Научная статья на тему 'Method for controlling the temperature parameters affecting the operational capacity of motor oil mixtures'

Method for controlling the temperature parameters affecting the operational capacity of motor oil mixtures Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
34
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
OPTICAL DENSITY / EVAPORABILITY / THERMAL-OXIDATIVE STABILITY / OXIDATION ONSET TEMPERATURE / EVAPORATION ONSET TEMPERATURE / CRITICAL TEMPERATURES / ОПТИЧЕСКАЯ ПЛОТНОСТЬ / ИСПАРЯЕМОСТЬ / ТЕРМООКИСЛИТЕЛЬНАЯ СТАБИЛЬНОСТЬ / ТЕМПЕРАТУРА НАЧАЛА ПРОЦЕССОВ ОКИСЛЕНИЯ И ИСПАРЕНИЯ / КРИТИЧЕСКИЕ ТЕМПЕРАТУРЫ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Kowalski B.I., Afanasov V.I., Shram V.G., Batov N.S.

The results of a study of the temperature performance parameters of a Toyota Castle 10W-30SL mineral motor oil having 20% admixture of the Kixx Gold 10W-40SJ partially-synthetic motor oil are presented. For the testing process, the following items were used: a device for the temperature control of oils, a photometric device and electronic scales. The research method involved testing in two stages: at the first stage, the mineral oil was subjected to thermostatting, while at the second stage its admixture with partially-synthetic oil at temperatures of 160, 170 and 180 °С was tested. Graphs of the dependency of optical density, evaporation and thermal-oxidative stability on the test time were constructed to the test results of the commercially-produced oil and its admixtures. For each temperature, the regression equations of these dependencies were determined, on the basis of which the following were calculated: the onset temperature of oxidation and evaporation processes of oils during temperature control, as well as the critical temperatures of these processes. In the course of the analysis of the research results, we established the influence of the synthetic additive to the mineral motor oil on the service life of the mixed product in terms of the onset temperature of oxidation processes, the critical oxidation temperature, the onset temperature of evaporation and the critical evaporation temperature.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Kowalski B.I., Afanasov V.I., Shram V.G., Batov N.S.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

МЕТОД КОНТРОЛЯ ТЕМПЕРАТУРНЫХ ПАРАМЕТРОВ РАБОТОСПОСОБНОСТИ СМЕСИ МОТОРНЫХ МАСЕЛ

Представлены результаты исследования температурных параметров работоспособности минерального моторного масла Toyota Castle 10W-30SL и его смеси с 20% частично синтетического моторного масла Kixx Gold 10W-40SJ. Для испытания были использованы: прибор для термостатирования масел, фотометрическое устройство и электронные весы. Методика исследования предусматривала проведение испытания в два этапа: на первом этапе термостатировалось минеральное масло, на втором его смесь с частично синтетическим маслом при температурах 160, 170 и 180 °С. По результатам испытания товарного масла и его смеси были построены графики зависимости оптической плотности, испаряемости и термоокислительной стабильности от времени испытания. Для каждой температуры определены регрессионные уравнения данных зависимостей, на основании которых рассчитаны: температура начала процесса окисления и процесса испарения масел при термостатировании и критические температуры этих процессов. В ходе проведения анализа результатов исследования установлено влияние синтетической добавки к минеральному моторному маслу на ресурс смеси, температуру начала процессов окисления, критическую температуру, температуру начала испарения и критическую температуру испарения.

