УДК 66.047.54
Б01: 10.24412/2071-6168-2024-4-525-526
МЕТОДИКА ОПРЕДЕЛЕНИЯ ЭКОЛОГИЧЕСКОЙ ЭФФЕКТИВНОСТИ ВЕРТИКАЛЬНЫХ ШАХТНЫХ
СУШИЛЬНЫХ ПЕЧЕЙ И ПУТИ ЕЕ ПОВЫШЕНИЯ
Е.С. Нурхожаев, В.Н. Макаров, Р.Г. Ахметов, А.Ф. Шакирзянова
Актуальность задачи повышения эффективности пылеулавливания обусловлена постоянным ростом затрат, на природоохранные мероприятия. Существенное снижение выбросов от стационарных источников пыле-образования, в частности, вертикальных шахтных сушильных печей может быть обеспечено заменой части капиталоёмких систем аспирации на энергосберегающие и экологически эффективные устройства, встраиваемые непосредственно в сушило печей. Создание вышеуказанных устройств, оптимизация их параметров и режимов работы невозможны без разработки критериев оценки экологической эффективности вертикальных шахтных сушильных печей, методики их определения на базе комплексных исследований корреляционной связи основных аэротермодинамических процессов сушки и обжига со вспомогательными процессами аспирации и сепарации, определяющими пылевые выбросы. Проведенные исследования базируются на динамической теории, использующей уравнения Лагран-жа, определяющие траектории движения частиц пыли в зависимости от их фракционного состава в гравитационном и аэродинамическом силовых полях с учетом вязкости и температуры теплоносителя путем приведения их к двух параметрической функции от критериев Стокса и Фруда с последующим преобразованием в индикаторы подобия. Для решения полученных математических моделей использована теория гиперсингулярных уравнений с применением теории обыкновенных дифференциальных уравнений и дифференциальных уравнений в частных производных. Верификация полученной математической модели определения критериев экологической эффективности печей, осуществлена на базе экспериментальных промышленных исследований, проведённых в АО «Костанайские минералы». Предложенная математическая модель на базе критериальных уравнений Стокса-Фруда может быть использована для инженерных расчётов общей фракционной эффективности печи. Применение инерционно гравитационного сепаратора, интегрированного в сушило печи, позволяет довести ее общую экологическую эффективность до 0,62, повысить более чем в 4,7раза коэффициент экологической эффективности.
Ключевые слова: экологическая эффективность, инерционно гравитационная сепарация, гиперсингулярные уравнения.
Введение. Современные производства характеризуются интенсивным использованием природных ресурсов, нарастанием отходов и ухудшением качества окружающей среды. В связи с этим все большее внимание уделяется вопросу экономически обоснованного и экологически безопасного функционирования горнодобывающих предприятий (ГМК).
Экологическая эффективность выступает отражением устойчивости экономических и экологических параметров производства и связана с минимизацией отрицательного экологического эффекта в ходе производственной деятельности, а экономическая эффективность отражает максимизацию эффекта в виде роста объемов производства, роста прибыли.
Таким образом, одним из приоритетных направлений реализации программы устойчивого развития является экологизация производства, осуществление которой позволяет решить конкретные экологические проблемы на уровне предприятий и регионов.
Оценка экологической эффективности определяется отношением полезных эффектов к затратам, либо к дополнительным доходам, отнесенным к затратам. В конечном счете экоэффективность определяется годовым объёмом полного экономического эффекта, либо снижением экологических платежей за ухудшение окружающей среды.
Таким образом обобщённая экологическая эффективность - это относительное количество продукта либо энергии, передающееся от одного технологического уровня к другому [1].
Чисто механистический подход к экологической эффективности локальной технологической структуры, в частности сушки хризотил асбестовой руды определяет её, как долю пылевых выбросов в общем объеме получаемого концентрата.
