Научная статья на тему 'МЕТОД ВЫБОРА ПАРАМЕТРОВ МАНЕВРА ПРОТИВОКОРАБЕЛЬНОЙ РАКЕТЫ НА САМОНАВОДЯЩЕМСЯ УЧАСТКЕ ПРИ СБЛИЖЕНИИ C КОРАБЛЕМ-ЦЕЛЬЮ'

МЕТОД ВЫБОРА ПАРАМЕТРОВ МАНЕВРА ПРОТИВОКОРАБЕЛЬНОЙ РАКЕТЫ НА САМОНАВОДЯЩЕМСЯ УЧАСТКЕ ПРИ СБЛИЖЕНИИ C КОРАБЛЕМ-ЦЕЛЬЮ Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
57
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АМПЛИТУДА МАНЕВРА / ЧАСТОТА МАНЕВРА / МАНЕВР УКЛОНЕНИЯ / ВЕРОЯТНОСТЬ ПОПАДАНИЯ В КОРАБЛЬ-ЦЕЛЬ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Буй Куок Зунг, Буй Ван Тиен, Као Хыу Тинь, Нгуен Конг Тхык

В данной работе представлен метод выбора параметров маневра противокорабельной ракеты (ПКР) при преодолении противодействия корабельных зенитно-ракетных комплексов (КЗРК) в горизонтальной плоскости. При выбранных параметрах маневра обеспечивается попадание ПКР в корабль-цель с требуемой вероятностью с учетом перехвата КЗРК.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Буй Куок Зунг, Буй Ван Тиен, Као Хыу Тинь, Нгуен Конг Тхык

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

A METHOD FOR SELECTING MANEUVER PARAMETERS OF THE ANTI-SHIP MISSILE IN THE HOMING PHASE WHEN APPROACHING TARGET SHIP

This paper presents a method for choosing the parameters of an anti-ship missile (ASM) maneuver when overcoming the opposition of ship-based anti-aircraft missile systems (SAM) in the horizontal plane. With the selected maneuver parameters, the anti-ship missiles hit the target ship with the required probability, taking into account the interception of the anti-aircraft missile systems.

Текст научной работы на тему «МЕТОД ВЫБОРА ПАРАМЕТРОВ МАНЕВРА ПРОТИВОКОРАБЕЛЬНОЙ РАКЕТЫ НА САМОНАВОДЯЩЕМСЯ УЧАСТКЕ ПРИ СБЛИЖЕНИИ C КОРАБЛЕМ-ЦЕЛЬЮ»

