Научная статья на тему 'МЕСТО ТЕПЛОСНАБЖЕНИЯ В СОВРЕМЕННОМ ГОРОДЕ'

МЕСТО ТЕПЛОСНАБЖЕНИЯ В СОВРЕМЕННОМ ГОРОДЕ Текст научной статьи по специальности «Строительство и архитектура»

CC BY
51
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕПЛОВАЯ СЕТЬ / НАДЕЖНОСТЬ / ОТОПЛЕНИЕ / ПУНКТ / УЗЕЛ / ЭНЕРГИЯ / ПОТРЕБЛЕНИЕ / СХЕМА / ЭКСПЛУАТАЦИЯ

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Ермолова Е.А.

Из-за связанной с распадом Советского Союза стагнации промышленного производства, постепенного старения коммунальной инфраструктуры сейчас ставится вопрос об отказе от централизованного теплоснабжения, в частности ликвидации крупных источников и тепловых сетей. Изменился и характер потребителей тепловой энергии. Вопросу места теплоснабжения в условиях современного населенного пункта, внедрению новых технологий на базе энергосберегающих посвящена настоящая работа. Должны решаться вопросы, связанные: с целесообразностью применения ЦТП, комбинированной выработкой тепловой и электрической энергии, применением на тепловых сетях и во внутридомовых системах трубопроводов из антикоррозионных материалов, обоснованием срока эксплуатации и снижением расчетных температур теплоносителя.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Ермолова Е.А.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «МЕСТО ТЕПЛОСНАБЖЕНИЯ В СОВРЕМЕННОМ ГОРОДЕ»

УДК 62

Е.А. Ермолова

МЕСТО ТЕПЛОСНАБЖЕНИЯ В СОВРЕМЕННОМ ГОРОДЕ

Из-за связанной с распадом Советского Союза стагнации промышленного производства, постепенного старения коммунальной инфраструктуры сейчас ставится вопрос об отказе от централизованного теплоснабжения, в частности ликвидации крупных источников и тепловых сетей. Изменился и характер потребителей тепловой энергии. Вопросу места теплоснабжения в условиях современного населенного пункта, внедрению новых технологий на базе энергосберегающих посвящена настоящая работа.

Должны решаться вопросы, связанные: с целесообразностью применения ЦТП, комбинированной выработкой тепловой и электрической энергии, применением на тепловых сетях и во внутридомовых системах трубопроводов из антикоррозионных материалов, обоснованием срока эксплуатации и снижением расчетных температур теплоносителя.

Ключевые слова: тепловая сеть, надежность, отопление, пункт, узел, энергия, потребление, схема, эксплуатация.

Современный город - крупный потребитель топливно-энергетических ресурсов, необходимых для жизнеобеспечения населения, а также нормального функционирования расположенных на его территории промышленных предприятий и учреждений. В XX в. теплоснабжение в городах стало таким же обычным явлением, как и электро-, газо- и водоснабжение, которые возникли задолго до появления первых источников теплоснабжения и тепловых сетей.

В городах увеличивалась протяженность тепловых сетей, вводились локальные котельные как для покрытия технологических нужд, так и для удовлетворения тепловых нагрузок жилищно-коммунального сектора. Из-за связанной с распадом Советского Союза стагнации промышленного производства, постепенного старения коммунальной инфраструктуры сейчас ставится вопрос об отказе от централизованного теплоснабжения, в частности ликвидации крупных источников и тепловых сетей [1]. Изменился и характер потребителей тепловой энергии. Вопросу места теплоснабжения в условиях современного населенного пункта, внедрению новых технологий на базе энергосберегающих и посвящена настоящая работа. Уже имеющиеся подобные публикации представляют собой либо обзор тенденций развития в глобальном контексте [2-4] либо анализ состояния отрасли в других странах и городах: Швеции [5], США [6], Европе в целом [7], городах Саранске [8] и Кемерово [9], Архангельской и Владимирской областях [10, 11].