Методология аналитических исследований базируется на использовании уравнений Лагранжа, определяющих траектории движения частиц пыли в зависимости от их фракционного состава в гравитационном и аэродинамическом силовых полях с учетом вязкости и температуры теплоносителя путем приведения их к двух параметрической функции от критериев Стокса и Фруда с последующим преобразованием в индикаторы подобия. Для решения полученных математических моделей использована теория гиперсингулярных уравнений с применением теории обыкновенных дифференциальных уравнений и дифференциальных уравнений в частных производных. Верификация полученной математической модели определения критериев экологической эффективности ВШСП, представляющих собой коэффициенты интегральной, т.е. общей сепарации частиц хризотил асбестовой пыли, определяемых по ее фракционным составляющим, осуществлена на базе экспериментальных промышленных исследований аспирации и сепарации хризотил асбестовой пыли на ВШСП №9 цеха ДиСхр «Костанайские минералы».
Коэффициент интегральной сепарации частиц хризотил асбестовой пыли на выходе из ВШСП можно представить в виде:
1
Кэ = 1 -1 т^^ , (1)
0
— тп1
где та1 =—— - относительная массовая доля ьтой частицы хризотил асбестовой пыли диаметром й, аспирируемой
на выходе из сушила печи в газоходы; та{ - массовая доля ьтой частицы хризотил асбестовой пыли диаметром
аспирируемой на выходе из сушила печи в газоходы, кг/с; т1 - массовый приход хризотил асбестовой пыли ьтой
частицы, поступающей в сушило печи, кг/с; dj - диаметр ьтой частицы хризотил-асбестовой пыли фракционного
2г, ..
состава -dmax + dш¡n , по которому определяется экологическая эффективность печи, м; г =
d „
относительный
радиус ьтой частицы хризотил асбестовой пыли фракционного состава ^max + dш¡n , поступающей в сушило печи.
Для определения приведенной массы, то есть относительной массовой доли ьтой частицы хризотил асбестовой пыли, аспирируемой на выходе из сушила печи в газоходы теплоносителем воспользуемся базирующимся на динамической теории методом дискретного анализа траектории движения отдельных частиц с учетом граничных гиперсингулярных интегральных уравнений.
Результаты исследований. Для построения методики определения интегрального критерия экологической эффективности ВШСП на базе уравнений движения частиц хризотил асбестовой пыли на выходе из сушила в газоходы рассмотрим область F, в вертикальной плоскости сечения сушила ВШСП, ограниченную его стенками и плоскостью выхода в газоходы в декартовой системе координат. (см. рис. 1).
Представим, что внутри области F рассредоточены источники пылевыделений удельной мощностью Si (г/с*м2) за счет хризотил асбестовой пыли, поступающей в сушило ВШСП вместе с исходным рудным материалом. Эти источники пылевыделений характеризуют появление в соответствующих точках области F частиц хризотил асбестовой пыли дисперсного состава (+dшin-dшax). На указанные частицы хризотил асбестовой пыли действуют силы тяжести от гравитации и аэродинамической депрессии по плоскостям Ь-с (Ь1-С1), обусловленной влиянием дымососа через газоходы.
Рис. 1. Схема области пылеобразования в сушиле ВШСП без устройства инерционно гравитационной сепарации и траектории движения частиц хризотил асбестовой пыли в нем: 1 - сушило ВШСП; 2 - стенки корпуса ВШСП; 3 - выход в газоход ВШСП
Результаты воздействия указанных сил на частицу хризотил-асбестовой пыли могут быть сведены с учетом влияния вязкости теплоносителя к силам Стокса и Архимеда и в декартовой системе координат описано системой уравнений их динамического равновесия [4, 7, 8]:
тдУх,
д1 mдVyj
= РхС - PAj;
= Ру
(2)
д( ус'
где РхС1 = Зкц^ (Ух - ¥х), Руы = \Vyrj - Уу) -проекции силы Стокса на оси ОХ, ОУ, Н; У^ , Vyj - проекции скоростей ьой частицы хризотил асбестовой пыли диаметра di на оси ОХ, ОУ м/с; Ух, Уу - проекции скорости теплоносителя на оси ОХ, ОУ м/с; ^-коэффициент динамической вязкости теплоносителя, Па*с; ¡^-коэффициент динамической формы ьой частицы хризотил асбестовой пыли; рн, р- плотность ьой частицы хризотил асбестовой пыли и теп-
П 3
лоносителя соответственно, кг/м3; g-ускорение силы тяжести м/с2; PAj (р - р)§ -сила Архимеда, Н., действу-
ющая на ьую частицу хризотил асбестовой пыли; р , р - плотность ьтой частицы пыли и теплоносителя соответственно, кг/м3.
