УДК 66.047: 51-7
Профессор А.В. Жучков1, доцент А.В. Прибытков2,
3 2
докторант И.В. Черемушкина , аспирант А.Н. Мартеха
1 (Воронеж. гос. ун-т. инж. технол.) кафедра машин и аппаратов химических производств, тел. (473) 249-91-13
2(Воронеж. гос. ун-т инж. технол.) кафедра машин и аппаратов пищевых производств, тел. (473) 255-38-96
3(Воронеж. гос. ун-т инж. технол.) кафедра микробиологии и биохимии, тел. (473) 255-55-57
Математическое моделирование процесса сушки модифицированного корма
Рациональное аппаратурное оформление процесса сушки и снижение затрат энергии на его осуществление является актуальной задачей. В данной работе разработана математическая модель процесса сушки модифицированного корма в виброкипящем слое.
Efficient hardware design of the drying process and reduce energy costs for its implementation is an important task. In this paper developed the mathematical model of the drying process the modified feed in vibroboiling layer.
Ключевые слова: сушка, модифицированный корм, математическая модель.
Рассматривается сушильная установка для модифицированного корма с полной рециркуляцией воздуха (рисунок 1).
3__
2 /
1 /
6 У b
Ж
/
охл Ша
f
Т
-Y
¿и&г
11 / \ ю
Рисунок 1 - Принципиальная схема сушильной установки
1 - сушильная камера; 2 - штуцер для подачи влажного сырья; 3 - штуцер для выхода влажного воздуха; 4 - перфорированные виброполки;
5 - штуцер для выхода высушенного сырья;
6 - штуцер для подачи воздуха в сушильную камеру; 7 - бункер для высушенного сырья; 8 - охладитель воздуха; 9 - влагоотделитель; 10 - циркуляционный вентилятор; 11 - калорифер
© ЖучковА.В., Прибытков A.B., Черемушкина И.В., Мартеха А.Н., 2013
Влажный корм через штуцер 2 подается в сушильную камеру и двигается по вибрирующим полкам 4 в нижнюю часть сушильной камеры. Через штуцер 5 он выводится из аппарата и поступает в бункер-накопитель 7. Воздух подается через штуцер 6, а выводится через штуцер 3. В аппарате воздух преимущественно проходит через от -верстия в полках перпендикулярно движущемуся слою сырья. Далее он поступает в охладитель 8, где охлаждается до температуры меньшей точки росы (рисунок 2). /
2 - >4.
4о=100%
Рисунок 2 - 1-х - диаграмма процесса сушки сырья: 1-2 - подогрев воздуха в калорифере 4; 2-3 - сушка сырья в сушильной камере 1; 3-4-1 - охлаждение воздуха в охладителе 8.
Капли влаги, образующейся в воздухе при его охлаждении, отделяются во влагоотде-лителе 9, а воздух вентилятором 10 подается через калорифер 11 в сушильную камеру 1.
На рисунке 2 представлена 1-х- диаграмма процесса сушки модифицированного корма.
Рассмотрим процесс сушки, протекающий на отдельной вибрирующей полке сушильной камеры (рисунок 3).
7
к
ГЦ II
X
(к
\ I
I I I
Уеоз Т х Рисунок 3 - Движение сред на полке
Влажное сырье в количестве Он при вла-госодержании Ж„ поступает на вибрирующую полку и перемещается по ней слева направо со средней скоростью ьт. Воздух проходит через слой снизу вверх. Начальная и конечная тем-
гг/ гт//
пературы воздуха равны Т и Т , влагосодержа-
/ // НИЯ - X, X .
Вибрация полок обеспечивает устойчивое движение сырья через аппарат, а также способствует существенному увеличению коэффициентов тепло- и массоотдачи и интенсификации процесса сушки.
При постановке задачи принимаем следующие допущения:
- высота слоя корма постоянна;
- средняя скорость направленного движения частиц корма постоянна;
- поля температуры и влагосодержания в частице корма однородны;
- частицы корма интенсивно перемешиваются в вертикальном направлении, обеспечивая постоянство температуры частиц по высоте слоя;
- тепло- и влагопроводность частиц сырья не оказывает существенного влияния на процесс сушки. Основными факторами, определяющими интенсивность сушки, являются процессы тепло- и массоотдачи на поверхности частиц сырья.