№ 11 (104)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

ноябрь, 2022 г,

СТАТЬИ НА РУССКОМ ЯЗЫКЕ

АВИАЦИОННАЯ И РАКЕТНО-КОСМИЧЕСКАЯ ТЕХНИКА

DOI -10.32743/UniTech.2022.104.11.14622

МЕТОД ВЫБОРА ПАРАМЕТРОВ МАНЕВРА ПРОТИВОКОРАБЕЛЬНОЙ РАКЕТЫ НА САМОНАВОДЯЩЕМСЯ УЧАСТКЕ ПРИ СБЛИЖЕНИИ C КОРАБЛЕМ-ЦЕЛЬЮ

Буй Куок Зунг

аспирант,

технический университет им. Лэ Куй дона,

Вьетнам, г. Ханой E-mail: bqdzung@lqdtu. edu. vn

Буй Ван Тиен

канд. техн. наук, технический университет им. Лэ Куй дона,

Вьетнам, г. Ханой

Као Хыу Тинь

канд. техн. наук, технический университет им. Лэ Куй дона,

Вьетнам, г. Ханой

Нгуен Конг Тхык

магистр, морская академия, Вьетнам, г Нячанг

A METHOD FOR SELECTING MANEUVER PARAMETERS OF THE ANTI-SHIP MISSILE IN THE HOMING PHASE WHEN APPROACHING TARGET SHIP

Bui Quoc Dung

PhD student, Le Quy Don Technical University, Vietnam, Hanoi

Bui Van Tien

PhD,

Le Quy Don Technical University, Vietnam, Hanoi

Cao Huu Tinh

PhD,

Le Quy Don Technical University, Vietnam, Hanoi

Nguyen Cong Thuc

Master, maritime academy, Vietnam, Nha Trang

Библиографическое описание: МЕТОД ВЫБОРА ПАРАМЕТРОВ МАНЕВРА ПРОТИВОКОРАБЕЛЬНОЙ РАКЕТЫ НА САМОНАВОДЯЩЕМСЯ УЧАСТКЕ ПРИ СБЛИЖЕНИИ C КОРАБЛЕМ-ЦЕЛЬЮ // Universum: технические науки : электрон. научн. журн. Буй К.З. [и др.]. 2022. 11(104). URL: https:// 7universum. com/ru/tech/archive/item/14622

A UNiVERSUM:

№11(104)_ЛД ТЕХНИЧЕСКИЕ НАУКИ_ноябрь. 2022 г.

АННОТАЦИЯ

В данной работе представлен метод выбора параметров маневра противокорабельной ракеты (ПКР) при преодолении противодействия корабельных зенитно-ракетных комплексов (КЗРК) в горизонтальной плоскости. При выбранных параметрах маневра обеспечивается попадание ПКР в корабль-цель с требуемой вероятностью с учетом перехвата КЗРК.

ABSTRACT

This paper presents a method for choosing the parameters of an anti-ship missile (ASM) maneuver when overcoming the opposition of ship-based anti-aircraft missile systems (SAM) in the horizontal plane. With the selected maneuver parameters, the anti-ship missiles hit the target ship with the required probability, taking into account the interception of the anti-aircraft missile systems.

Ключевые слова: амплитуда маневра, частота маневра; маневр уклонения, вероятность попадания в корабль-цель.

Keywords: maneuver amplitude, maneuver frequency; evasive maneuver, the probability in the target ship.

1. Введение

Способность преодоления противодействия средств противовоздушной обороны (ПВО) противника на конечном этапе является определяющей при оценке боевой эффективности ПКР. По мере усовершенствования и модернизации корабельных систем ПВО тактика преодоления противодействия КЗРК при проектировании ПКР становится важным требованием для повышения живучести. В отличии от самолетов маневр уклонения КЗРК определяется как специальный маневр не только для повышения живучести ПКР от угроз КЗРК, но и для надежного перехвата корабля-цели.

Задача о маневре уклонения ПКР была рассмотрена в многих работах [1-10]. В работах [1-4] посвящено решение задачи об оптимизации маневра уклонения ПКР с целью преодоления противодействия систем оружий ближнего боя. Решая оптимизационную задачу численным методом, авторы показали, что оптимальная траектория либо горизонтальная «змейка», либо пространственная бочка, но сходящееся решение найти не удалось. На основе полученных результатов в работе [1] предложен трехмерный смещенный метод пропорционального сближения путем добавления ускорения смещения в командное ускорение традиционного метода пропорционального сближения для создания маневра по бочке. Здесь, ускорение смещения понимается как ускорение, вызывающее маневр по бочке, равное векторному произведению вектора скорости ракеты и вектора угловой скорости бочки. Здесь вектор угловой скорости бочки определяется заданной частотой бочки и осью бочки, которая совпадает с мгновенной линией визирования. В статьи [5] синтезирован закон наведения с контролем угла действия для синусоидального маневра уклонения путем введения синусоидального ускорения.

Частота маневра по бочке в работе [1], амплитуда и частота синусоидального ускорения в работе [5] могут рассматриваться как проектные параметры траектории, с помощью которых можно определить вид маневра. Численное моделирование в работах [1,5] показало, что как смещенный метод пропорционального сближения, так и закон наведения с контролем угла действия для синусоидального