Влияние сил Магнусса, Жуковского, Сэфмэна на динамическое равновесие частиц хризотил асбестовой пыли пренебрежимо мало в силу стоксовского режима их обтекания теплоносителем [4, 9].
Уравнения Логранжа, интегралы которых описывают траектории движения частиц хризотил асбестовой пыли заданного диаметра di в представленной системе координат, привязанной к сушилу ВШСП, запишем в виде бинарной системы уравнений:
+18^-л- = ;
Л2 Л (3)
,2 ,
¿3 Р —^ +18 — = 18 - ЛЪр4,
Л2 Л у
где: хI, уг - координаты ьтой частицы хризотил асбестовой пыли, м; 1- время, с.
Траектория движения ьтой частицы хризотил асбестовой пыли диаметра Л согласно бинарной системе уравнений (3) в размерной системе координат в виде функции у г = /(хг) формируется под действием соотношения объемных сил тяжести и поверхностных инерционных сил, определяемых аэродинамическим полем скоростей обтекающего ее теплоносителя, его вязкостью и конвекцией, что характеризуется критерием Фруда. При этом силовое воздействие теплоносителя на частицу пыли осуществляется через его вязкость и определяется критерием Стокса, характеризующим релаксационный вид движения. Таким образом, траектория движения хризотил асбестовой пыли может быть представлена двухпараметрической функцией от критериев Фруда и Стокса в условиях ограничений значений критерия Рейнольдса.
Поскольку вектора объемных и поверхностных сил разнонаправлены, при этом угол между ними изменяется на траектории движения частиц хризотил асбестовой руды фракционного состава -dmax + Лт;п с массовым расходом т разделяется на два потока. Первый поток — это частицы хризотил асбеста с массовым расходом тс, осаждающиеся на нижнюю границу вышеуказанной области, определяемую линией С — С1, то есть сепарируемые за
счет сил тяжести, центробежной инерции и поступающие в область ¥сг, являющуюся частью области ¥\ и далее в разгрузочный узел печи. Второй поток — это частицы хризотил-асбестовой пыли, уносимые поверхностными силами в газоходы печи за счет депрессии, создаваемой дымососом, то есть аспирируемые из сушила печи в область ¥аг, являющуюся также частью области Р и снижающие тем самым ее экологическую эффективность.
С учетом вышесказанного и формулы (1) приведем выражение для расчёта интегрального коэффициента экологической эффективности печи к виду:
Кэ = 2\/?хЬх1 . (4)
0
Для частиц хризотил асбестовой пыли диаметром меньше предельного диаметра Л частиц, которые движутся по предельной траектории, выходя из сушила в газоход Л < Л п получим:
Ь
|/ (хг УЛх1 = ¥с[ = ¥ — ¥а г .
0
Из условия сохранения массы хризотил-асбестовой пыли тС = т — та .
При однородных источниках пылевыделения та = е¥а , тС = е¥с , следовательно экологическая эффективность ВШСП от источника пылевыделения удельной интенсивностью 8 определяется отношением площади, ограниченной траекторией изолинии скоростей витания частиц хризотил-асбестовой пыли к общей площади, ограничивающей источник пылевыделения:
Кэ=1-^=1-¥а=¥с. (5)
т ¥ ¥
,п Ап
Таким образом граничная траектория уп = /(хп ) определяет массовую долю частиц хризотил-
асбестовой пыли с диаметром Л г < Лп фракционного состава -dmax + Лт;п , которая будет аспирирована, то есть поступит из сушила печи в ее газоходы, снижая экологическую эффективность [10, 11].
