ДИНАМИКА, БАЛЛИСТИКА, УПРАВЛЕНИЕ ДВИЖЕНИЕМ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
УДК 623.76
К ВОПРОСУ О ПРОТИВОРАКЕТНОМ МАНЕВРЕ О.Л. Арапов, Ю.С. Зуев
Снежинский физико-технический институт Национального исследовательского ядерного университета "МИФИ", Снежинск, Челябинская обл., Российская Федерация
e-mail: [email protected]; [email protected]
Представлены результаты исследований по оценке методов снижения вероятности перехвата для беспилотных летательных аппаратов на примере ракеты-мишени РМ-5В27. Предложен модифицированный алгоритм управления траекторным движением для преодоления зон поражения зенитных ракетных комплексов. Приведены результаты численного моделирования перехвата ракет-мишеней комплексом С-125М при реализации ими различных траекторий движения. Комплекс был разработан в 1970г. и в настоящее время снят с вооружения. Рассмотрено влияние параметров движения ракет-мишеней на промах зенитной управляемой ракеты. Для наиболее объективного исследования этого алгоритма использована модель перехвата с двумя комплексами С-125М, удаленными друг от друга. В качестве основного параметра по оценке эффективности алгоритмов движения мишеней рассмотрена их условная вероятность перехвата. Указанный параметр определен как отношение интегрального времени условного перехвата на траектории к общему времени полета по этой траектории.
Ключевые слова: перехват, ракета-мишень, зенитный ракетный комплекс, зона поражения, метод пропорционального наведения, противоракетный маневр.
TO THE QUESTION OF ANTIMISSILE MANEUVER
O.L. Arapov, Yu.S. Zuyev
Snezhinsk Physics and Technology Institute of the National Research Nuclear University "MEPhl", Snezhinsk, Chelyabinsk region, Russian Federation e-mail: [email protected]; [email protected]
In work results of researches an assessment of reduction methods the probability interception of unmanned aerial vehicles for the example the PM 5B27 rocket target are presented. The modified algorithm of control the motion trajectory for overcoming of beaten zones by anti-aircraft missile complexes is offered. The authors are given results of numerical simulation of interception of rockets targets (when implementing of various trajectories of their movement) by the C-125M complex. This complex was developed in 1970 and now is removed from arms. Influence of motion parameters of rockets targets on the size of a miss for the anti-aircraft missile complex is considered. For the most objective research of these algorithms the authors examine the interception model with two C-125M complexes removed from each other. In the present article the conditional probability interception of targets was adopted as the key parameter to evaluate the algorithms efficiency of motion of these targets. This parameter is defined as the ratio of integrated time of conditional interception on trajectory to the total time of flight along it.
Keywords: intercept, rocket-target, anti-aircraft missile complex, beaten zone, method
of proportional guidance, antimissile maneuver.
Введение. Исторический опыт последних десятилетий показывает, что в локальных военных конфликтах на первый план выходит использование противоборствующими сторонами средств воздушного нападения, которые во многом предопределяют исход всей операции. В связи с этим развитие систем противовоздушной обороны (ПВО) диктует ряд задач при создании управляемого высокоточного оружия и ударных беспилотных летательных аппаратов (БЛА). Здесь одной из главных становится задача повышения вероятности преодоления БЛА систем ПВО противника.
На основании анализа материалов, проведенного в работах [1-4], решение указанной проблемы связано с реализацией технических мер по двум основным направлениям:
1) применение ложных целей и снижение сигнальных характеристик БЛА;
2) формирование и реализация траекторий движения БЛА специального вида.
Применение ложных целей и снижение сигнальных характеристик БЛА направленно на то, чтобы осложнить обнаружение и захват на автоматическое сопровождение БЛА радиолокационной станцией системы ПВО.
Наибольший научный интерес для авторов этой работы представляет второе направление. Формирование траекторий движения БЛА специального вида направлено на уход БЛА от встречи с зенитной управляемой ракетой (ЗУР) и совершается после ее запуска (маневр "змейка"); исключение (максимальное сокращение) участка траектории движения БЛА в зоне поражения зенитного ракетного комплекса (ЗРК).
В настоящей работе представлены результаты численного моделирования по исследованию этих методов управления БЛА, направленных на снижение вероятности их перехвата ЗРК.