маневра могут повысить живучесть ПКР перед перехватом КЗРК. Однако в приведенных выше исследованиях не оценивалась вероятность увеличения проскальзывания корабля-цели при выполнении этих маневров, а также не давался метод выбора соответствующих проектных параметров траектории. В статьи [11] синтезирован закон наведения, так называемый синусоидальным смещенным законом пропорционального сближения для ПКР. Результаты расчета показали, что данный метод наведения создает не только волнообразные маневры в горизонтальной плоскости для преодоления противодействия КЗРК, но и повышение точность попадания в корабль-цель. В этой работе также оценивается влияние расчетных параметров проектирования траектории на живучесть ПКР перед перехватом КЗРК и способность поражать корабль-цель. Показано, что ПКР маневрирует с большей амплитудой, то ее живучесть перед перехватом КЗРК будет выше, но снижается вероятность попадания на корабль-цель. При произведении частоты маневра ПКР и постоянной времени КЗРК равном 0.7, то живучесть ПКР максимальна. Следовательно, необходим количественный метод выбора проектных параметров траектории (параметров маневра), обеспечивающий как живучесть ПКР, так и способность поражать корабль-цель.

2. Математическая постановка 2.1. Методы самонаведения

Рассматриваем относительное движение ПКР на самонаводящемся участке сближения с кораблем -целью с учетом уклонения от перехвата корабельной зенитной управляемой ракетой (ЗУР) в горизонтальной плоскости 0x2, как показано на Рис. 1.

ПКР движется с постоянной скоростью у в

направление не движущегося корабля-целя и уклоняется от перехвата ЗУР, скорость которой Узур постоянна. Командное ускорение а каждой ракеты перпендикулярно к вектору их скорости. Положение ПКР, ЗУР и корабля-целя обозначается соответственно (хпкр, 2пкр ) , (х3ур, ) и (хц, 2ц ) . Их взаимоотношение определяется относительным расстоянием и углом визирования.

№ 11 (104)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

ноябрь, 2022 г,

Предполагается, что ПКР приближается к корабля-цели по синусоидальному смещенному закону пропорционального сближения для уклонения

ЗУР. В то же время, ЗУР перехватывает ПКР по традиционному закону пропорционального сближения

упкр

узур

аПКР

ПКР

(хПКР, ^пкр)

ЗУР

(Хзур, z3yp)

(хц, Zm) Цель

О

х

Рисунок 1. Относительное движение ПКР-ЦЕЛЬ-ЗУР

Предполагается, что ПКР приближается к корабля-цели по синусоидальному смещенному закону пропорционального сближения для уклонения ЗУР. В то же время, ЗУР перехватывает ПКР по традиционному закону пропорционального сближения.

Командное ускорение ПКР по синусоидальному смещенному закону пропорционального сближения определяется по формуле [11]:

1ПКР

■ 3УПКРЯПКР +

co2t2go+3coscptgo co2t2

3 3sin Wt — k sin Dt +--g

3( t

go

— k cos Dt

ПКР

(1)

где: к и а - амплитуда и частота маневра ПКР; - остаточное время полета до момента встречи

с целью, определяемое по формуле ^ = ТПКр - ,

здесь Тшр, ^ - время самонаведения и текущее время.

По формуле (1) заметим, что командное ускорение ПКР содержит две составляющих частей. Первая часть представляет собой командное ускорение

по традиционному закону пропорционального сближения для обеспечения встречи с целью. И вторая часть является функцией синусоидального и косинусного ускорений (так называемой синусоидальной составляющей смещения) для создания волнообразного маневра.

Также согласно работе [11], выражение в закрытой форме для ускорения ПКР определяется следующим образом:

апкр = k sin G)tmp +

3k sin wT

ПКР

3kwT

ПКР

2y3 W 1 пкр

3(w тпкрупкрнепкр (t

ПКР

t nvp )

(2)

где: НЕ икр - начальная ошибка наведения (рад.)

Данное ускорение будет использоваться в качестве входного сигнала контура самонаведения ЗУР для оценки влияния параметров проектирования траектории ПКР на промах ЗУР. С другой стороны, ЗУР движется по традиционному закону пропорционального сближения при перехвате ПКР. Согласно работе [12] командное ускорение ЗУР имеет следующий вид:

азур NVr L

]УР

(3)

где: N = 3,4,5 - константа наведения; V = - V' - относительная скорость ЗУР и ПКР.