Текст научной работы на тему «Method for controlling the temperature parameters affecting the operational capacity of motor oil mixtures»

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ / CHEMICAL TECHNOLOGY Оригинальная статья / Original article УДК 621.892.2

DOI: http://dx.doi.org/10.21285/2227-2925-2018-8-4-125-133

METHOD FOR CONTROLLING THE TEMPERATURE PARAMETERS AFFECTING THE OPERATIONAL CAPACITY OF MOTOR OIL MIXTURES

© B.I. Kowalski, V.I. Afanasov, V.G. Shram, N.S. Batov

Siberian Federal University, Institute of Oil and Gas

82/6, Svobodny Ave., Krasnoyarsk, 660041, Russian Federation

ABSTRACT. The results of a study of the temperature performance parameters of a Toyota Castle 10W-30SL mineral motor oil having 20% admixture of the Kixx Gold 10W-40SJ partially-synthetic motor oil are presented. For the testing process, the following items were used: a device for the temperature control of oils, a photometric device and electronic scales. The research method involved testing in two stages: at the first stage, the mineral oil was subjected to thermostatting, while at the second stage its admixture with partially-synthetic oil at temperatures of 160, 170 and 180 °С was tested. Graphs of the dependency of optical density, evaporation and thermal-oxidative stability on the test time were constructed to the test results of the commercially-produced oil and its admixtures. For each temperature, the regression equations of these dependencies were determined, on the basis of which the following were calculated: the onset temperature of oxidation and evaporation processes of oils during temperature control, as well as the critical temperatures of these processes. In the course of the analysis of the research results, we established the influence of the synthetic additive to the mineral motor oil on the service life of the mixed product in terms of the onset temperature of oxidation processes, the critical oxidation temperature, the onset temperature of evaporation and the critical evaporation temperature.

Keywords: optical density, evaporability, thermal-oxidative stability, oxidation onset temperature, evaporation onset temperature, critical temperatures

Information about the article. Received March 15, 2018; accepted for publication November 25, 2018; available online December 29, 2018.

For citation: Kowalski B.I., Afanasov V.I., Shram V.G., Batov N.S. Method for controlling the temperature parameters affecting the operational capacity of motor oil mixtures. Izvestiya Vuzov. Prikladnaya Khimiya i Bio-tekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology]. 2018, vol. 8, no. 4, pp. 125-133. (In Russian). DOI: 10.21285/2227-2925-2018-8-4-125-133

МЕТОД КОНТРОЛЯ ТЕМПЕРАТУРНЫХ ПАРАМЕТРОВ РАБОТОСПОСОБНОСТИ СМЕСИ МОТОРНЫХ МАСЕЛ

© Б.И. Ковальский, В. И. Афанасов, В.Г. Шрам, Н.С. Батов

Сибирский федеральный университет, Институт нефти и газа 660041, Российская Федерация, г. Красноярск, пр. Свободный, 82/6

РЕЗЮМЕ. Представлены результаты исследования температурных параметров работоспособности минерального моторного масла Toyota Castle 10W-30SL и его смеси с 20% частично синтетического моторного масла Kixx Gold 10W-40SJ. Для испытания были использованы: прибор для тер-мостатирования масел, фотометрическое устройство и электронные весы. Методика исследования предусматривала проведение испытания в два этапа: на первом этапе термостатировалось минеральное масло, на втором - его смесь с частично синтетическим маслом при температурах 160, 170 и 180 °С. По результатам испытания товарного масла и его смеси были построены графики зависимости оптической плотности, испаряемости и термоокислительной стабильности от времени испытания. Для каждой температуры определены регрессионные уравнения данных зависимостей, на основании которых рассчитаны: температура начала процесса окисления и процесса испарения масел при термостатировании и критические температуры этих процессов. В ходе проведения анализа результатов исследования установлено влияние синтетической добавки к минеральному моторному маслу на ресурс смеси, температуру начала процессов окисления, критическую температуру, температуру начала испарения и критическую температуру испарения.

Ключевые слова: оптическая плотность, испаряемость, термоокислительная стабильность, температура начала процессов окисления и испарения, критические температуры.

Информация о статье. Дата поступления 15 марта 2018 г.; дата принятия к печати 25 ноября 2018 г.; дата онлайн-размещения 29 декабря 2018 г.