Постановка задачи. Рассмотрена задача перехвата маневрирующей воздушной цели ЗУР В-601П ЗРК С-125М "Нева-М", который в настоящее время снят с вооружения. В соответствии с работой [5] в качестве БЛА (имитатора воздушной цели) выбрана ракета-мишень РМ-5В27 (В-601П). Внешний вид ракеты В-601П представлен на рис. 1.
Аэродинамические и летно-технические характеристики В-601П получены по материалам эскизного проекта [6]. Ракета состоит из двух ступеней: отделяемого в полете стартового ускорителя и маршевой ступени. При моделировании динамики движения условно полагается, что ракета-мишень (РМ) имеет в составе бортовое командно-
Рис. 1. Внешний вид ракеты В-601П
программное устройство, которое определяет ее угловое и пространственное положение, а также вырабатывает необходимые сигналы управления.
Расчеты траекторий движения ЗУР и РМ проводятся при следующих положениях и допущениях:
— движение объектов управления (ОУ) рассматривается в нормальной земной (стартовой) системе координат (НЗСК), которая полагается инерциальной;
— параметры атмосферы соответствуют ГОСТ 4401-81 "Атмосфера стандартная. Параметры", ветер отсутствует;
— вращение Земли и ее кривизна поверхности не учитываются;
— ОУ движется как материальная точка;
— перекрестные связи в каналах тангажа и рысканья отсутствуют;
— балансировка происходит мгновенно;
— ОУ стабилизирован по крену;
— координаты местоположения ЗРК С-125М для РМ заранее известны;
— влияние радиогоризонта при преодолении ЗРК С-125М не рассматривается.
Движение ОУ описывается системой дифференциальных урав-
нений
dV pV2
m—— = P cos a cos ß — CxaS--mg sin в;
dt 2
de apV2
mV —— = P sin a + CyaS--mg cos в;
dt 2
d^ pV2
—mV cos в—— = — P cos a sin в + CzaS-;
dt 2 '
(1)
^ = V cos 9 cos Ф; dt
dVg T/ • n
—¡-^ = V sin 9; dt
dZg = -V cos 9 sin Ф; dt -
= f (t, тип двигателя).
Здесь и далее использованы следующие обозначения: V — земная скорость ОУ (в рассматриваемой постановке задачи воздушная и земная скорости совпадают); P — тяга; 9, Ф — углы наклона траектории и пути; xg,yg,zg — координаты центра масс в НЗСК; а, ß — углы атаки и скольжения ОУ; m — масса ОУ; Cxa, Cya, Cza — аэродинамические коэффициенты лобового сопротивления, подъемной и боковой сил; S — характерная площадь ОУ; р — плотность воздуха; д — ускорение свободного падения.
Управление ОУ осуществляется изменением углов а и ß при соответствующем отклонении его рулевых поверхностей.
Двухступенчатый двигатель ракеты В-601П имеет следующие характеристики:
1) стартовая ступень (ускоритель): время работы ti = 3,2 с, сила тяги P = 16 000 кгс, полная масса ускорителя m01 = 525 кг, масса топлива m1 = 281 кг, dm/dt = /т = 87,81 кг/с;
2) маршевая ступень: время работы t1 = 18,3 с, сила тяги P = = 1100 кгс, полная масса маршевой ступени m02 = 413 кг, масса топлива m2 = 165 кг, dm/dt = /т = 7,67 кг/с;
Общая масса ракеты m0 = 938 кг, характерная площадь ускорителя S1 = 0,239 м2, характерная площадь маршевой ступени S2 = 0,110 м2.
Зависимости аэродинамических коэффициентов силы лобового сопротивления, подъемной и боковой сил первой и второй ступени ракеты В-601П на активном участке полета, полученные по материалам эскизного проекта [6], приведены на рис.2. Характеристики даны в зависимости от числа Маха для разных углов атаки в скоростной системе координат [7]. На этапе работы ускорителя движение ОУ происходит без управления по баллистической траектории, подъемная сила отсутствует.