Z

№ 11 (104)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

A UNI

¿Ш. ТЕ)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

ноябрь, 2022 г,

2.2. Контуры самонаведения ПКР и ЗУР

Используя типичный биномиальный контур самонаведения пятого порядка [12] с использованием закона самонаведения (1), получен контур самонаведения для ПКР с использованием синусоидального смещенного закона пропорционального сближения, как показано на Рис. 2. Входной сигнал

контура ац = 0 так как корабль-цель считается неподвижным. Относительное расстояние 2 = 2ц — 2пкр в конечное время считается приблизительно равным промахом ПКР

Из данного контура видно, что существует три основных источника ошибок, вызывающих промах

ПКР при сближении с кораблем-целью, в том числе: начальная ошибка наведения ПКР НЕшр; синусоидальные и косинусные части ускорения закона самонаведения, характеризующиеся амплитудой и

частотой маневра (к,№); кинематика контура самонаведения ПКР, характеризующаяся постоянным времени Т^р.

Аналогично, на Рис. 3 представлен контур самонаведения ЗУР с использованием традиционного закона пропорционального сближения, построенного из формулы (3). На входе контура - ускорение ПКР в замкнутой форме (2).

-V НЕ

V ПКР НЕПКР

а„ = 0

1 ЯЗУР s

1 + STЗУP

аым' ь а аЗУР t ь.

-1-w аЗУР

ПКР расп

hnKP z (ТПКР )

VnKP tgo

Кинематика

(1 + STnKP /5)3

Управление полетом

Приемник Фильтр

ЬПКР —►

1 stц^р / 5

1 + stff^p / 5

Закон наведения

3V

3sin ct - 3ct

2,2

k cos rnt

со212 + 3 cos ct - 3

2 Л с 2g

~7

k sin rnt

Рисунок 2. Контур самонаведения ПКР

—У3УР НЕ3УР Ьзур = 2 (Тзур )

I

I__

аЗУР расп

Vctgo

Приемник

Фильтр

Я

ЗУР

1 + stзур / 5

1 + ST3yp / 5

1

(1 + st,™ /5)

а

1VP

Управление полетом

1ТТМ

1ЗУР

1ЗУР

г ЗУР

N V

Ограничение по ускорению

Рисунок 3. Контур самонаведения ЗУР

Закон наведнеия

1

1

S

1

а

1

1

s

а

№ 11 (104)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

ноябрь, 2022 г,

Таким образом, по контуру наведения на Рис. 3 показывает, что существует три основных источника ошибок, вызывающих промах ЗУР при перехвате ПКР: начальная ошибка наведения ЗУР (НЕзур); маневры ПКР, характеризующиеся параметрами амплитуды и частоты маневра (к, с); кинематика контура самонаведения ПКР, характеризующаяся постоянным времени Тшр и константой наведения N'.

3. Метод выбора параметров маневра пкр

Для оценки живучести ПРК от перехвата ЗУР используем величину вероятности преодоления противодействия зенитного огня ПКР, обозначаемую

через Р Возможность попадания ПКР в корабль-цель

оценивается через вероятность точного самонаведения по кораблю- цель при отсутствии перехвата ЗУР, называемая вероятностью поражения корабля-целя

и обозначаемая р . В связи с этим, критерием выбора

расчетного параметра проектирования траектории является произведение вероятности преодоления противодействия зенитного огня ПКР и вероятности самонаведения ПКР. Тогда, вероятность поражения корабля-целя ПКР при контратаке ЗУР, именуемая вероятностью поражения корабля-цели ПКР, определяется по формуле:

p=pp

(4)

Вероятность преодоления противодействия зенитного огня ПКР определяется следующим образом [14]:

P =(i - куа?трЛ)

^реал "стр.KЦ

к P

^ усл. пор .1

\креал nстр, (1-КЦ )

1ПКР

(5)

где: пПКР - количество ПКР в залпе, выпущенном

по кораблю-цели;

n

количество стрельб, проводимых ЗРК на

стр

корабль-цель;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

К - коэффициент, учитывающий снижение

теоретически возможного числа стрельб до фактического реализуемого (в данном случае к^ = 0.95);

Кц - коэффициент, учитывающий долю стрельб

ЗРК, распределяемых равномерно. Выбираем кц = 0.5, потому, что ПКР летит близко к поверхности моря;

р 1 - вероятность поражения ПКР за одну

стрельбу, когда ПКР неподвижен. Т.е. ПКР движет по традиционному закону пропорционального сближения;

К сл - коэффициент, учитывающий снижение

вероятности р при маневрировании ПКР по

синусоидальному смещенному закону пропорционального сближения.