Учитывая релаксационный характер движения частиц хризотил асбестовой пыли, указанные критерии можно исключить из системы уравнений, описывающей их траектории движения. Для этого достаточно принять в качестве характеристических базовые параметры, позволяющие привести бинарную систему уравнений (2) к безразмерному виду [4, 12]: Уы = 2 ё(р—— - базовая скорость витания ьтой частицы пыли радиуса Г, м/с;
ТЬ г = ё(——— - базовое время релаксации ьтой частицы пыли на длине инерционного пробега, с;
¡Ы = — . р) ё - базовая длина пути инерционного пробега ьтой частицы хризотил асбестовой пыли, м.
Подставив принятые характеристические базовые параметры в выражения для критериев Стокса и Фруда получим индикаторы подобия, характеризующие течение потока частиц хризотил асбестовой пыли:
^ = = 1 , где StkЬ , = Ъ2 —-Руьг ; ¥гЬг = %
йЩ РгЫ г г у2
С учетом изложенного после преобразований систему уравнений с частными производными (3) приведем к системе обыкновенных дифференциальных уравнений:
dxi WxV2
dZj 2hg
dyi _ WyiVbi
dT 2hg (6)
dW
x = W x - W-x
dTi dWyi
= Wm,y -1 - Wy,,
dTi
V V где Wmi =--скорость теплоносителя относительно скорости витания i-той частицы пыли; Wi = —— - скорость i-
Vbi Vbi
той частицы хризотил асбестовой пыли относительно ее скорости витания; тi = - время в процессе динамической
Tbi
аспирации в долях времени релаксации i-той частицы хризотил асбестовой пыли.
Выражения для скорости теплоносителя в системе уравнений (6) получим, построив в области течения теплоносителя функции изолиний скоростей витания, то есть совокупность траекторий движения теплоносителя, в которых вертикальная составляющая его скорости равна скорости витания частиц пыли [12].
Для рассматриваемого случая выхода хризотил асбестовой пыли из сушила в газоходы ВШСП без устройства ее сепарации область течения, в которой происходит аспирация частиц хризотил-асбестовой пыли за счет линейных стоков в горизонтальной плоскости, то есть аспирационных бесконечных каналов пылеудаления, ограничена замкнутыми линиями с равномерно распределенными в ней источниками пылевыделения. Особенность указанной области, ограниченной замкнутыми линиями, заключается в том, что поступившие в нее частицы хризотил асбестовой пыли под действием поверхностных аэродинамических сил неизбежно попадут в линейный сток, то есть на выход в газоход ВШСП [13].
С учетом вышесказанного и рис. 1 поле скоростей теплоносителя в рассматриваемой области F получим в виде бинарной системы уравнений:
„ г, shnxj
Wmrx = -2nSi---;
chnXj + cos ny¡
'. ' (7)
Wmay = -2nS, ^ ,
chnxi + cos щ
где Si = —Q--приведенная к области пылеобразования и скорости витания частиц пыли интенсивность стока
4nh,Vb,
теплоносителя; Qi- интенсивность i-того стока теплоносителя в вышеуказанной области Fi, м3/с*м.
При Si стремящемся к бесконечности вышеуказанные замкнутые линии, ограничивающие распределенные источники пылевыделения в области F и представляющие собой изолинии скорости витания частиц пыли в безразмерном виде преобразуются в две прямые горизонтальные линии y = ±h , где h=1 (см. рис. 1).
Таким образом, располагая данными о дисперсном составе хризотил асбестовой пыли в сушиле, решая системы уравнений (4, 6) с учетом (7) на базе теории гиперсингулярных интегральных уравнений определяем эффективность ВШСП в виде интегрального критерия экологической эффективности печи (1, 2).
Методика позволяет прогнозировать структуру хризотил асбестовой пыли на выходе из сушила ВШСП при заданных ее параметрах в загрузочном устройстве в зависимости от параметров теплоносителя, производительности печи, учитывать влияние подсосов в сушиле печи через неплотности на эффективность пылеулавливания.
Для верификации полученных уравнений, оценки достоверности предложенной математической модели определения интегрального критерия экологической эффективности сушки хризотил асбестовой руды в части пылеулавливания на ВШСП №9 цеха ДиСхр АО "Костанайские минералы" были проведены промышленные экспериментальные исследования дисперсного состава взвешенных частиц хризотил асбеста фракции -2,5*10-4 м в сушиле печи на выходе из него в газоходы ступени грубой пыле-газоочистки.