Сценарий модели перехвата. Рассмотрим два ЗРК С-125М, обозначенные r1 и r2, и траектории полета РМ (рис.3). Ракеты-мишени поочередно стартуют с пяти стартовых позиций (точки 01-05), удаленных от цели (обороняющегося ЗРК, точка r1) на расстояния 47, 51, 57, 65 и 70 км соответственно. На рис. 3 изображены три траектории полета РМ из точки о 5. Траектории полета из точек 01-0 4 имеют схожий профиль, поэтому здесь не показаны. Из каждой стартовой позиции запускается по три РМ под углом места 64° (предельный угол
0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 М
Рис.2. Зависимости аэродинамических коэффициентов подъемной силы маршевой ступени (1), лобового сопротивления маршевой ступени (2) и лобового сопротивления ускорителя (3) ракеты В-601П на активном участке полета от числа Маха
Рис. 3. Траектории полета РМ, полученные методом пропорционального наведения (1), при маневре "змейка" (2) и методом снижения вероятности перехвата (3)
пусковой установки ЗРК). Все РМ двигаются прямолинейно на всем участке активного полета. По окончании работы маршевого двигателя второй ступени (на пассивном участке полета) все РМ обнаруживаются радиолокационными станциями ЗРК (в точках А1-А5). Ракеты-мишени выполняют программный разворот в вертикальной плоскости до значения угла места 0о (точка В5). С этого момента ЗРК г1 и г2 осуществляют ежесекундные пуски ЗУР по движущимся РМ. Ракеты-мишени реализуют индивидуальные программные траектории
полета с целью уменьшить вероятность своего поражения от ЗУР. Для наиболее объективной оценки эффективности программных траекторий РМ рассматривается их перехват двумя ЗРК. Причем второй ЗРК г2 обороняет ЗРК г1 и расположен за ним в 5 км. Таким образом, прикрываемый ЗРК г1 полностью находится внутри зоны поражения ЗРК г2.
В отсутствии данных о параметрах движения воздушной цели нахождение координат точки встречи с нею ЗУР является отдельной и весьма трудоемкой задачей, требующей детального изучения. В настоящей работе углы азимута и наклонения пусковых установок ЗРК определялись для текущей точки встречи, в предположении о постоянной скорости и направлении движения РМ начиная с момента пуска ЗУР. Скорость ЗУР при расчете точки встречи полагается постоянной и равной 600 м/с. Наведение ЗУР на РМ осуществляется методом пропорционального наведения (МПН) с коэффициентом пропорциональности N = 7 [8]. Предельные потребные перегрузки ЗУР по двум каналам управления ограничены 10 единицами. Расчет траекторий движения ЗУР и РМ при интегрировании системы дифференциальных уравнений (1) проведен с шагом 1 мс. Перехват РМ в заднюю полусферу (вдогон) в данной постановке не рассматривается.
Траектория РМ № 1. При формировании закона управления РМ № 1 на участке наведения (участок В5-г1) для определения значений потребных перегрузок используется МПН с коэффициентом пропорциональности N = 3.
Траектория РМ № 2. Траектория реализована с горизонтальным маневром в зоне поражения. Наведение на цель (г1) в вертикальном канале осуществляется МПН с коэффициентом пропорциональности N = 3. Противоракетный маневр "змейка" в горизонтальной плоскости полета выполняется с предельным ускорением 8 единиц по релейному закону. Согласно работе [8], при маневре воздушной цели с законом изменения перегрузки в виде знакопеременных прямоугольных импульсов промах ЗУР значительно (на ~ 60 %) больше, чем при маневре с синусоидальным законом. Это объясняется увеличением амплитуды боковых колебаний у траектории движения воздушной цели и более резким изменением параметров ее движения.
В диапазоне высот полета РМ 13 500... 15 000 м программно задавалась боковая перегрузка 8 единиц, а в диапазоне высот 12 500... ... 10 000 м РМ осуществляла полет с боковой перегрузкой —8 единиц. На всех остальных диапазонах высот полета потребные боковые перегрузки РМ определялись МПН.
По мнению авторов, маневр "змейка" в вертикальной плоскости на пассивном участке полета РМ, является энергетически не эффективным. Поэтому в настоящей работе он не рассматривался.