Для цитирования: Ковальский Б.И., Афанасов В. И., Шрам В.Г., Батов Н.С. Метод контроля температурных параметров работоспособности смеси моторных масел // Известия вузов. Прикладная химия и биотехнология. 2018. Т. 8, N 4. С. 125-133. РО!: 10.21285/2227-2925-2018-8-4-125-133

INTRODUCTION

The main factor affecting the service life of motor oils is the temperature at the friction surfaces, which accelerates the processes of oxidation, destruction and chemical reactions with metals [1-5]. Therefore, in order to make an informed choice of oils for engines at various load levels, it is necessary to know their working temperature range, i.e. process onset temperatures and critical temperatures. In addition, it is necessary to develop technologies for increasing the working temperature ranges of motor oils [6], especially mineral oils [7-10].

The purpose of this study was to study the effect of synthetic additives to mineral oil on its service life and working temperature range.

EXPERIMENTAL PART

For the study, the all-season mineral motor oil Toyota Castle 10W-30SL was selected; for its 20% admixture, the Kixx Gold 10W-40SJ partially-synthetic motor oil, intended for petrol engines, was used.

For the testing process, the following items were used: a device for the temperature control of oils, a photometric device and electronic scales.

The research method involved testing in two stages: at the first stage, the mineral oil was subjected to thermostatting, while at the second its admixture with partially-synthetic oil was tested at temperatures of 160, 170 and 180 °C1,2. A sample of oil weighing 100 ± 0,1 g was poured into the glass beaker of the temperature control device and tested while stirring with a glass stirrer at a rotational speed of 300 rpm for 8 hours, with the temperature and rotational speed of the stirrer being maintained automatically. Then the beaker with the oxidised sample was weighed to determine the mass of the evaporated oil, a part of the sample (2 g) was taken for direct photometry and an optical density calculation performed D [11]:

1 STM D. 4742-08e1: Standard test method for oxidation stability of gasoline automotive motor oils by thin-film oxygen uptake (TFOUT). West Con-shohocken (PA, USA): ASTM International; 2008.

2 CEC L-48-A00: Oxidation stability of lubricating oils used in automotive transmissions by artificial ageing. Coordinating European Council for the Development of Performance Tests for Fuels, Lubricants and Other Fluids; 2007.

D = lg300/n (1)

where 300 is the photometer reading in the absence of oil in the cuvette, ^A; P is the photometer reading when the cuvette is filled with oil, ^A.

After measuring the optical density, the oil from the cuvette was poured into a glass beaker of a temperature control device, which was re-weighed; the tests were then continued for 8 hours. The tests were stopped after the optical density reached values greater than 0.6. According to the values of optical density D and evaporation G of oil obtained during the test, the thermo-oxidative stability coefficient Ptos was determined:

Ptos = D + Kg, (2)

where KG is the coefficient of evaporation, calculated in turn as

Kg = m/M (3)

Here m and M are the mass of the evaporated oil and the mass of the remaining sample after oxidation, respectively (in grams).

According to the test results, dependency graphs were constructed - D = f(t), G = f(t)- Ptos= ft), and regression equations for each temperature were determined, from which the time was calculated for which the optical density and thermal oxidative stability reached a value of 0.1. According to the dependency G = f(g the time taken to reach evaporability of 3 g was determined for each temperature.In addition, the above dependencies were used to determine the values of optical density, thermal oxidative stability and evaporation after 8 hours of testing. According to the data obtained, graphs were plotted based on the time to reach the specified values D, G and Ptos , with the corresponding values obtained after 8 hours of testing, the test temperature, which determined the temperatures of the onset of oxidation, evaporation and changes indicator Ptos, as well as the critical temperatures of the studied oils.

RESULTS AND DISCUSSION

In the course of the experiment, it was established that with a decrease in the test temperature, the rate of the oxidation process slows down both in the commercial oil product (curves 1, 2 and 3) and in the oil mixture (curves 1', 2' and 3"). To assess the

effect of temperature on the oxidation process, the concept of the potential resource P is introduced; this is determined by the time taken for the optical density to reach 0,6. Fig. 1 shows the dependency of optical density on the time and hermostatted temperature of the studied oils.

