МИКРОБНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ КАК ИСТОЧНИК АЛЬТЕРНАТИВНОЙ ЭНЕРГЕТИКИ Дубовец Д.П.
Дубовец Денис Леонидович - инженер по охране окружающей среды, ОАО «УКХ«Минский моторный завод», г. Минск, Республика Беларусь
Аннотация: представленная работа является результатом проведенных исследований возможности некоторых микроорганизмов в процессе своей жизнедеятельности вырабатывать электрический ток. В представленной работе содержится краткая информация о современном состоянии энергетической отрасли и основных источниках энергии. Проведен анализ воздействия энергетической промышленности на организм человека, рассмотрен механизм работы микробного топливного элемента, сделан вывод о перспективных направлениях их использования.
Ключевые слова: энергия, природные ресурсы, окружающая среда, микробный топливный элемент, микроорганизмы.
Актуальность
Одной из главных задач современного общества в 21 веке, является решение вопроса по обеспечению постоянно растущей человеческой цивилизации в необходимом количестве энергии. Согласно исследованиям мирового научного сообщества, запасы ископаемых топливно-энергетических ресурсов стремительно сокращаются, в связи с этим возросла необходимость в разработке новых способов получения энергии, основанных на возобновляемых источниках. Благодаря особенности некоторых видов микроорганизмов в процессе своей жизнедеятельности генерировать электроэнергию, данное явление можно рассматривать в качестве перспективного источника альтернативной энергии.
Цели, задачи научная новизна
Цель работы - рассмотрение микробного топливного элемента.
Задачей представленной работы, является исследование механизма генерации электроэнергии микроорганизмами в составе топливного элемента, анализ возможных направлений использования топливных элементов в хозяйстве.
Научная новизна: рассмотрен механизм получения электроэнергии микроорганизмами, проведено исследование по перспективным направлениям использования микробных топливных элементов.
Введение
В последние десятилетия, в широкой печати и выступлениях ведущих национальных и зарубежных ученых, на конференциях, а также в специальной литературе, пересматривается отношение к темпам и перспективам использования углеводородного топлива для выработки энергии. Предлагается сократить его расход на энергетические нужды, сохранив будущим поколениям для производства продуктов питания и органического синтеза. При этом, растет интерес к новым методам получения энергии, в том числе к более широкому использованию возобновляемых источников энергии. Рассматриваются новые схемы преобразования энергии, подразумевающие любые методы получения чистой энергии, не вызывающие загрязнения окружающей среды [1].
Действительно, современная энергетика в качестве топлива использует в основном горючие ископаемые: нефть, природный газ, горючий сланец, черный и бурый уголь, торф. Если исходить из разведанных запасов топлива, можно полагать что через 80 лет все углеводородные ресурсы будут исчерпаны. В связи с этим, уже сейчас финансовые затраты, связанные с энергетикой, чрезвычайно велики, что подрывает энергетические программы даже ведущих промышленно развитых государств Западной Европы, Северной Америки, Азии и во многом сдерживает экономику развивающихся стран. Но действительно ли мы хотим использовать данные энергетические ресурсы?
Сжигание углеводородного топлива приводит интенсивному выбросу токсичных веществ и парниковых газов, что влечет к медленному, но устойчивому увеличению температуры на планете, уменьшению озонового слоя, деградации земель и прочему негативному влиянию. Кроме того, использование ископаемого топлива является источником теплового воздействия и загрязнения окружающей среды, образования отходов и сточных вод, шуму и вибрации. Описанное воздействие имеет глобальный характер и сказывается на всех живых организмах, в том числе и человеке.
У работников, связанных с энергетической отраслью, часто выявляются неврастенические синдромы и вегетативные дисфункции. При проведении обследований, медицинские работники регистрируют жалобы на тупые головные боли в лобно-височных областях, повышенную утомляемость, раздражительность, сонливость, сердцебиение, перебои и давящие боли за грудиной. Данные симптомы, свидетельствуют с нарушением работы сердечно-сосудистой и нервной системы, являются первичными признаками развития онкологических заболеваний.
Для снижения вредного воздействия на окружающую среду, человечеству необходимо развивать энергосберегающие технологии, основанные на энергии солнца, ветра, использовании биомассы и энергии недр земли. Микробные топливные элементы могут быть частью таких технологий.
Исследование и вывод
На рисунке 1 представлен принцип работы микробного топливного элемента.
/■V
Катион обменная катализатор (Р1)
Рис. 1. Схема работы микробного топливного элемента
На представленном рисунке изображена емкость, заполненная раствором, содержащим органические вещества (формальдегид, ПАВ и др.) и разделенная на две части при помощи мембраны. В одну из частей сосуда (на рисунке слева), погружена металлическая пластина покрытая биопленкой. Погружаемая пластина участвует в процессе переноса электрического тока в МТЭ, выполняя функцию анода.