Траектория РМ № 3. Траектория реализована методом снижения вероятности перехвата (МСВП). В ходе предполетной подготовки по имеющейся математической модели РМ, начальным условиям, координатам цели, зонам поражения ЗРК и маневренным свойствам РМ определяется и рассчитывается траектория полета РМ. В память бортового вычислительного устройства РМ вводят реперные точки, в том числе координаты точки начала управления (точка В5), точки пикирования (точка С5) и координаты точки цели (точка г 1), через которые проходит опорная траектория РМ.
В качестве метода наведения при полете от одной реперной точки к другой авторами выбран МПН. Подробно этот модифицированный метод наведения описан в работе [9]. За точки наведения приняты координаты реперных точек, тем самым движения РМ осуществляется по траектории с минимальной длиной в зоне поражения ЗРК.
Результаты моделирования. Здесь и далее под промахом Н будем понимать абсолютную величину минимального расстояния между центрами масс ЗУР и РМ. Зависимость промаха ЗУР от времени Н(1) приведена на рис.4. Пуски РМ № 1-3 осуществляются из точки О5. Время на рисунке отсчитывается от начала пусков ЗУР (момента нахождения РМ в точке В5). Штриховой линией на рис.4 обозначен промах ЗУР равный 60 м. Согласно эскизному проекту [6], указанное значение является пороговым для срабатывания импульсного радиовзрывателя, расположенного на борту ЗУР. В представленной модели перехвата условно принимается, что при расстоянии между ЗУР и РМ, меньшем указанного значения, РМ будет поражена, не зависимо от их взаимного углового положения.
Рис. 4. Зависимость промаха ЗУР от времени ее пуска для траекторий РМ, полученных МПН для ЗРК г2 (1), МПН для ЗРК г 1 (2), при маневре "змейка" для ЗРК г1 (3), при маневре "змейка" для ЗРК г2 (4), МСВП для ЗРК г2 (5), МСВП для ЗРК г1 (6)
0
20 40 60 80 100 120 140
160 t, с
Значения параметров перехвата для траекторий РМ № 1-3, запущенных из точки О5, через 120 с от момента нахождения РМ в точке В5 приведены в таблице.
Значения параметров перехвата для траекторий РМ № 1-3, запущенных из точки О5 через 120 с от момента нахождения РМ в точке В5
ЗРК РМ V3yp, м/с VpM, м/с Кбл, м/с D, м ¿, град/с2 h, м
PM № 1 594 282 681 4501 26 1
r 1 PM № 2 577 276 240 160 20 31
PM № 3 612 297 770 10417 2 769
PM №1 596 277 140 643 3 68
r2 PM № 2 593 271 160 595 4 57
PM № 3 690 304 840 19 32 0
В таблице введены следующие обозначения: УЗУР — скорость полета ЗУР; УРМ — скорость полета РМ; Усбл — скорость сближения ЗУР и РМ; Б — расстояние между ЗУР и РМ в момент достижения ЗУР предельной располагаемой перегрузки; £ — угловая скорость линии визирования ЗУР-РМ в момент достижения ЗУР предельной располагаемой перегрузки.
Зависимость интегрального времени условного перехвата ^ £пер РМ от дальности ее пуска приведена на рис. 5. Под интегральным временем условного перехвата принимается сумма интервалов времени, в течение которых РМ поражена ЗУР.
Рис. 5. Зависимость интегрального времени условного перехвата РМ от дальности ее пуска для траекторий РМ, полученных МПН для ЗРК г1 (7), при маневре "змейка" для ЗРК г 1 (2), МПН для ЗРК г2 (5), при маневре "змейка" для ЗРК г2 (4), МСВП для ЗРК г2 (5), МСВП и маневре "змейка" для ЗРК г2 (6), МСВП для ЗРК г 1 (7)
Определение условной вероятности перехвата РМ. В настоящей работе для оценки эффективности приведенных методов управления полетом РМ в качестве основного показателя рассмотрена вероятность их перехвата. В общем случае вероятность перехвата РМ — это цепь последовательных событий Б^, которые можно описать следующим образом: Б1 — обнаружение РМ радиоэлектронными средствами ЗРК; Б2 — пуск ЗУР; Б3 — достижение ЗУР необходимого расстояния (между ЗУР и РМ) для срабатывания радиовзрывателя; Б4 — подрыв боевой части ЗУР; Б5 — уничтожение РМ осколочно-фугасным воздействием (для В-601П) боевой части ЗУР.