Fig. 2 shows the dependency of the potential

resource on the evaporation temperature of the commercial oil (Curve 1) and its mixture with 20% partially-synthetic oil (Curve 2). It was established that, at a temperature of 180 °C, the potential resource of oils is the same, while at a temperature of 160 °C it was: for commercial oil - 87 hours; for the mixture - 106 hours.

Fig. 1. dependency of the optical density of Toyota Castle 10W-30SL mineral oil with 20% admixture of partially-synthetic motor oil Kixx Gold 10W-40SJ (numbers with a stroke) from the test time at temperature: 1, 1' - 180 °C; 2, 2' - 170 °C; 3, 3'- 160 °C

Рис. 1. Зависимость оптической плотности минерального моторного масла Toyota Castle 10W-30SL и его смеси с 20% частично синтетического моторного масла Kixx Gold 10W-40SJ (цифры со штрихом) от времени испытания при температуре: 1, 1'- 180 °С; 2, 2'- 170 °С; 3, 3'- 160 °С

Fig. 2. Dependency of the potential service life of Toyota Castle 10W-30SL mineral oil with 20% admixture of partially-synthetic motor oil Kixx Gold 10W-40SJ (numbers with a stroke) on the test time at thermostatted temperature

Рис. 2. Зависимость потенциального ресурса минерального масла Toyota Castle 10W-30SL (кривая 1) и его смеси с 20% частично синтетического моторного масла Kixx 10W-40SJ (кривая 2) от температуры термостатирования

Fig. 3. Dependency of oxidation time to D=0,1 (a) and optical density for 8 hours of temperature control (b) of Toyota Castle 10W-30SL commercial oil (Curve 1) and its admixture with 20% partially-synthetic Kixx Gold 10W-40SJ motor oil (Curve 2) versus test temperature

Рис. 3. Зависимость времени окисления до D=0,1 (а) и оптической плотности за 8 ч термостатирования (b) товарного масла Toyota Castle 10W-30SL (кривая 1) и его смесис 20% частично синтетического моторного масла Kixx Gold 10W-40SJ (кривая 2) от температуры испытания

The dependency P = f(T) is described by a second-order polynomial:

P= a T2 - b T + c (4)

where a, b and c are the coefficients characterising the resistance of oils to the influence of temperature.

The regression equations for this relationship

are:

- for the commercial oil product (curve 1):

P = 0,12T2 - 44T + 4055; (5)

- mixtures of oils (Curve 2):

Pc = 0,145T2 - 53,35T + 4930. (6)

The correlation coefficient is =0,998.

Using equations (5) and (6), the critical temperature at which the resource of the oils under study is minimal was determined: for the commercial product, it was 183,3 °C; for the mixture - 184 °C. At these temperatures, the time to reach an optical density of 0,6 will be: for the commercial product -21,7 hours; for the mixture - 23 hours.

The two critical characteristics of motor oils are the temperature of the beginning of the oxidation and evaporation processes, as well as the critical temperatures of these processes at which the continued operation of engines is not possible. To determine the critical oxidation temperature ofthe studied oils, graphs of the oxidation time versus test temperature were plotted at an optical density of 0,1 (Fig. 3, a); to determine the onset temperature of the oxidation processes, graphs were plotted showing the dependency of optical density on the test temperature for 8 hours (Fig. 3, b).

The regression equations for the dependencies

presented above are:

- for the commercial oil product (Curve 1):

t = 0,05T2 - 18,57 + 1722; (7)

- mixture of oils (Curve 2):

tc = 0,037 - 12T + 1199; (8)

- commercial oil product (Curve 1):

D = 9,2510~5^T2 - 0,0287 + 2,228; (9)

- mixture of oils (Curve 2):

D = 1,05104T2 - 0,03287 + 2,568. (10)

The correlation coefficient is =0,998.

Solving these equations, we calculated the critical temperature Tcr and the onset temperature of oxidation processes Tn , which were: for the commercial oil product - Tcr = 185 °C; Tn = 155 °C; for the mixture of oils - Tkr = 200 °C; Tn = 160 °C. Thus, the mixture of oils gives an increase in the onset temperature of oxidation by 5 °C and an increase in the critical temperature by 15 °C.