Исследования дисперсного состава хризотил асбестовых частиц исходной руды и на выходе из сушила ВШСП №9 проводились с использованием ситового анализа и электронного микроскопа типа "TESCAN VEGA LMS" при различных режимных параметрах печи по производительности и расходу теплоносителя. Для примера на рис. 2 приведены результаты статистической обработки данных дисперсного состава взвешенных частиц хризотил асбеста в сушиле и на выходе в газоход ВШСП без устройства инерционно гравитационной сепарации при производительности печи 27,7 кг/с и расходе теплоносителя 15 м3/с., из анализа которых видно, что медианные диаметры частиц пыли на выходе из печи снижаются не более чем на 30%, их дисперсия на 20%, а общий коэффициент сепарации равен 12% ± 2. Результаты рассчетов по предложенной методике для параметров приведенных на рис. 2 дают значение общей экологической эффективности ВШСП Кэ = 0,13 , находящееся в доверительном интервале, определенно по результатам экспериментальных исследований с доверительной вероятностью 0,95.
Таким образом сушило ВШСП является источником пылевыделения, существенно увеличивая нагрузку на пылегазоочистное оборудование.
Для повышения экологической эффективности печи предложено устройство инерционно гравитационной термоаэросепарации, непосредственно интегрированное в сушило ВШСП [2].
'ч* г
\ — — — по плюсу — • • "по минусу"
• - . • — . ■ —•
\ - . . — • ■ — ■ ■
\ ___■ •
•
\ .---
ч ~ / '
о ч.
*
— — _
/ — — — _ _
У * " * ^
\J ~ ~ ~ -щ
0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Размер отверстий сит, мкм
а
о4 «
О
%
Л
т
100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0
ч* г — — — "по плюсу" - • • "по минусу"
N
\ — . . —i
* — . • — — •
\ - . • — *
\
Ш
\ /'
\ ■
в
/ ч.
/
1 —
/ """ о
— — - ^ „ ^
ё
/ в
г
0 250 500 750 1000 1250
1750 2000 2250 2500
Размер отверстий сит, мкм
б
Рис. 2. Сугмарные ситовые характеристики фракции -2500 мкм: а - исходной руды хризотил асбеста в сушиле шахтной печи; б - на выходы из вертикальной шахтной сушильной печи без устройства инерционно
гравитационной сепарации
1 2
Рис. 3. Схема области пылеобразования в сушиле ВШСП с устройством инерционно гравитационной сепарации и траектории движения частиц хризотил асбестовой пыли в нем: 1 - сушило ВШСП; 2 - стенки корпуса ВШСП; 3 - выход в газоход ВШСП; 4 - инерционно гравитационный сепаратор; 5 - изолинии скорости витания частиц пыли при Si стремящемся к бесконечности
В случае наличия устройства инерционно гравитационной сепарации хризотил асбестовой пыли на выходе из сушила ВШСП в газоходы поле скоростей теплоносителя в области вычисляется по формуле:
( \
Wmxi йгхг
W =-й
"туг
1
1
2
+ (уг +1)2 хг2 -(уг +1)
(8)
уг +1
уг -1
' + (уг +1)2
"(уг -1)2
При стремящемся к бесконечности изолинии скорости витания частиц пыли в безразмерном виде преобразуются в окружности единичного радиуса (см. рис. 3).
Учитывая зависимость аэродиначических параметров теплоносителя от геометрии инерционно гравитационного сепаратора, встроенного в сушило с учетом формул (5-9) определяем их оптимальные значения, соответствующие максимальной величине коэффициента экологической эффективности (1, 2).
Для определения оптимальных геометрических параметров инерционно гравитационного сепаратора при заданных режимах работы ВШСП и дисперсном составе исходной руды использован метод оптимизации системы с распределенными параметрами, описываемой дифференциальными уравнениями в частных производных [14].