Обзор иностранной и отечественной литературы

Руководящим документом РМД 41-11-2012 «Устройство тепловых сетей в Санкт-Петербурге» при определении технической политики техническим заказчиком, а также при реконструкции и эксплуатации современных систем теплоснабжения Санкт-Петербурга предписывается руководствоваться положениями СП 124.13330.2012 «Тепловые сети (актуализация СНиП 41-02-2003)», Постановлением Правительства Санкт-Петербурга № 1661 от 25.12.2007, а также следующими принципами:

1.Применение многоконтурных схем транспортировки тепла потребителям, приготовление ГВС в местах потребления через автоматизированные ЦТП, автоматизированные ИТП при децентрализованном теплоснабжении от ТЭЦ и котельных мощностью свыше 50 МВт.

Происходящая в настоящее время ликвидация ЦТП [12] и переход на двухтрубную схему теплоснабжения приводит к высвобождению помещений ЦТП [13]. Сами по себе тепловые пункты становятся объектом изучения с точки зрения, как расчетных режимов их работы [14], так и правильной наладки тепловой сети, обеспечивающей доставку тепловой энергии до них [15].

2.Комбинированная выработка тепловой и электрической энергии для котельных мощностью от 12 МВт и выше.

© Ермолова Е.А., 2020.

Научный руководитель: Стариков Альберт Николаевич - кандидат технических наук, доцент, Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых, Россия.

Теплофикация заметно улучшает использование топлива на тепловых электростанциях вследствие объединения процесса выработки электрической энергии с получением теплоты для централизованного теплоснабжения. Удешевление теплоснабжения возможно и благодаря одновременной выработки энергии на нужды тепло- и холодоснабжения [16, 17]. На ТЭЦ ликвидируется бесполезный отвод теплоты в окружающую среду при превращении химической энергии топлива в электрическую [18, 19].

3.Применение на тепловых сетях и во внутридомовых системах трубопроводов из антикоррозионных материалов [20] и современной запорной арматуры.

В условиях плотной городской застройки и наличия большого числа смежных коммуникаций наиболее перспективны напорные асбоцементные трубы и муфты (по ГОСТ 539-80), биметаллические трубы [21] и оцинкованные стальные трубы из углеродистой стали. Для снижения повреждаемости объектов трубопроводной инфраструктуры следует использовать ингибиторы коррозии [22]. Содержащийся в теплоносителе кислород также способствует развитию внутренней коррозии и отрицательно влияет на состояние трубопроводов тепловой сети [23].

4.Обоснование срока эксплуатации не менее 30 лет, сроков гарантий подрядчика и производителя не менее 10 лет для основных предызолированных элементов тепловой сети (трубы, фасонные изделия, неподвижные опоры, запорная арматура) наличием необходимых документов о качестве (сертификатов, разрешений на применение, паспортов, актов и отчетов о лабораторных и контрольных испытаниях), подтверждающих соответствие действующим нормативным требованиям.

Задача обеспечения заданного периода эксплуатации находится в области нормативного регулирования и исследуется с упором на обоснование мер по поддержанию безаварийной работы [24], а влияние факторов, связанных со строительно-монтажными работами и эксплуатацией, на срок службы оценивается в целой серии работ [25-27].

В России применительно к предызолированным трубопроводам существует СП 41-105-2002 «Проектирование и строительство тепловых сетей бесканальной прокладки из стальных труб с индустриальной тепловой изоляцией из ППУ в ПЭ оболочке» и другие регулирующие документы. Вопросы административного обеспечения нормативного срока службы трубопроводов описаны О.О. Прытковой, которая проанализировала изменения в законодательстве в сфере теплоснабжения России [28].

Добиться практического ужесточения существующей политики обеспечения гарантий подрядчика и производителя можно обязательным введением стандартов 70264433-4-2-2009 «Порядок проведения плановых и внеплановых проверок предприятий по производству труб и фасонных изделий в ППУ изоляции для тепловых сетей» и 70264433-4-8-2012 «Правила технической приемки Заказчиками элементов трубопроводов в ППУ изоляции для тепловых сетей от производителей/поставщиков».