The use of evaporability as a performance indicator is due to its causing a rupture of the oil film separating the friction surfaces and thus leading to the formation of microasperities; thus, a determination of the evaporation onset temperature along with the critical temperature permits an informed choice of oils for engines of varying degrees of loading. Fig. 4 shows the dependency of evaporability G on the test time and temperature of the studied oils, namely: evaporation at the test temperature for 8 hours and evaporation time of 3 g of oils at the test temperature.

Fig. 4. Dependency of evaporation of mineral Toyota Castle 10W-30SL mineral oil and its admixture with 20% Kixx Gold 10W-40SJ partially-synthetic motor oil (numbers with a dash) on the test time at temperature: 1, 1'- 180 °C; 2, 2' - 170 °C; 3, 3'- 160 °С

Рис. 4. Зависимость испаряемости минерального моторного масла Toyota Castle 10W-30SL и его смеси с 20% частично синтетического моторного масла Kixx Gold 10W-40SJ (цифры со штрихом) от времени испытания при температуре:1, 1' - 180 °С; 2, 2' - 170 °С; 3, 3'- 160 °С

It is established that with decreasing temperature, the rate of evaporation of oils decreases. Thus, during evaporation of 6 g of commercial oil, the evaporation times were: at a temperature of 180 °C - 16 hours; at 170 °C - 23 hours; at 160 °C -40 hours. For the oil mixture, the evaporation times were: at a temperature of 180 °C - 16 hours; at 170 °C - 36 hours; at 160 °C - 61 hours. Thus, a partially-synthetic additive reduces the evaporation of the mixture at temperatures of 170 and 160 °C.

The temperature of the beginning of the evaporation process (Fig. 5, a) was determined by the

evaporation of the oils over 8 hours of testing, the dependency on testing temperature of which is described by a second-order polynomial (Formula (4)), with the regression equation taking the form:

- for the commercial oil product (Curve 1):

G = 2510 4 T2 - 0,765T + 60,3; (11)

- for the oil mixture (Curve 2):

Gc = 9510-4T2 - 3,095T + 253,3; (12)

Fig. 5. dependency of evaporation for 8 hours of testing (a) and evaporation time of 3 g (b) of Toyota Castle 10W-30SL mineral oil (Curve 1) and its admixture with 20% Kixx Gold 10W 40SJ partially-synthetic motor oil (Curve 2) on the test temperature

Рис. 5. Зависимость испаряемости за 8 ч испытания (а) и времени испарения 3 г (b) минерального моторного масла Toyota Castle 10W-30SL (кривая 1) и его смеси с 20% частично синтетического моторного масла Kixx Gold 10W-40SJ (кривая 2) от температуры испытания

Using equations (11), (12), we calculated the evaporation onset temperature; for the commercial oil product, it was 153 °C; for the mixture - 163 °C.

The critical temperatures of this process were determined by the evaporation time for 3 g (Fig. 5, b).

The regression equations of dependency t = fm take the form:

- for the commercial oil product (Curve 1):

t = 0,015 T2 - 5,65T + 537; (13)

- for the oil mixture (Curve 2):

t = 0,0052• T2 - 0,924T + 8,544; (14)

Using equations (13) and (14), we calculated the critical evaporation temperature; for the commercial oil product, it was 188 °C; for the mixture - 186,5 °C.

When using the index of thermo-oxidative stability Ptos, which, when thermostatted, takes into account the change in optical properties and evaporation, the oxidation and evaporation onset temperatures, as well as the critical temperatures, their combined effect is taken into account.

Fig. 6 shows the dependency of thermal oxidative stability on the time and temperature of the test.

According to the graphs presented in Fig. 6, the mixture of oils will reduce the rate of change of ther-mal-oxidative stability at test temperatures of 170 and 160 °C.