Расчёты показали, что при заданных ограничениях габаритных размеров сушила ВШСП и обеспечении эффективности сушки хризотил асбеста необходимо соблюдать минимально возможные значения критерия Стокса при максимальных значениях критерия Фруда в процессе сепарации.
На рис. 4 приведены результаты экспериментальных исследований инерционно гравитационного сепаратора в сушиле ВШСП, оптимизированного по предложенной методике.
+
2
г
X
250
----
1750
2000
2250
2500
500 750 1000 1250 1500
Размер отверстий сит, мкм
Рис. 4. Суммарные ситовые характеристики фракции 2500 мкм хризотил асбеста на выходе из вертикальной шахтной сушильной печи с устройством инерционно гравитационной сепарации
Обсуждения. На рис. 5 приведена динамика общей экологической эффективности ВШСП полученная с использованием предложенной математической модели построенной на базе критериев Стокса и Фруда, а также по результатам обработки статистических данных экспериментальных исследований. Графики показывают, что с увеличением медианного диаметра взвешенных частиц хризотил асбеста общая эффективность инерционно гравитационной сепарации в сушиле ВШСП возрастает, достигая для фракционного состава -2,5*10-4м значения Кэ = 0,62 и Кэ = 0,13 для ВШСП с устройством сепарации и без него соответственно.
по минусу
Рис. 5. Динамика общей экологической эффективности вертикальной шахтной сушильной печи: т■ с устройством инерционно гравитационной сепарации; — без устройства инерционно гравитационной сепарации; 1, 2; 4, 5 -предельные значения по экспериментальным данным; 3; 6 - расчёт на базе
критериального уравнения Стокса-Фруда
В результате инерционно гравитационной сепарации взвешенных частиц хризотил асбеста в устройстве сепарации, интегрированном в сушило ВШСП медианный диаметр частиц, поступающих в газоход ВШСП снижается более чем в 2 раза с 300 мкм до 120 мкм, дисперсия медианного диаметра уменьшается более чем на 30%, а экологическая эффективность возрастает более чем в 4,7 раза, что позволяет существенно снизить нагрузку на циклоны, фактически реализовав двухступенчатую систему грубой пылегазоочистки.
Анализ расчётов, приведенных в таблице и графически представленных на рис. 2, 4,5 позволяет сделать вывод о достаточной сходимости оценок экологической эффективности ВШСП, определяемых с использованием математических моделей на базе критериальных уравнений Стокса-Фруда с экспериментальными данными. Проведенный статистический анализ показывает, что с доверительной вероятностью 0,95 доверительный интервал фракционной экологической эффективности ВШСП, определяемый по результатам эксперементальных исследований вышеуказанной математической модели, не превышает ± 9% для частиц хризотил асбестовой пыли фракционного состава +100-2500 мкм.
При указанном доверительном интервале критическое значение критерия Стьюдента 1кр=2,4 при 30 степенях свободы, в то время как фактическое его значение 1ф=1,94, что подтверждает статистическую незначимость различий полученных вышеуказанными способами значений фракционной эффективности ВШСП.
Заключение.
1.Коэффициент общей экологической эффективности ВШСП без устройства инерционно гравитационной сепарации в режиме комбинированной сушки хризотил асбестовой пыли фракции -2500 мкм не превышает 0,13 что подтверждает отрицательное влияние аэродинамического поля сил в противотоке, характеризуемого критерием Фруда и сил тяжести характеризуемых критерием Стокса на процесс сепарации и как результат высокую ее концентрацию на выходе из ВШСП.
2.Применение инерционно гравитационного сепаратора, интегрированного в сушило ВШСП позволяет довести ее общую экологическую эффективность до 0,62, то есть повысить более чем в 4,7 раза коэффициент экологической эффективности печи.
3. Применение устройства инерционно гравитационной сепарации позволяет улавливать и направлять в разгрузочное устройство ВШСП частицы хризотил асбестовой руды диаметром от 500 мкм, существенно повышая тем самым выход готового чернового концентрата, снижая нагрузку на циклоны, тем самым повышая их эффективность в улавливании мелкодисперсной, экологически опасной пыли.
Список литературы
1.Бекетова Е.А., Карамышева Е.С. (2018) Инновации в решении экологических проблем [Молодой ученый] 25 (211): 10-12.
