RNAs in Physarum poly-cephalum. In: RNA metabolism in mitochondria (Eds: Cruz-Reyes J. and Gray M.W.). Trends Plant Sci. 34. Springer International Publishing, Cham, pp. 199-222. https://doi.org/10.1007/978-3-319-78190-7_8

Greninger A.L., Messacar K., Dunnebacke T., Naccache S.N. et al. 2015. Clinical metagenomic identification of Balamuthia mandrillaris encephali-

tis and assembly of the draft genome: the continuing case for reference genome sequencing. Genome Med. 7: 113. https://doi.org/10.1186/s13073-015-0235-2

Kamyshatskaya O., Mesentsev Y., Smirnov A., Michel R. et al. 2018. Fine structure of Thecamoeba quadrilineata strain CCAP 1583/10 (Amoebozoa, Discosea, Thecamoebida), the host of Nucleophaga amoebae (Opisthosporidia). Protistology. 12 (4): 191-201. doi:10.21685/1680-0826-2018-12-4-4

Kang S., Tice A.K., Spiegel F.W., Silberman J.D. et al. 2017. Between a pod and a hard test: the deep evolution of amoebae. Mol. Biol. Evol. 34 (9): 2258-2270. https://doi.org/10.1093/molbev/ msx162

Karlyshev A.V. 2019. Remarkable features of mitochondrial DNA of Acanthamoeba polyphagia Linc Ap-1, revealed by whole-genome sequencing. Microbiol. Resour. Announc. 8 (25): 10-12. https:// doi.org/10.1128/MRA.00430-19

Lowe T.M. and Eddy S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25 (5): 955-964. https://doi.org/10.1093/ nar/25.5.0955

Melton J., Wood F., Branch J., Singla M. and Tekle Y. 2018. Phylogenomics of Thecamoebida (Discosea, Amoebozoa) with the description of Stratorugosa tubuloviscum gen. nov. sp. nov., a freshwater amoeba with a perinuclear MTOC. Protist. 170 (1): 8-20. https://doi.org/10.1016/j.protis. 2018.09.002

Michel R., Wylezich C., Hauröder B., Smirnov A.V. 2006. Phylogenetic position and notes on the ultrastructure of Sappinia diploidea (Thecamo-ebidae). Protistology. 4 (4): 319-325.

Michel R. 2008. Isolierung und darstellung von intranuldeären parasiten aus Thecamoeba quadrilineata und Saccamoeba limax. Mikrokosmos. 97: 101-107.

Michel R., Hauröder B., Zöller L. 2009. Isolation of the amoeba Thecamoeba quadrilineata harbouring intranuclear spore forming endoparasites considered as fungus-like organisms. Acta Protozool. 48 (1): 41-49.

Ogawa S., Yoshino R., Angata K., Iwamoto M. et al. 2000. The mitochondrial DNA of Dictyostelium discoideum: complete sequence, gene content, and genome organization. Mol. Gen. Genet. 263 (3): 514-519. https://doi.org/10.1007/PL00008685

Page F.C. 1988. A new key to freshwater and soil Gymnamoebae. Freshwater Biological Association, The Ferry House, Ambleside, Cumbria.

Perna N.T. and Kocher T.D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41 (3): 353-358. https://doi.org/10.1007/BF00186547 Pombert J.-F., Smirnov A., James E.R., Janou-skovec J. et al. 2013. The complete mitochondrial genome from an unidentified Phalansterium species. Protist Genomics. 1: 25-32. https://doi.org/10. 2478/prge-2013-0002

Prescott D.M. and James T.W. 1955. Culturing of Amoebaproteus on Tetrahymena. Exp. Cell Res. 8 (1): 256-258. https://doi.org/10.1016/0014-4827 (55)90067-7

Rutherford K., Parkhill J., Crook J., Horsnell T. et al. 2000. Artemis: sequence visualization and annotation. Bioinformatics. 16 (10): 944-945. https://doi.org/10.1093/bioinformatics/16.10.944 Takano H., Abe T., Sakurai R., Moriyama Y. et al. 2001. The complete DNA sequence of the mitochondrial genome of Physarum polycephalum.

Mol. Gen. Genet. 264 (5): 539-545. https://doi. org/10.1007/s004380000357

Tanifuji G., Cenci U., Moog D., Dean S. et al. 2017. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplas-tid symbiosis. Sci. Rep. 7: 11688. https://doi.org/10. 1038/s41598-017-11866-x

Walochnik J., Michel R., Aspock H. 2003. New insights into intra-amoebozoan phylogeny. In: Proceedings X International Meeting on the Biology and Pathogenicity of Free-Living Amoebae. pp. 93-103.

Zlatogursky V.V., Kudryavtsev A., Udalov I.A., Bondarenko N., Pawlowski J. and Smirnov A. 2016. Genetic structure of a morphological species within the amoeba genus Korotnevella (Amoebozoa: Discosea), revealed by the analysis oftwo genes. Eur. J. Protistol. 56: 102-111. https://doi.org/10.1016/). ejop.2016.08.001

i Надоели баннеры? Вы всегда можете отключить рекламу.