Fig. 7 shows the dependence of thermal-oxidati-ve stability on temperature over 8 hours of testing (Fig. 7, a) and on the temperature of the test when Ptos= 0,1 (Fig. 7, b).

The critical temperature for the studied oils was determined from the time it takes the thermo-oxida-tive stability to reach 0,1 (see Fig. 7, a). The regression equations for dependency: t= f(T) take the form:

- for the commercial oil product (Curve 1):

t = 0,03 T2 - 11,3T + 1070; (15)

- mixture of oils (Curve 2):

t = 0,02 T2 - 8,2T + 836. (16)

Having solved equations 15 and 16, we determined the critical temperature, which was: for the commercial oil product - 188 °C, for the mixture -205 °C, which exceeds the critical temperatures of oxidation and evaporation processes.

The temperatures of the beginning of the change in the index Ptos are determined by the dependency Ptos= f(T), described by regression equations:

- for the commercial oil product (Curve 1):

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

n moc = 9• 10-5 T2 - 0,027T + 2,066; (17)

- mixture of oils (Curve 2):

n moc = 2,05• 10-4 T2 - 0,065T + 5,237 (18)

Having solved these equations, we calculated the temperatures of the beginning of the change of the Ptos index for the commercial oil product (151 °C) and for the oil mixture (159 °C), which is lower than the oxidation and evaporation onset temperatures.

Птос

Fig. 6. Dependency of the thermo-oxidative stability of Toyota Castle 10W-30SL commercial motor oil with 20% admixture of Kixx Gold 10W-40SJ partially-synthetic motor oil (numbers with a dash) on the testing time - at temperatures: 1, 1 '- 180 °C; 2, 2 ' - 170 °C; 3, 3 ' - 160 °С

Рис. 6. Зависимость термоокислительной стабильности минерального моторного масла Tayota Castle 10W-30SL и его смеси с 20% частично синтетического моторного масла Kixx Gold 10W-40SJ (цифры со штрихом) от времени испытания при температуре: 1, 1' - 180 °С; 2, 2' - 170 °С; 3, 3'- 160 °С

170 b

Fig. 7. Dependency of duration of change of the coefficient of thermo-oxidative stability on the temperature for 8 hours of temperature control (a) and on the test temperature at Ptos= 0,1 (b): 1 - Toyota Castle 10W-30SL motor oil; 2 - its admixture with Kixx Gold 10W-40SJ 20% partially-synthetic motor oil

a

Рис. 7. Зависимость времени изменения коэффициента термоокислительной стабильности от температуры за 8 ч термостатирования (а) и от температуры испытания при ПТОС=0,1 (b): 1 - товарное масло Tayota Castle 10W-30SL; 2 - его смесь с 20% частично синтетического моторного масла Kixx Gold 10W-40SJ

CONCLUSIONS

On the basis of the conducted research, it was established that a 20% admixture of a partial-lysyn-thetic product to the Toyota Castle 10W-30 SL mineral motor oil increases the service life of the resultant mixture, increasing the oxidation process onset temperature by 5 °C, and the critical temperature - by 15 °C. When it comes to evapora-

tion, the onset temperature increases by 10 °C, while the critical temperature increases by 1,5 °C. Considering both oxidation and evaporation processes, the admixture of the synthetic additive, increases the temperature of the beginning of the processes occurring in the oil from 151 to 159 °C, while the critical temperature is increased from 188 to 205 °C.

1. Koval'skii B.I., Bezborodov Yu.N., Yanovich V.S., Malysheva N.N., Yudin A.V. The results of the control the thermal-oxidative stability transmission oils of different base. Kontrol'. Diagnostika [Control. Diagnostics]. 2014. no. 4 (190), pp. 76-78. (In Russian)

2. Petrov O.N., Shram V.G., Koval'skii B.I. Proposed choice of lubricating oils and improve their classification. Izvestiya Tul'skogo gosudarstvennogo uni-versiteta. Tekhnicheskie nauki [News of Tula State University. Technical science]. 2014, no. 3, pp. 42-50. (In Russian)