Заметен вклад Д.А. Максимова [29] в методологическое обеспечение работы единой теплоснабжающей организации.

5. Снижение расчетных температур теплоносителя в стояках жилых зданий и во внешних трубопроводах тепловой сети (до теплового пункта) при реконструкции или новом строительстве жилых кварталов в зоне теплоснабжения децентрализованного теплоисточника.

В целом же децентрализация и связанная с ней возможность применения нетрадиционных и возобновляемых тепловых источников - это один из мировых трендов, четко прослеживаемый в современных публикациях [30-34] и поддерживаемый отечественными авторами.

Заключение

Теплоснабжение наряду с вентиляцией, кондиционированием воздуха, газоснабжением и освещением - неизбежный элемент строительно-архитектурного комплекса любого населенного пункта, находящегося в умеренных широтах. Изменение в инфраструктуре теплоснабжения оказывают существенное влияние на городской ансамбль. Внешний облик города способны изменить крышные панели и располагаемые прямо внутри городских кварталов экологичные источники тепловой энергии. Наряду с дальнейшим совершенствованием источников тепловой энергии оптимальным образом должны решаться вопросы, связанные с ее транспортом, в части схемных, режимных и конструктивных мероприятий, всего выделено пять таких вопросов. Применяемые схемы и конфигурация тепловых сетей определяют их размещение на карте города, способ проложения относительно зданий и сооружений и связанные с этим затраты. Некоторые схемные решения, такие как устройство дополнительных резервных связей (перемычек) между линиями тепловых сетей, могут привести к отчуждению дополнительного пространства, ликвидация ЦТП, наоборот, - к высвобождению полезных площадей. Установка сильфонных компенсаторов позволит снизить количество видимых парений, их меньшие габариты оказывают влияние на возможную трассу прокладки тепловой сети. Показана деятельность отрасли с позиций технического регулирования. Подавляющее число отечественных авторов в качестве способов энергосбережения отмечают учет тепло-

вой энергии, внедрение систем энергетического менеджмента, а особенно - более точный учет потерь тепловой энергии при ее транспортировке. У нас недостаточное внимание уделяется анализу аварийных ситуаций, разработке мер по их предупреждению, локализации и ликвидации последствий: не удалось выявить даже достаточное количество научных работ по этой теме. Децентрализация и связанная с ней возможность применения маломощных тепловых источников на возобновляемом топливе - это один из мировых трендов, четко прослеживаемый в современных публикациях и, к сожалению, также незаслуженно упускаемый из виду в русскоязычных статьях.

В условиях сурового климата основным отличием теплоснабжения от других средств бытового жизнеобеспечения являются повышенные требования к бесперебойности, т.е. надежности. Надежность так или иначе имеет место во всех исследованиях. В схемах теплоснабжения городов вопросы надежности рассматриваются в следующих направлениях: кроме упомянутого анализа аварийных ситуаций, это обоснование гидравлического режима, температурного графика и способов регулирования теплопотребления и другие направления. В схеме теплоснабжения города должны найти отражение вопросы неудовлетворительного технического состояния тепловых сетей и невозможности их функционирования при соблюдении нормативного температурного графика, причинами чего являются: затратный принцип образования тарифов, отсутствие повсеместного учета тепла, не проведение испытаний на тепловые потери. Все это делает теплоснабжение особой отраслью ЖКХ не только с позиции значительной изношенности инфраструктуры, но и с точки зрения современных научных знаний и определяет его особую роль в жизнеобеспечении современного города.

Библиографический список

1.Chicherin S.V. Problems of Omsk's District heating system and refurbishment // Cieplownictwo, ogrzewnictwo, wentylacja. - 2018. -Vol. 4, no. 49. - P. 127-130.

2.Щелоков Я.М. Актуальность наилучших доступных технологий для теплоснабжения в ЖКХ // Энергосбережение. - 2018. - Т. 2, № 2. - С. 26-33.