С другой стороны, согласно [15] имеем выражение:

К P =

усл. пор.1

те

R2

R2

(6)

где: Н, а - ошибка наведения и средний квадрат случайной ошибки;

Я0 - параметр боевой части ЗУР.

Вероятность поражения корабля-цели при использовании зоны поражения в виде прямоугольника определяется по формуле [16]:

P2 =

Ф

'К + О

Ф

hy - h

\

Ф

'и + Г

Ф

h -1

(7)

n

х

1

4

где: н , Н - удаление точки прицеливания от

центра объекта по направлениям y, г;

, 21 2 - размеры приведенной зоны поражения

по направлениям y, г;

Е , Е2 - срединные ошибки пуска ракеты по

направлениям y, г;

ф (х) - функция Лапласа, имеющая следующий

вид:

Ф (х ) = 2 dt.

(8)

Поскольку мы рассматриваем маневры ПКР при сближении к кораблю-цели в горизонтальной плоскости при низкой высоте, близкой к поверхности моря, поэтому мы рассматриваем только составляющую ошибки наведения и среднеквадратичную случайную ошибку по оси г плоскости поражения. Т.е. Н = НПКР, а = аПКР, I = Ь и коэффициент р = 1. Тогда, получим:

R =

Ф

ГН + 1Л

' ПКР )

f h - Ьл

ПКР L

р42С

'пкр )

(9)

Ошибка наведения и средний квадрат случайной ошибки определяются путем моделирования контуров управления на Рис. 2 и Рис. 3.

4

№ 11 (104)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

ноябрь, 2022 г,

На основании моделирования выше указанных контуров наведения, результатов определения вероятности преодоления противодействия зенитного огня ПКР и вероятности поражения корабля-цели можно сформулировать метод выбора проектных параметров траектории ПКР в двух этапах расчета.

Первый этап расчета заключается в определении базы данных для дальнейшего выбора проектных параметров траектории ПКР:

Шаг 1: Задание параметров ЗУР и выбор диапазона параметров ПКР.

Шаг 2: Определение нормального ускорения ПКР и моделирование контуров самонаведения ЗУР и ПКР (Рис. 2 и Рис. 3). Затем, рассчитываются ошибка наведения и средний квадрат случайной ошибки ЗУР и ПКР.

Шаг 3: Определение вероятности преодоления противодействия зенитного огня по формуле (5) и

вероятности поражения корабля-цели ПКР по формуле (7).

Шаг 4: Построение отношения между вероятностью преодоления противодействия зенитного огня ПКР и вероятностью поражения корабля-цели ПКР.

Во втором этапе расчета выбираются проектные параметры траектории ПКР для обеспечения требований задач проектирования, таких как: параметры ЗУР на корабле, длина корабля, вероятность поражения корабля-цели. Выбор параметров траектории ПКР производится с учетом базы данных, полученных из первого этапа.

4. Результаты моделирования и расчета

Проведем расчет выбора проектных параметров траектории ПКР для обеспечения поражения корабля-цели с заданной вероятностью при заданных параметрах тактико-технических характеристик (ТТХ) КЗРК. Расчет был проведен для следующих параметров тактико-технических характеристик ЗУР:

Таблица 1.

Заданные параметры тактико-технические характеристики ЗУР

ТТХ КЗРК Обозначение Ед. Значение

Постоянная времени Т3УР с 0.1, 0.2, 0.3, 0.4, 0.5

Средняя скорость полета у у ЗУР м/с 600

Располагаемое нормальное ускорение а3УРрасп. g 20

Время самонаведения т 13УР с [3, 20]

Начальная ошибка наведения НЕ3УР град. [-20, 20]

Константа наведения N' 3, 4, 5

Параметр боевой части ЗУР Яо [1,10]

Количество ЗУР в залпе П3УР ЗУР/залп 1, 2, 3

На основании приведенной выше таблицы траектории и технико-тактических параметров ПКР,

известных значений параметров ЗУР можем опре - которые необходимы для проведения моделирова-

делить диапазон значений проектных параметров ния контура самонаведения ЗУР:

Таблица 2.