3. Koval'skii B.I., Sokol'nikov A.N., Petrov O.N., Shram V.G., Agrovichenko D.V. Control method of processes of oxidation of engine oils of various basic basis. Mir nefteproduktov. Vestnik neftyanykh kom-panii [The world of petroleum. Bulletin of oil companies]. 2016, no. 2., pp. 21-26. (In Russian)

4. Koval'skii B.I., Shram V.G., Berko A.V., Krav-tsova E.G. Influence steel sh15 on anti-wear properties engine oils for their oxidation. Kontrol'. Diagnostika [Control. Diagnostics]. 2013, no. 13, pp. 143-145. (In Russian)

5. Metelitsa A.A., Koval'skii B.I., Malysheva N.N., Shram V.G., Sokol'nikov A.N., Kravtsova E.G. Method for controlling the influence of heat treatment of steel 45 various processes for self-mineral oil M10-T 2K.

Kontrol'. Diagnostika /Control. Diagnostics]. 2013, no. 13, pp. 69-73. (In Russian)

6. ASTM D. 6335-09: Standard test method for determination of high temperature deposits by ther-mo-oxidation engine oil simulation test. West Con-shohocken (PA, USA): ASTM International; 2009.

7. Koval'skii B.I., Sokol'nikov A.N., Bezborodov Yu.N., Petrov O.N., Shram V.G. Results of control of thermal-oxidative stability and antiwear properties of engine oils. Vestnik mashinostroeniya [Russian Engineering Research]. 2015, no. 6, pp. 17-23.

8. Koval'skii B.I., Sokol'nikov A.N., Petrov O.N., Shram V.G., Galiakhmetov R.N. Method for controlling the influence of food temperature for destruction of motor oxidation process oits. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical science]. 2015, no. 7-2, pp. 106-112. (In Russian)

9. Koval'skii B.I., Sokol'nikov A.N., Petrov O.N., Agrovichenko D.V., Shram V.G. The influence of oxidation on the temperature resistance and anti-wear properties of mineral oils. Izvestiya Tul'skogo gosu-darstvennogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical science]. 2014, no. 11-2, pp. 185-192. (In Russian)

10. Koval'skii B.I., Agrovichenko D.V., Shram V.G.,

Petrov O.N. Control method inrluence of processes of temperature destructions on processes of oxidations and tribotechnical characteristics of the oxidized mineral engine oil. Izvestiya Tul'skogo gosudarstven-nogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical science]. 2014, no. 11-2, pp. 216-225. (In Russian)

БИБЛИОГР

1. Ковальский Б.И., Безбородов Ю.Н., Янович В.С., Малышева Н.Н., Юдин А.В. Результаты контроля термоокислительной стабильности трансмиссионных масел различной базовой основы // Контроль. Диагностика. 2014. N 4 (190). С. 76-78.

2. Петров О.Н., Шрам В.Г., Ковальский Б.И. Предложения по выбору смазочных масел и совершенствованию системы их классификации // Известия Тульского государственного университета. Технические науки. 2014. N 3. С. 42-50.

3. Ковальский Б.И., Сокольников А.Н., Петров О.Н., Шрам В.Г., Агровиченко Д.В. Метод контроля процессов окисления моторных масел различной базовой основы // Мир нефтепродуктов. Вестник нефтяных компаний. 2016. N 2. С. 21-26.

4. Ковальский Б.И., Шрам В.Г., Берко А.В., Кравцова Е.Г. Влияние стали ШХ15 на противо-износные свойства моторных масел при их окислении // Контроль. Диагностика. 2013. N 13. С. 143-145.

5. Метелица А.А., Ковальский Б.И., Малышева Н.Н., Шрам В.Г., Сокольников А.Н., Кравцова Е.Г. Метод контроля влияния стали 45 различной термообработки на процессы самоорганизации минерального масла М10-Г 2К // Контроль. Диагностика. 2013. N 13. С. 69-73.