Каждому перечисленному событию соответствует вероятность. Таким образом, вероятность перехвата РМ определяется по формуле Рпер = Р1Р2Р3Р4Р5. В силу принятых ранее допущений, рассматривая наихудший для РМ случай, полагаем, что события Б1,Б2,Б4,Б5 безусловно выполняются и вероятности Р1,Р2,Р4,Р5 равны единице. В таком случае вероятность перехвата РМ найдем по формуле Рпер = Р3.
Значение текущей вероятности Р3(£) на траектории полета РМ определим из условий
Р3(г) = 1 при Н < 60м; Р3(г) = 0 при н > 60 м.
Значение условной вероятности перехвата РМ для всей траектории
полета РМ находим по формуле Рпер = ^ д^^ = ^"д^, где ^ —
время полета РМ (на участке В-г1).
Зависимость условной вероятности перехвата РМ для всех расчетных траекторий от дальности их пуска приведена на рис. 6.
Обсуждение полученных результатов. В ходе моделирования преодоления зон поражения двух ЗРК С-125М РМ по различным профилям траекторий полета (по МПН, с маневром горизонтальная "змейка" и по МСВП) получены следующие результаты.
Траектория полета РМ № 1, полученная МПН, является вполне типичной для БЛА и принята за эталон при оценке эффективности двух других алгоритмов движения РМ № 2 и № 3. Ракета-мишень № 1 перехватывается на всех дальностях ее пуска, при этом интегральное время перехвата для ЗРК г1 составляет 54... 106 с, для ЗРК г2 — 10... 18 с. Соответственно, условная вероятность перехвата РМ № 1 на всех дальностях ее пуска равна 0,58... 0,63 для ЗРК г1 и 0,07... 0,15 для ЗРК г2.
Согласно зависимостям, приведенным на рис. 5, траектория полета РМ № 2 с маневром горизонтальная "змейка" обеспечивает снижение условной вероятности ее перехвата в 2-3 раза (в зависимости от дальности пуска) по сравнению с условной вероятностью, полученной МПН (РМ № 1) для ЗРК г1. Ракета-мишень № 2 почти неуязвима для
Aiep» с
0,6 ——--
0,5
0,4
0,3 2 /
0,2 V'
0,1
— .-^ х-'- 6
0 _1........J........... ---^- _1_Lif •''_
45 50 55 60 65 70 Ь, км
Рис. 6. Зависимость условной вероятности перехвата РМ от дальности их пуска для траекторий РМ, полученных МПН для ЗРК г1 (7), при маневре "змейка" для ЗРК г1 (2), МПН для ЗРК г2 (5), при маневре "змейка" для ЗРК г2 (4), МСВП для ЗРК г2 (5), МСВП и маневре "змейка" для ЗРК г2 (6), МСВП для ЗРК г 1 (7)
ЗРК г2, ее перехват возможен лишь на протяжении 14 с при дальности пуска с 70 км (точка О5). Условная вероятность перехвата РМ № 2 на всех дальностях ее пуска составляет 0,15... 0,35 для ЗРК г1 и 0... 0,08 для ЗРК г2.
Траектория полета РМ № 3, полученная МСВП, практически не уязвима для ЗРК г 1, минимальный промах ЗУР составляет 239 м при пуске РМ № 3 из точки О5. Для ЗРК г2 ее условная вероятность перехвата в 1,1-2 раза ниже (в зависимости от дальности пуска) по сравнению с условной вероятностью, определенной МПН (РМ № 1). Условная вероятность перехвата РМ № 3 на всех дальностях ее пуска составляет 0 для ЗРК г 1 и 0,05... 0,07 для ЗРК г2.
Комбинация двух методов — маневра горизонтальная "змейка" и МСВП - наиболее трудная для перехвата ЗУР. При этом РМ практически не уязвима для ЗРК г 1, и ее перехват ЗРК г2 в 2 раза ниже, чем у МСВП. Условная вероятность перехвата РМ на всех ее дальностях: 0 для ЗРК г 1 и 0,025... 0,035 для ЗРК г2.