Диапазон параметров тактико-технических характеристик

ТТХ ПКР Обозначение Ед. Значение

Амплитуда маневра k g [1, 10]

Частота маневра с Я рад./с 2.23, 1.11, 0.74, 0.56, 0.45

Постоянная времени TПКР с 0.1, 0.2, 0.3, 0.4, 0.5

Средняя скорость полета V ' ПКР м/с 200, 300, 400, 500, 600

Располагаемое нормальное ускорение аПКРрасп g 1.5 х k

Максимальное время самонаведения T 1 ПКР max c 80, 60, 50, 44, 40

Минимальное время самонаведения T 1 ПКР min c 3

Начальная ошибка наведения HE НЕПКР град. [-20, 20]

Количество ПКР в залпе ППКР ПКР/залп 1

№ 11 (104)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ноябрь, 2022 г,

После проведения моделирования и расчета по двум упомянутым выше этапам построим зависимость вероятности поражения корабля-цели ПКР с учетом перехвата ЗУР от проектных параметров

траектории ПКР (ки других параметров, как показано на Рис. 4.

Амплитуда

а)

Амплитуда маневра б)

Амплитуда маневра В)

Амплитуда маневра Г)

Рисунок 4. Зависимость вероятности поражения корабля-цели ПКР от: а) к

и тзур ; б) к и тпкр ; в) к и Яв; и) к и L (параметр корабля-цели)

Из Рис. 4 видно, что чем меньше постоянная времени ЗУР, тем меньше вероятность поражения корабля-цели ПКР и наоборот. Для каждого значения постоянной времени ЗУР вероятность поражения корабля-цели ПКР достигает своего максимального значения при различных амплитудах и частотах маневра, как показано в таблице 3.

По результатам таблицы 3 заметим, что при

достаточно малой постоянной времени ЗУР Тз^р

вероятность поражения корабля-цели ПКР приблизительно равна нулю независимо от амплитуды и

частоты маневра. По мере увеличения постоянной времени ЗУР, то значения амплитуды и частоты маневра, при которых вероятность поражения корабля-цели ТЛПК максимальна, будут уменьшаться, а также постепенно увеличивается соответствующее максимальное значение вероятности поражения корабля-цели. Аналогично, мы тоже заметим изменение максимального значения вероятности поражения корабля-цели по изменению постоянной времени ПКР, параметра боевой части ЗУР и параметра корабля-цели, как показано на Рис. 4.

№ 11 (104)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

ноябрь, 2022 г,

Таблица 3.

Максимальная вероятность поражения корабля-цели ПКР при различных постоянных времени ЗУР

Тзур (с) 0.1 0.2 0.3 0.4 0.5

P а пкр max 0 0.6 0.6 1 1

k (g) 1 ■ 10 9 ■ 10 5 ■ 6 3 3

о (рад./с) 2.23n 1.11^ 0.74^ 0.56^ 0.44^

Таким образом, после первого этапа расчета определены базы данных для дальнейшего выбора проектных параметров траектории ПКР. В дальнейшем проведем расчет для выбора проектных параметров траектории ПКР с входными данными,

Входные данные для выбора пр

включая: параметр ТТХ ЗУР, параметр корабля-цели, как показано в таблице 4, и считаем, что вероятность поражения корабля-цели ПКР р > 0,5 . Результаты

расчета показаны в таблице 5.

Таблица 4.

лх параметров траектории ПКР

Параметры Обозначение Ед. Значение

Постоянная времени ТЗУР с 0.2

Параметр боевой части ЗУР R 3

Количество ЗУР в залпе ПЗУР ЗУР 2

Средняя скорость полета V V ЗУР м/с 600

Нормальное ускорение аЗУР с 20

Время полета T 1ЗУР с 20

Параметр корабля-цели (длина) L м 5

Таблица 5.

