Научная статья на тему 'МЕТОДЫ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ АЭРОЗОЛЕЙ'

МЕТОДЫ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ АЭРОЗОЛЕЙ Текст научной статьи по специальности «Нанотехнологии»

CC BY
328
48
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
АЭРОЗОЛИ / СКРУББЕР ВЕНТУРИ / ОЧИСТКА ГАЗОВЫХ ВЫБРОСОВ

Аннотация научной статьи по нанотехнологиям, автор научной работы — Осянина Е. В.

В данной работе рассматривается методы очистки газовых примесей от аэрозолей.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Осянина Е. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «МЕТОДЫ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ АЭРОЗОЛЕЙ»

УДК 628.3

Е.В. Осянина

МЕТОДЫ ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ ОТ АЭРОЗОЛЕЙ

В данной работе рассматривается методы очистки газовых примесей от аэрозолей.

Ключевые слова: аэрозоли, скруббер Вентури, очистка газовых выбросов.

Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.

Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся:

1) гравитационное осаждение;

2) инерционное и центробежное пылеулавливание;

3) фильтрация. [1]

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не.выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов. [3]

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи).. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода - быстрое истирание или забивание щелей. [1]

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей. Газовый поток подается в цилиндрическую часть циклона тангенциально, описывает спираль по направлению к дну конической части и затем устремляется вверх через турбулизованное ядро потока у оси циклона на выход. Циклоны характеризуются высокой производительностью по газу, простотой устройства, надежностью в работе. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м3 /ч), степень очистки составляет около 90% при диаметре частиц d >30 мкм. Для частиц с d = 5з30 мкм степень очистки снижается до 80%, а при d =2з5 мкм она составляет менее 40%. [2]

Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. В аппаратах мокрой очистки применяют различные приемы развития поверхности соприкосновения жидкости и газа. [1]

© Осянина Е.В., 2014.

ISSN 2223-4047

Вестник магистратуры. 2014. № 12(39). Том I

Скрубберы Вентури (см. рис 1) - высокоинтенсивные газоочистительные аппараты, но работающие с большим расходом энергии. Скорость газа в сужении трубы (горловине скруббера) составляет 100-200 м/с, а в некоторых установках - до 1200 м/с. При такой скорости очищаемый газ разбивает на мельчайшие капли завесу жидкости, впрыскиваемой по периметру трубы. Это приводит к интенсивному столкновению частиц аэрозоля с каплями и улавливанию частиц под действием сил инерции. Скруббер Вентури - универсальный малогабаритный аппарат, обеспечивающий улавливание тумана на 99-100%, частиц пыли с d = 0,01,0,35 мкм - на 50-85% и частиц пыли с d =0,5-2 мкм - на 97%. Для аэрозолей с d = 0,3-10 мкм эффективность улавливания определяется в основном силами инерции и может быть оценена по формуле

где К - константа; Ь - объем жидкости, подаваемой в газ, дм3 /м3;

] - инерционный параметр, отнесенный к скорости газа в горловине; при У 90% j является однозначной функцией перепада давления в скруббере.

1 - сопло; 2 - горловина; 3 - камера смешения; 4 - разделительная камера [1] Рис. 1. Реактор полного смешения - скруббер Вентури

Главный деффект скруббера Вентури - большой расход энергии по преодолению высокого гидравлического сопротивления, которое в зависимости от скорости газа в горловине может составлять 0,002-0,013 МПа. Помимо того, аппарат не отличается надежностью в эксплуатации, управление им сложное. [2]

Основной недостаток всех методов мокрой очистки газов от аэрозолей - это образование больших объемов жидких отходов (шлама). Таким образом, если не предусмотрены замкнутая система водооборота и утилизация всех компонентов шлама, то мокрые способы газоочистки по существу только переносят загрязнители из газовых выбросов в сточные воды, т. е. из атмосферы в водоемы.

Электростатическая очистка газов служит универсальным средством, пригодным для любых аэрозолей, включая туманы кислот, и при любых размерах частиц. Метод основан на ионизации и зарядке частиц аэрозоля при прохождении газа через электрическое поле высокого напряжения, создаваемое коронирующими электродами. Осаждение частиц происходит на зазем-

ленных осадительных электродах. Промышленные электрофильтры состоят из ряда заземленных пластин или труб, через которые пропускается очищаемый газ. Между осадительными электродами подвешены проволочные коронирующие электроды, к которым подводится напряжение 25-100 кВ. Теоретическое выражение для степени улавливания аэрозолей в трубчатых электрофильтрах имеет вид

где и - скорость дрейфа частиц к электроду; 1 - длина электрода; г - радиус осадительно-го электрода; wг - скорость очищаемого газа.

При очистке от пыли сухих газов электрофильтры могут работать в широком диапазоне температур (от 20 до 500 °С) и давлений. Их гидравлическое сопротивление невелико - 100-150 Па. Степень очистки от аэрозолей - выше 90, достигая 99,9% на многопольных электрофильтрах при d > 1 мкм. Недостаток этого метода - большие затраты средств на сооружение и содержание очистных установок и значительный расход энергии на создание электрического поля. Расход электроэнергии на электростатическую очистку - 0,1-0,5 кВт на 1000 м3 очищаемого газа. [4]

Звуковая и ультразвуковая коагуляция, а также предварительная электризация пока мало применяются в промышленности и находятся в основном в стадии разработки. Они основаны на укрупнении аэрозольных частиц, облегчающем их улавливание традиционными методами. Аппаратура звуковой коагуляции состоит из генератора звука, коагуляционной камеры и оса-дителя. Звуковые и ультразвуковые методы применимы для агрегирования мелкодисперсных аэрозольных частиц (тумана серной кислоты, сажи) перед их улавливанием другими методами. Начальная концентрация частиц аэрозоля для звуковой коагуляции должна быть не менее 2 г/м3 (для частиц d = 1,10 мкм). [1]

Библиографический список

1. Основы химической технологии: Учебник для студентов хим.-технол.спец. вузов / И.П. Мухле-нов, А.Е. Горштейн, Е.С. Тумаркина; Под ред. И.П. Мухленова. - 4-е изд., перераб. и доп. - М.: Высш. школа, 1991. - 463 с.: ил.

2. Глинка Н.Л. Общая химия. Изд. 17-е, испр. - Л.: «Химия», 1975. - 728 с.: ил.

3. Кузнецов В.В., Усть-Качкинцов В.Ф. Физическая и коллоидная химия. Учеб. пособие для вузов.

- М.: Высш. школа, 1976. - 277 с.: ил.

4. Хромов С.П., Петросянц М.А. Метеорология и климатология: Учебник, 4-е изд.: перераб. и доп.

- М.: Изд-во МГУ, 1994. - 520 с.: ил.

ОСЯНИНА Елена Владимировна - студент кафедры «Инженерная экология и рациональное природопользование», Казанский государственный энергетический университет.

i Надоели баннеры? Вы всегда можете отключить рекламу.