3.Максимова Д.А. К вопросу о современном состоянии отрасли теплоснабжения // Актуальные вопросы научных исследований: материалы XVIII междунар. науч.-практ. конф. / Науч.-исслед. центр «Диалог». - 2018. - С. 40-43.

4.Lake A., Rezaie B., Beyerlein S. Review of district heating and cooling systems for a sustainable future // Renewable and Sustainable Energy Reviews. - 2017. - No. 67. - P. 417-425.

5.Werner S. District heating and cooling in Sweden // Energy. - 2017. - No. 126. - P. 419-429.

6.GIS-based assessment of the district heating potential in the USA / H.C. Gils, J. Cofala, F. Wagner, W. Schöpp // Energy. - 2013. - No. 58. - P. 318-329.

7.Trends of European research and development in district heating technologies / M.A. Sayegh, J. Danielewicz, T. Nannou, M. Miniewicz, P. Jadwiszczak, K. Piekarska, H. Jouhara // Renewable and Sustainable Energy Reviews. - 2017. -No. 68. - P. 1183-1192.

8.Прогнозирование и оценка теплопотерь в закрытой системе теплоснабжения на примере ОАО «Са-ранскТеплоТранс» / H.C. Ларин, Д.В. Кузнецов, П.Н. Петрушкин, А.А. Фролов // Студент. Аспирант. Исследователь.

- 2018. - № 1 (31). - С. 164-170.

9. Дреер А.Е. Производственный контроль системы центрального горячего водоснабжения на котельной г. Кемерово // Научные исследования: теория, методика и практика: материалы IV междунар. науч.-практ. конф. - 2018. -С. 288-289.

10. Сушко Д.А., Мельников В.М. Моделирование системы теплоснабжения поселка Вяткино Владимирской области // Вестник магистратуры. - 2018. - № 2-2 (77). - С. 39-41.

11. Гущина К.О. Развитие биоэнергетики в Архангельской области // Аллея науки. - 2018. - Т. 3, № 1 (17). - С. 389-392.

12. Дубсон М.И. Методы и способы контроля за техническим состоянием и эксплуатацией тепловых сетей и эффективной работой ИТП на опыте предприятия «Ригас Силтумс» // Новости теплоснабжения. - 2008. - № 4 (92). -C. 14-20.

13. Шарапов А.И., Пешкова А.В. Повышение энергоэффективности теплоснабжения жилого здания // Особенности современного этапа развития естественных и технических наук: материалы междунар. науч.-практ. конф. - 2018.

- С. 198-201.

14. Стенин В.А. К вопросу о регулировании системы теплоснабжения // Актуальные проблемы гуманитарных и естественных наук. - 2018. - № 2-2. - С. 30-33.

15. Технология разработки эксплуатационных режимов крупных систем теплоснабжения на базе методов многоуровневого теплогидравлического моделирования / Н.Н. Новицкий, З.И. Шалагинова, В.В. Токарев, О.А. Гребнева // Известия Российской академии наук.

Энергетика. - 2018. - № 1. - С. 12-24.

16. Оценка прогнозируемого энергозамещения зданий с использованием систем солнечного тепло- и холодо-снабжения / Т.В. Щукина, Д.М. Чудинов, В.В. Шичкин, И.А. Потехин, Р.А. Шепс // Жилищное хозяйство и коммунальная инфраструктура. - 2018. - № 1 (4). - С. 54-61.

17. Теплонасосные системы теплохладоснабжения объектов московского метрополитена / Г.П. Васильев, В.Ф. Горнов, П.В. Шапкин, М.И. Попов, А.А. Бурмистров // АВОК: Вентиляция, отопление, кондиционирование воздуха, теплоснабжение и строительная теплофизика. - 2018. - Т. 2, № 2. - С. 14-25.

18. Chicco G., Mancarella P. From cogeneration to trigeneration: profitable alternatives in a competitive market // IEEE Transactions on Energy Conversion. - 2006. - No. 21 (1). - P. 265-272.