В процессе жизнедеятельности микроорганизмов, основанном на использовании содержащихся в подпиточной воде органических веществ в качестве питательных материалов, происходит образование электронов. Образовавшийся электрический ток по соединенному с металлической пластиной проводу переходит по цепи к катоду, образуя при этом электрическую цепь.
Для регистрации напряжения и силы тока, проходимого по электрической цепи подключен измерительный прибор типа мультиметр, совмещающий работу вольтметра и амперметра.
На катоде, погруженном в правой части сосуда и выполненном из неактивного материала (графит, платина, ванадий или вольфрам), происходит восстановление кислорода с образованием ионов гидроксида и протонами выделенными из воды (О2 + 4е- +2Н20^40Н-).
Благодаря установке катион обменной мембраны, осуществляется переход катионов от анода к катоду и обеспечивается электронейтральность.
Схема на рисунке 1 представляет собой принципиальную инженерную систему непрерывного действия с постоянным подводом воздуха, подпиточной воды для жизнедеятельности бактерий, а также отводом побочных продуктов и предназначенную для поддержки жизнедеятельности культуры микроорганизмов в анодной камере. Присутствующие микроорганизмы, преобразуют (обрабатывают) органические субстраты на основе окислительно-восстановительных реакций, осуществляемых на клеточном уровне и переносе электронов через электрическую цепь с выработкой электроэнергии.
Реакции окисления происходят в анодном отсеке, где бактерии метаболизируют органические субстраты образуя энергию необходимую для поддержания клеток и синтеза биомассы. Бактерии (электрификаторы), которые способны к внеклеточному переносу
электронов, могут дышать твердым электродом, сохраняя энергию за счет окисления органических молекул, таких как ацетат, образуя при этом углекислый газ.
В зависимости от вида используемых бактерий, состава и температуры подпиточного раствора, площади поверхности электродных пластин и др. параметров, выход электроэнергии может составлять от сотен милливольт до десятков киловольт [2, 3].
В таблице 1, представлена зависимость состава подпиточного раствора и его концентрации, от напряжения и силы электрического тока, регистрируемого на выходе из МТЭ.
Таблица 1. Характеристика подпитоного раствора и выходных параметров МТЭ
Вещество, входящее в состав раствора Концентрация вещества, мг/л Напряжение, мВ Сила анодного тока, мА
Ацетат 458 78 22
Ацетат 1000 352 560
Глюкоза 2000 3600 1310
Глюкоза 467 120 390
Бутират 1000 220 22
ПАВ 1100 354 28
Хозяйственно-бытовые сточные воды 429* 10 390
Хозяйственно-бытовые сточные воды 379* 75 22
* - общее содержание органических веществ в растворе.
Согласно приведенной таблице, при увеличении концентрации органического вещества, увеличивается сила тока и напряжение. Следует отметить, что данная зависимость не линейна, в связи с чем при выборе режима работы МТЭ необходим тщательный подбор оптимального состава подпиточного раствора [4].
Микробные топливные элементы представляют собой быстро развивающуюся технологию, основанную на возобновляемых источниках энергии. Наиболее перспективное их применение, связано с совмещением технологии биологической очистки сточных вод с производством электроэнергии. В зависимости от способа организации производства степень очистки сточных вод от органических загрязнителей может достигать 86%.
Биоэлектрохимические основы рассмотренной технологии обладают перспективами внедрения и в других промышленных областях: создание биометрических датчиков для медицинских нужд, оценки состояния окружающей среды и степени ее загрязненности; микробных электролизных элементов для получения водорода - как наиболее чистого вида топлива; источников питания для роботизированной автономной и радиоуправляемой техники.
Несмотря на то что развитие микробных топливных элементов находится на начальном этапе, перспективы их дальнейшего применения в промышленных масштабах уже прослеживаются, а вопрос их реализации на практике, будет зависеть от желания мирового сообщества вкладывать денежные средства в имеющиеся технологии.
Список литературы
1. Тельдеши Ю. Мир ищет энергию / Ю. Тельдеши, Ю. Лесны. М.: Мир, 1986. 442 с.
2. Fornero Jeffrey J., Rosenbaum Miriam. Electric Power Generation from Municipal? Food? And Animal Wastewaters Using Microbial Fuel Cells / Jeffrey J. Fornero, Miriam Rosenbaum : Electroanalysis, 2010. 22. № 7-8, 832-843. New York, 2010. 12 p.
3. Главный информационно-аналитический центр Национальной системы мониторинга окружающей среды Республики Беларусь. [Электронный ресурс]. Режим доступа: http://www.infuture.ru/article/12595/ (дата обращения: 05.06.2018).