Данные, приведенные в таблице, коррелируют с формулой [10], которая связывает мгновенный промах ЗУР к и скорость ее сближения с РМ Усбд: к = 2¿) /Усбл, где
Усбл = Тур + Т^РМ - 2^ЗУРУРМ СО8(УЗУР Л УРМ). (2)
Общая тенденция к росту условных вероятностей перехвата для всех РМ с увеличением дальности их пуска объясняется, в первую очередь, уменьшением скорости полета РМ к моменту их перехвата
(увеличение длины пассивного участка полета РМ). Согласно формуле (2), на встречных курсах (—п/2 < УЗУР Л VpM < п/2) скорость сближения Усбл возрастает с уменьшением скорости полета РМ. При этом увеличение скорости сближения при прочих равных условиях приводит к уменьшению промаха, а следовательно к увеличению вероятности перехвата РМ.
Заключение. В настоящей работе составлена математическая модель перехвата РМ ЗУР комплекса С-125М. Ракеты-мишени выполняли свой полет по различным программным траекториям (МПН, с маневром горизонтальная "змейка" и МСВП). В качестве оценки эффективности методов преодоления авторами предложена условная вероятность перехвата РМ. В соответствии с результатами расчетов наиболее эффективным по преодолению двух комплексов С-125М признан МСВП. Комбинация МСВП и маневра горизонтальная "змейка" обеспечивает наименьшую условную вероятность перехвата РМ. С учетом этого данное сочетание является наиболее эффективным при преодолении зон поражения ЗРК, независимо от их месторасположения. Результаты расчетов коррелируют с ранее известными зависимостями промаха ЗУР от параметров движения воздушных целей. Рассмотренная задача может быть исследована и на более современных ракетных объектах перехвата и уклонения.
ЛИТЕРАТУРА
1. Способ уменьшения вероятности поражения летательного аппарата средствами противовоздушной обороны: Пат. 2095737 Россия, МПК B 64 C 19/00 (2006_01). № 95101418/02; Заявл. 25.01.1995; Опубл. 10.11.1997 Рус.
2. Способ управления скоростным воздушным объектом в зоне опасности поражения: Пат. 2158697 Россия, МПК B 64 C 19/00 (2006_01). № 99107703/28; Заявл. 07.04.1999; Опубл. 10.11.2000 Рус.
3. Способ противодействия средствам противовоздушной обороны и устройство для его реализации: Пат. 2226278 Россия, МПК G 01 S 7/38, H 04 K 3/00 (2006_01). № 2001100728/63; Заявл. 09.01.2001; Опубл. 27.03.2004 Рус.
4. Способ формирования спиралевидного движения планирующего летательного аппарата относительно опорной траектории: Пат. 2306593 Россия, МПК G 05 D 1/08, F 41 G 7/34 (2006_01). № 2005134997/28; Заявл. 11.11.2005; Опубл. 20.09.2007 Рус.
5. Тимохин Е.Л., Жарый О.Н.Ракета-мишень "Пищаль": дешева, эффективна и проста в эксплуатации // Военный парад. 1998. № 4. С. 56-57.
6. Персональный сайт по истории ПВО — ЗРК С-125 "Нева" ("Печора") [Электронный ресурс]: MyCorp. URL: http://historykpvo-2.ucoz.ru/index/zrk_s_125_quot_neva_quot_quot_pechera_quot/0-7 (дата обращения: 18.05.2014).
7. ГОСТ20058-80. Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения.
8. Кыонг Н.Д., Тхам Д.К., Тхань Н.Д. Влияние параметров движения воздушной маневрирующей цели на величину промаха самонаводящейся зенитной управляемой ракеты // Информационно-измерительные и управляющие системы. 2008. № 9 (6). С. 60-67.
9. Арапов О.Л., ЗуевЮ.С. Повышение вероятности преодоления летательным аппаратом средств противовоздушной обороны // Вестник Концерна ПВО "Алмаз-Антей". 2014. № 1 (11). С. 57-60. 10. Неупокоев Ф.К. Стрельба зенитными ракетами. М.: Воениздат, 1980.
REFERENCES
[1] Dolin V.D., Koval'chuk V.A., Martynov V.V., Seleznev I.S. Sposob umen'sheniya veroyatnosti porazheniya letatel'nogo apparata sredstvami protivovozdushnoy oborony [A method of reducing the destruction probability of the aircraft by means of air defense]. Patent RF, no. 2095737, 1997.