2.Макаров В.Н., Ахметов Р.Г., Давыдов С.Я., Макаров Н.В. (2023) Экспериментальное исследование и моделирование экологической эффективности вертикальных шахтных печей для сушки огнеупорных и строительных материалов [Новые огнеупоры] 7:52-59.
3.Калаева С.3., Муратова К.М., Чистяков Я.В. (2017) Исследование процесса очистки воздушных потоков от мелкодисперсной пыли в центробежно-инерционном пылеулавливающем устройстве [Известия Тульского государственного университета. Науки о земле] 3:45-57. (на русском языке).Бауу(1оу S.Ya., Makarov V.N., Makarov N.V., Ugolnikov A.V. (2020) Hydro-vortex classification of composite microparticles, New refractories, (10): 13-17. D01:10.17073/1683-4518-2020-10-13-17 (in Eng.).
4. Давыдов С.Я., Макаров В.Н. (2015) Теоретические основы повышения эффективности вентиляции в технологических процессах промышленных предприятий [Рефракторы и промышленная керамика] 56, 1: 103-106.
5.Mao Y. F. (2016) Numerical Study of Correlation between the Surge of Centrifugal Compressor and the Piping System. PhD Thesis, Xi'an Jiaotong University, Xi'an. (In Chinese).
6.Wu Х, Xiao W., Zho Y. (2018) Experimental study and numerical simulation of the characteristics of a percussive gas-solid separator [Par-ticuology] 36:96-105 (in Eng.).
7.Макаров В.Н., Макаров Н.В., Угольников А.В. (2019) Оптимизация геометрических параметров гидроциклонного инерционного сепаратора Вентури [Вестник горного института] 240: 638-648.
8.Ляпцев С.А., Давыдов С.Я. (2015) Классификация зернистого материала при ударе с разделительной поверхностью [Огнеупоры и промышленная керамика] 55 (6): 570-572.
9.Barone D., Loth E., Snyder P. (2017) Influence of particle size on inertial particle separator efficiency, Powder Technology, 318:177-185 (in Eng.).
10. Bogodage S.G., Leung A.Y.T. (2016) Improvements of the cyclone separator performance by down-comer tubes, Journal of Hazardous Materials, 311:100-114 (in Eng.).
11. Yi-Shun Chen, Shu-San Hsiau, Jiri Smid, Jian-Feng Wu.(2016) Removal of dust particles from fuel gas using a moving granular bed filter, Fuel, 182:174-187 (in Eng.).
12. Xuecheng Wu, Xiao Wang, Yonggang Zho. (2018) Experimental study and numerical simulation of the characteristics of apercussive gas-solid separator, Particuology, 36:96-105 (in Eng.).
13. Muratova, K.M., Makhnin, A.A., Volodin, N.I., Chistyakov, Y.V. (2017) Treatment of Industrial Dust-Air Flows in Centrifugal Inertial Apparatuses, Chemical and Petroleum Engineering, 53:185-189. D0I:10.1007/s10556-017-0319-5 (in Eng.).
14. Shivani Kaustubh Chitale, Pranjal Nitin Jadhav, Snehal Suresh Dhoble, Dr. Mr. Satyajeet Deshmukh. (2021) Parameters Affecting Efficiency of Centrifugal Pump - A Review, IJSRST, 8:49-58. D0I:10.32628/IJSRST218573 (in Eng.).
Нурхожаев Ербол Сапарбаевич, председатель правления, Rus.akhmetov@mail. ru, Казахстан, Житикара, АО «Костанайские Минералы»,
Макаров Владимир Николаевич, д-р техн. наук, профессор, ur. [email protected], Россия, Екатеринбург, Уральский государственный горный университет,
Ахметов Рустам Гумарович, директор литейно-механического завода, [email protected]. Казахстан, Житикара, АО «Костанайские Минералы».