Таблица базы данных для выбора параметров маневра ПКР

№ Эффективность ПКР Параметры ПКР

P P ПКР P1 P2 k [g] о [П рад./с] ТПКР [с] V V ПКР [м/с] аПКР [g] ППКР [ПКР] T T ПКР [с]

1 1 1 10 0.1 400 15 50

2 1 0.98 10 0.1 500 15 44

3 1 1 10 0.1 600 15 40

4 0.9 0.93 10 0.1 300 15 60

5 0.9 0.93 9 0.1 400 13.5 50

6 0.9 0.93 9 0.1 600 13.5 40

7 0.9 0.94 0.93 9 0.2 400 13.5 50

8 0.9 0.88 1 10 0.2 400 15 50

9 0.9 0.88 0.98 10 0.2 500 15 44

10 0.9 0.94 0.93 9 0.2 600 13.5 40

11 0.9 0.88 1 10 0.2 600 15 40

12 0.8 0.88 0.93 10 0.2 300 15 60

13 0.7 1 0.67 10 0.1 200 15 80

14 0.7 1 0.7 8 0.1 600 12 40

15 0.7 0.98 0.7 8 0.2 600 12 40

№ 11 (104)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

ноябрь, 2022 г,

№ Эффективность ПКР Параметры ПКР

P P ПКР P1 3 к [g] ( \п рад./с] ТПКР [с] V v ПКР [м/с] апкр [g] ППКР [ПКР] T ±ПКР [с]

16 0.6 0.88 0.67 10 1.11 0.2 200 15 1 80

17 0.6 0.66 0.93 9 1.11 0.3 400 13.5 1 50

18 0.6 0.56 1 10 1.11 0.3 400 15 1 50

19 0.6 0.57 0.98 10 1.11 0.3 500 15 1 44

20 0.6 0.66 0.93 9 1.11 0.3 600 13.5 1 40

21 0.6 0.56 1 10 1.11 0.3 600 15 1 40

22 0.5 1 0.49 9 1.11 0.1 500 13.5 1 44

23 0.5 1 0.45 7 1.11 0.1 600 10.5 1 40

24 0.5 0.94 0.49 9 1.11 0.2 500 13.5 1 44

25 0.5 1 0.45 7 1.11 0.2 600 10.5 1 40

26 0.5 0.56 0.93 10 1.11 0.3 300 15 1 60

27 0.5 0.77 0.7 8 1.11 0.3 600 12 1 40

28 0.5 0.51 0.93 9 1.11 0.4 400 13.5 1 50

29 0.5 0.51 0.93 9 1.11 0.4 600 13.5 1 40

30 0.5 0.49 0.93 9 1.11 0.5 600 13.5 1 40

По результатам, приведенным в таблице 5 можно сделать следующие выводы:

Для достижения максимальной эффективности ПКР (вероятность поражения корабля-цели равна 1), то амплитуда маневра должна быть максимальной в диапазоне исследуемых значений (k = 10g ), частота маневра должна со = 1.11^ (рад/с), быстродействие системы управления должна быть быстрой

(^щр = 0.1* ), скорость полета ракеты должна быть

выбрана в большом диапазоне (= 400 ^ 600 м/с).

С точки зрения проектирования ракеты видно, что чем меньше амплитуда и частота маневра, тем лучше, поскольку это позволяет упростить аэродинамическую и конструктивную схему ракеты и снизить энергию управления. Выбор скорости полета связан с конструкцией двигательной установки и должен быть производится с учетом времени нахождения ПКР в зоне пуска комплекса КЗРК.

При снижении требований к эффективности ПКР следует, что снижаются и требования к некоторым параметрам ПКР. Амплитуда маневра уменьшается до 7g, быстродействие системы управления достигает всего 0,5с при вероятности поражения равной 0,5.