19. Лушин А.С., Извеков А.В. Оценка влияния завышения температуры сетевой воды в подающем трубопроводе водяной тепловой сети на экономичность теплофикационной турбины ТЭЦ // Энергетик. - 2018. - № 2. - С. 4143.

20. Чичерин С.В. Применение гибких предизолированных труб для теплоснабжения в России // Энергетик. -

2017. - № 12. - С. 20-21.

21. Возможность использования труб из двухслойных сталей для прокладки тепловых сетей / Ю.В. Балабан-Ирменин, А.М. Рубашов, И.Г. Родионова, А.Н. Рыбкин // Теплоэнергетика. - 2003. - № 12. - С. 39-41.

22. Очков В.Ф., Орлов К.А., Разгуляев Н.И. Вода в теплоснабжении и что-то вместо нее // Водоочистка. Водо-подготовка. Водоснабжение. - 2018. - № 1 (121). - С. 56-62.

23. Богданова О.С., Бирюзова Е.А. Коррозионная опасность изменения концентрации кислорода в сетевой воде // Наука и научный потенциал - основа устойчивого развития общества: материалы междунар. науч. -практ. конф. -

2018. - С. 127-129.

24. Збараз Л.И., Чичерин С.В. Методика оценки ущерба от аварийной ситуации в системе теплоснабжения // Науковий вюник будшництва. - 2017. - № 4 (90). - С. 218-224.

25. Froling M., Holmgren C., Svanstrom M. Life cycle assessment of the district heat distribution system // The International Journal of Life Cycle Assessment. - 2004. - No. 9 (2). - P. 130-136.

26. Froling M., Svanstrom M. Life cycle assessment of the district heat distribution systemPart 2: network construction // The International Journal of Life Cycle Assessment. - 2005. - No. 10 (6). - P. 425-435.

27. Определение тепловых потерь в закрытой системе теплоснабжения / H.C. Ларин, Д.В. Кузнецов, П.Н. Пет-рушкин, А.А. Фролов // Студент. Аспирант. Исследователь. - 2018. - № 1 (31). - С. 171-175.

28. Прыткова О.О. Анализ изменений в законодательстве в сфере теплоснабжения РФ // Современные технологии: актуальные вопросы, достижения и инновации: материалы XIII междунар. науч.-практ. конф. - 2018. - С. 6264.

29. Максимова Д.А. Единые теплоснабжающие организации: проблемы и стратегические направления развития деятельности // Наука сегодня: вызовы и решения: материалы междунар. науч.-практ. конф. - 2018. - С. 126-128.

30. Kammen D.M., Sunter D.A. City-integrated renewable energy for urban sustainability // Science. - 2016. - No. 352 (6288). - P. 922-928.

31. Atam E., Helsen L. Ground-coupled heat pumps: Part 1 - Literature review and research challenges in modeling and optimal control // Renewable and Sustainable Energy Reviews. - 2016. - No. 54. - P. 1653-1667.

32. Идиева А.А., Пардаева Ш.С., Халикова А.М. Использование геотермальной энергии - ключ прогресса энергетической сферы // Инновационное развитие: потенциал науки и современного образования: материалы междунар. науч.-практ. конф. - 2018. - С. 162-164.

33. Геотермальное теплоснабжение в московском регионе: температурный потенциал и рациональная глубина термоскважин / Г.П. Васильев, В.Ф. Горнов, А.Н. Дмитриев, М.В. Колесова, В.А. Юрченко // Теплоэнергетика. - 2018. - № 1. - С. 85-92.

34. Groundwater source heat pump application in the heating system of Tibet Plateau airport / J. Zhen, J. Lu, G. Huang, H. Zhang // Energy and Buildings. - 2017. - No. 136. - P. 33-42.

ЕРМОЛОВА ЕКАТЕРИНА АЛЕКСЕЕВНА - магистрант, Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых, Россия.

i Надоели баннеры? Вы всегда можете отключить рекламу.