Шакирзянова А. Ф., начальник производственной лаборатории технического контроля, Казахстан. Житикара. АО «Костанайские Минералы»
METHODOLOGY FOR DETERMINING THE ENVIRONMENTAL EFFICIENCY OF VERTICAL SHAFT DRYING
FURNACES AND WAYS TO IMPROVE IT
E.S. Nurkhozhaev, V.N. Makarov, R.G. Akhmetov, A.F. Shakirzyanova
The urgency of the task of increasing the efficiency of dust collection is due to the constant increase in costs for environmental protection measures. A significant reduction in emissions from stationary sources of dust formation, in particular, vertical shaft drying furnaces, can be achieved by replacing part of capital-intensive aspiration systems with energy-saving and environmentally efficient devices built directly into the furnace dryer. The creation of the above-mentioned devices, optimization of their parameters and operating modes are impossible without the development of criteria for evaluating the environmental efficiency of vertical shaft drying furnaces, methods for their determination based on comprehensive studies of the correlation of the main aerothermodynamic drying and firing processes with auxiliary aspiration and separation processes that determine dust emissions. The conducted research is based on a dynamic theory using Lagrange equations that determine the trajectories of dust particles depending on their fractional composition in gravitational and aerodynamic force fields, taking into account the viscosity and temperature of the coolant by reducing them to two parametric functions from the Stokes and Froude criteria, followed by conversion into similarity indicators. To solve the obtained mathematical models, the theory ofhypersingular equations is used using the theory of ordinary differential equations and partial differential equations. Verification of the obtained mathematical model for determining the criteria for the environmental efficiency of furnaces was carried out on the basis of experimental industrial studies conducted at Kostanay Minerals JSC. The proposed mathematical model based on the Stokes-Froude criterion equations can be used for engineering calculations of the total fractional efficiency of the furnace. The use of an inertial gravity separator integrated into the oven dryer makes it possible to bring its overall environmental efficiency to 0.62, and increase the coefficient of environmental efficiency by more than 4.7 times.
Key words: environmental efficiency, inertial gravity separation, hypersingular equations.
Nurkhozhaev Erbol Saparbaevich, chairman of the management board, [email protected], Kazakhstan, Zhitikara, JSC Kostanay Minerals,
Makarov Vladimir Nikolaevich, doctor of technical sciences, professor, ur. intelnedra@mail. com, Russia, Yekaterinburg, Ural State Mining University,
Akhmetov Rustam Gumarovich, director of the foundry and mechanical plant, [email protected], Kazakhstan, Zhitikara, JSC Kostanay Minerals,
Shakirzyanova A.F., head of the production laboratory of technical, Kazakhstan, Zhitikara, JSC Kostanay Minerals
УДК 678.8
DOI: 10.24412/2071-6168-2024-4-532-533
АНАЛИЗ ФАКТОРОВ ДЛЯ ПОДБОРА ОПТИМАЛЬНОГО СОСТАВА СВЕТОПРОПУСКАЕМОГО
МАТЕРИАЛА
А.В. Голунов, Л.Г. Варепо, А.С. Голунова, И. В. Нагорнова
В статье рассмотрен процесс управления параметрами реактопластичного материала. В композитном материале в качестве матрицы используется двухкомпонентный реактопласт и наполнение частицами, определяющее прочностные и оптические характеристики конечного продукта. В работе предлагается использование методов статистической обработки экспериментальных данных для подбора оптимального состава композита. Материал, полученный в ходе эксперимента, технологичен и может быть формован с помощью литья в эластичные формы. Таким образом, представленные результаты позволили получить модель, которая позволяет управлять функциональными параметрами композитного материала с управляемыми физико-химическими свойствами, при этом конечная прикладная область применения материала может быть достаточно широка: от строительства и отделки, до формирования защитных покрытий.
Ключевые слова: композитный материал, светопропускаемая способность, анализ Парето.
Многокомпонентные полимеры представляют собой уникальные соединения, в которых совмещены свойства нескольких полимерных компонентов, образуя структуру с улучшенными механическими и химическими характеристиками. Этот подход к созданию материалов стал ключевым моментом в производстве композитных материалов, которые находят широкое применение в различных областях, от авиации и строительства до медицины и электроники. На сегодняшний день, промышленность, с целью обеспечения максимально эффективных материалов