5. Заключение

В статье построен метод выбора проектных параметров траектории ПКР в виде явного и простого процесса расчета при выполнении вычислительного моделирования на цифровой ЭВМ. Результаты предложенного метода правильно отразили физическую природу события и могут быть использоваться для количественной оценки при выборе проектных параметров траектории ПКР через приведенные графики и таблицы. В качестве критерия выбора параметра маневра ПКР используется вероятность поражения корабля-цели. Данная задача рассматривается в более широком масштабе, включая все возможные случаи. Особенно было рассмотрено взаимное отношение между проектными параметрами траектории ПКР и другими характерными параметрами трех связанных объектов, а именно ПКР, ЗУР и корабля-цели. Это взаимое отношение является основным фактором, влияющим на вероятность поражения корабля-цели ПКР. Предложенный метод выбора проектных параметров траектории ПКР по критерию вероятности поражения корабля-цели будет способствовать конструкторам в выборе параметров траектории, а также других тактико-технических параметров при исследованиях по улучшению или разработке новых ПКР.

Список литературы:

1. Yoon-Hwan Kim, Chang-Kyung Ryoo and Min-Jea Tahk. Guidance synthesis for evasive maneuver of anti-ship missiles against close-in weapon systems // IEEE Transactions on Aerospace and Electronic Systems. 2010. 46(3). P. 1376-1388.

2. Chang-Kyung Ryoo, Hyo-Sang Shin and M Tahk. Optimal waypoint guidance synthesis // Proceedings of2005 IEEE Conference on Control Applications. 2005. P. 1349-1354.

№ 11 (104)

UNIVERSUM:

ТЕХНИЧЕСКИЕ НАУКИ

ноябрь, 2022 г.

3. Chang-Kyung Ryoo, Ick Whang and Min-Jea Tahk. 3-D evasive maneuver policy for anti-ship missiles against close-in weapon systems // AIAA Guidance, Navigation, and Control Conference and Exhibit. 2003. P. 5653.

4. Ick-Ho Whang. Optimal Evasive Maneuver for Sea Skimming Missiles against Close-In Weapon System // Proceedings of the KIEE Conference, The Korean Institute of Electrical Engineers. 2002. P. 2096-2098.

5. Jin-Ik Lee, Chang-Kyung Ryoo. Impact angle control law with sinusoidal evasive maneuver for survivability enhancement // International Journal of Aeronautical Space Sciences. 2018. 19(2). P. 433-442.

6. Yoon-Hwan Kim, Chang-Kyung Ryoo, Min-Jea Tahk. 3-D biased PNG for evasive maneuver of anti-ship missiles against CIWS // IFAC Proceedings Volumes. 2004. 37(6). P. 659-664.

7. Yoon-Hwan Kim and Min-Jea Tahk. Guidance synthesis for evasive maneuver of anti-ship missiles // AIAA Guidance, Navigation and Control Conference and Exhibit. P. 67-83.

8. Yoon-Hwan Kim, Min-Jea Tahk. Biased PNG with maximal-g barrel-roll for survivability enhancement of anti-ship missiles// International Conference on Control, Automation and Systems. 2008. P. 473-476.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9. Chang-Hun Lee, Jin-Ik Lee, Min-Jea Tahk. Sinusoidal function weighted optimal guidance laws // Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2015. 229(3). P. 534-542.

10. Jin-Ik Lee, Chang-Kyung Ryoo, Keeyoung Choi. A guidance law with sinusoidal evasive maneuver for enhancing survivability of anti-ship missiles // IFAC Proceedings Volumes. 40(7), P. 804-809.

11. Bui Quoc Dung, Cao Huu Tinh, Nguyen Cong Thuc. The influence of trajectory design parameters on miss distance and survivability of anti-ship missiles // 21st International Conference on Control, Automation and Systems (ICCAS). 2021. P. 1496-1501.

12. U.S. Shukla, Pravas M. The proportional navigation dilemma-pure or true? // IEEE Transactions on Aerospace Mahapatra and Electronic Systems. 1990. 26(2). 382-392.

13. Paul Zarchan. Tactical and strategic missile guidance // American Institute of Aeronautics and Astronautics, Inc.

14. Хомяков М.А., Мельников В.Ю. и др. Расчет эффективности преодоления противодействия корабельных зенитно-ракетных комплексов: Методика расчета. 43 с.

15. Голубев И.С., Светлов В.Г. Проектирование зенитных управляемых ракет. - М.: МАИ, 2001. 732 c.

16. Фендриков Н.М. and Яковлев В.И. Методы расчетов боевой эффективности вооружения. - М.: Воениздат.

1990. 1026 P.

221 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.