[2] Talanov B.P. Sposob upravleniya skorostnym vozdushnym ob'ektom v zone opasnosti porazheniya [Control method for high-speed air objects within beaten danger zone]. Patent RF, no. 2158697, 2000.
[3] Golovin A.I., Kurdin G.V., Maklashov V.A., Sadkov V.D. Sposob protivodeystviya sredstvam protivovozdushnoy oborony i ustroystvo dlya ego realizatsii [Method of counteracting means of air defense (AD) and device for its implementation]. Patent RF, no. 2226278, 2001.
[4] Shchepetil'nikov S.R., Ovchinnikov M.V. Sposob formirovaniya spiralevidnogo dvizheniya planiruyushchego letatel'nogo apparata otnositel'no opornoy traektorii [Method of forming spiral motion of gliding flying vehicle relative to reference trajectory]. Patent RF, no. 2306593, 2007.
[5] Timokhin E.L, Zharyy O.N. Rocket-target "Pishchal" is cheap, efficient and easy to operate. Voennyy parad [Military Parade], 1998, no. 4, pp. 56-57 (in Russ.).
[6] Personal site on the history of Air Defense — Anti-Aircraft Missile "PVO-ZRK S-125 "Neva" ("Pechora") (in Russ.). Available at: http://historykpvo-2.ucoz.ru/index/zrk_s_125_quot_neva_quot_quot_pechera_quot/0-7
(accessed 18.05.2014).
[7] State Standard of the Russian Federation: GOST 20058-80. Dinamika letatel'nykh apparatov v atmosfere. Terminy, opredeleniya i oboznacheniya [Aircraft dynamics in atmosphere. Terms, definitions and symbols]. Moscow, USSR State Committee on Standards, 1981. 54 p.
[8] Kyong N.D., Tkham D.K., Tkhan' N.D. The influence of movement parameters of an air maneuvering target on the guidance accuracy of a homing surface-to-air missile. Inform.-izm. i upravl. sistemy [Inf.-Meas. and Cont. Systems], 2008, no. 9(6), pp. 60-67 (in Russ.).
[9] Arapov O.L., Zuev Yu.S. Increasing the probability of overcoming means of air defense by air vehicle. Vestn. Kontserna PVO "Almaz-Antey" [Bull. of Concern "Almaz-Antey"], 2014, no. 1(11), pp. 57-60 (in Russ.).
[10] Neupokoev F.K. Strel'ba zenitnymi raketami [Anti-aircraft missiles firing]. Moscow, Voenizdat Publ., 1980. 296 p.
Статья поступила в редакцию 18.08.2014 Арапов Олег Леонидович — аспирант кафедры "Техническая механика" Снежин-ского физико-технического института Национального исследовательского ядерного университета "МИФИ". Автор четырех научных работ в области исследования алгоритмов управления летательными аппаратами.
Снежинский физико-технический институт Национального исследовательского ядерного университета "МИФИ", Российская Федерация, Челябинская обл., 456776, Снежинск, Комсомольская ул., д. 8.
Arapov O.L. — post-graduate of "Technical mechanics" department of the Snezhinsk Physics and Technology Institute of the National Research Nuclear University "MEPhI". Author of four publications in the field of research algorithms guidance of aircraft vehicles. National Research Nuclear University "MEPhI", Komsomolskaya ul. 8, Snezhinsk, Chelyabinsk region, 456776 Russian Federation.
Зуев Юрий Семенович — канд. техн. наук, старший научный сотрудник, заведующий кафедрой "Техническая механика" Снежинского физико-технического института Национального исследовательского ядерного университета "МИФИ". Автор более 45 научных работ в области ядерной физики.
Снежинский физико-технический институт Национального исследовательского ядерного университета "МИФИ", Российская Федерация, Челябинская обл., 456776, Снежинск, Комсомольская ул., д. 8.
Zuyev Yu.S. — Cand. Sci. (Eng.), senior researcher of "Technical mechanics" department of the Snezhinsk Physics and Technology Institute of the National Research Nuclear University "MEPhl". Author of more than 45 publications in the field of nuclear physics. National Research Nuclear University "MEPhI", Komsomolskaya ul. 8, Snezhinsk, Chelyabinsk region, 456776 Russian Federation.