6. ASTM D. 6335-09: Standard test method for determination of high temperature deposits by ther-mo-oxidation engine oil simulation test. West Con-shohocken (PA, USA): ASTM International; 2009.

Contribution

Kowalski B.I., Afanasov V.I., Shram V.G., Batov N.S. carried out the experimental work, on the basis of the results summarized the material and wrote the manuscript. Kowalski B.I., Afanasov V.I., Shram V.G., Batov N.S. have equal authors rights and bear equal responsibility for plagiarism.

Conflict of interests

The author declares no conflict of interests regarding the publication of this article.

AUTHORS' INDEX Affiliations

Boleslav I. Kowalski

Dr. Sci. (Engineering), Professor Siberian Federal University Institute of Oil and Gas e-mail: labsm@mail.ru

11. Koval'skii B.I., Petrov O.N., Shram V.G., Bezbo-rodov Yu.N., Sokol'nikov A.N. Photometrie methods of eontrot of the proeess of oxidation of synthetie motor oils. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical science]. 2015, no. 7-2, pp. 169-184. (In Russian)

ЕСКИЙ СПИСОК

7. Ковальский Б.И., Сокольников А.Н., Безбородов Ю.Н., Петров О.Н., Шрам В.Г. Контроль термоокислительной стабильности и противоизнос-ных свойств моторных масел // Вестник машиностроения. 2015. N 6. С. 17-23.

8. Ковальский Б.И., Сокольников А.Н., Петров О.Н., Шрам В.Г., Галиахметов Р.Н. Метод контроля влияния продуктов температурной деструкции на процессы окисления моторных масел // Известия Тульского государственного университета. Технические науки. 2015. N 7-2. С. 106-112.

9. Ковальский Б.И., Сокольников А.Н., Петров О.Н., Агровиченко Д.В., Шрам В.Г. Влияние процессов окисления на температурную стойкость и противоизносные свойства минерального масла // Известия Тульского государственного университета. Технические науки. 2014. N 11-2. С. 185-192.

10. Ковальский Б.И., Агровиченко Д.В., Шрам В.Г., Петров О.Н. Метод контроля влияния процессов температурной деструкции на процессы окисления и триботехнические характеристики окисленных минеральных моторных масел // Известия Тульского государственного университета. Технические науки. 2014. N 11-2. С. 216-225.

11. Ковальский Б.И., Петров О.Н., Шрам В.Г., Безбородов Ю.Н., Сокольников А.Н. Фотометрический метод контроля процессов окисления синтетических моторных масел // Известия Тульского государственного университета. Технические науки. 2015. N 7-2. С. 169-184.

Критерии авторства

Ковальский И.Б., Афанасов И.А., Шрам В.Г., Батов Н.С. выполнили экспериментальную работу, на основании полученных результатов провели обобщение и написали рукопись. Ковальский И.Б., Афанасов И.А., Шрам В.Г., Батов Н.С. имеют на статью равные авторские права и несут равную ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

СВЕДЕНИЯ ОБ АВТОРАХ Принадлежность к организации

Болеслав И. Ковальский

Д.т.н., профессор

Сибирский федеральный университет Институт нефти и газа e-mail: labsm@mail.ru

Vladimir I. Afanasov

Senior lecturer Siberian Federal University Institute of Oil and Gas e-mail: skg63@mail.ru

Vyacheslav G. Shram

Ph.D. Sci. (Engineering), Associated professor Siberian Federal University Institute of Oil and Gas e-mail: shram18rus@mail.ru

Nikolay S. Batov

Postgraduate student Siberian Federal University Institute of Oil and Gas e-mail: batov@gmail.ru

Владимир И. Афанасов

Старший преподаватель Сибирский федеральный университет Институт нефти и газа e-mail: skg63@mail.ru

Вячеслав Г. Шрам

К.т.н., доцент

Сибирский федеральный университет Институт нефти и газа e-mail: shram18rus@mail.ru

Николай С. Батов

Аспирант

Сибирский федеральный университет Институт нефти и газа e-mail: batov@gmail.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.