При известной средней скорости частиц расход корма определяется по формуле:
От = ут ■ Ь ■ к(1 -е)рт
(1)
где ьт - средняя скорость движения частиц корма; Ь - ширина полки; к - высота слоя корма на полке; е - рабочая порозность слоя кор-ма; рт - плотность корма.
Удельная поверхность слоя корма определяется формулой:
/ = п • К, (2)
1 з
где п - количество частиц корма в 1 м слоя; К - площадь поверхности одной частицы.
60 -В) (3)
п = ' 3
л<! К. =пс12,
(4)
где < - средний эквивалентный диаметр частиц корма.
С учетом (3), (4) из формулы (2) следует:
6(1 -е)
/ = -
(5)
Выделим элемент ^^у (рисунок 3) и составим для него уравнение теплового баланса:
с -V -р ■ <2 ■ <Т = а(&- Т) • I ■ <2 ■ <у, (6)
воз воз ' воз ^ /и ✓ ' 4 '
где свод - теплоемкость воздуха; 1)воз - скорость воздуха (вертикальная составляющая на свободное сечение камеры); рвоз - плотность
воздуха; Т - температура воздуха, К; а - коэффициент теплоотдачи от воздуха к поверхности частиц; 0 - температура частиц корма (зависит от 2, но не зависит от у).
Разделив выражение (6) на ^^у, получим:
ёТ а/
<у
(0-Т)
(7)
-О -V
воз / воз воз
Начальные условия: Т=при у =0. Разделяя переменные и интегрируя (7), получим:
' а/ Л (8)
Т = 0 + (Т'-0)ехр
Рвоз
- У
V воз г воз воз
Температуру воздуха на выходе из слоя получаем из (8) подстановкой у=к:
Ти =0 + (Т7 -0)ехр
а- / • к
(9)
dz•dy:
V воз г воз воз У
Уравнение массоотдачи для элемента
рв03 • ий03 • <Х<2 = (Рш - Рп ) • / • <2 • <у, (10)
где х - влагосодержание воздуха; Р - коэффициент массоотдачи; Кд - газовая постоянная для пара (для водяного пара Кд=461 Дж/кгК);
Т - средняя абсолютная температура; Рп - парциальное давление пара в воздухе;
Pпw - парциальное давление пара у поверхности частиц.
Величину Pпw полагаем равной равновесному давлению пара для температуры частицы 0 . Величина влагосодержания x может быть рассчитана по формуле [1] через давление Pп:
x = 0,622- ,
П - Pп
где П - давление в сушильной камере (П~105 Па)
Полная Pп <<П из (11) получим:
x = 0,622 ^, П
(11)
(12)
Разделив уравнение (10) на dy•dz с учетом (12), получим:
dPГ7
№
<у 0,622реоз ■оеоз • Яп • Т
= (Pпw - Pп)(13)
Решение уравнения (13) при начальном
условии Pп(0)=Pп имеет вид:
^ = + (РП - ^ )ехР
Р-/• П
0,622рвоз ■ивоз ■ Кп ■ ТУ, На выходе из слоя (у=k):
P^n = PПw + № - Pпw )ехр
Р-/• П • к
0,622р и ■ Кп1 ,
5 г еоз еоз П У
(14)
(15)
Для определения зависимости температуры корма 0 от продольной координаты 2 запишем уравнения теплового баланса для элемента к^:
С ■ ° ■ <© = сеоз • рвоз ■ иеоз (Т'тз - Т'тз) • Ь<2-
+Реоз 'Ч03 (х' - х") ■Ь ■Гй2,
(16)
где г - теплота парообразования воды.
С учетом (12), (14), (15) из уравнения (16) получаем:
<& = СеЮ 'Рвоз '"воз 'Ь + (Т / _@) <2 ^
1 - ехр
Г / •к Л V Сеоз Рвоз ^еоз У
(17)
+0,622 'Г'Ь (Pп - PПw)
От • ст • П
1 - ехр
Р-/• к • П
0,622р -и • К„ • Т ,
> ' еоз еоз П у
Зависимость парциального давления пара у поверхности частицы Рпш от абсолютной температуры частицы 0 определяется соотношением [2]:
~ ^ ' ехр
К
1__1
Т' ®
V я ^
, (18)
где Тн - температура насыщения пара для давления пара Рп.
Начальные условия для уравнения (17):
0 (0)= 0Д (19)
Решение дифференциального уравнения (17) при начальном условии (19) можно представить в неявном виде:
< ©
2 =
[ д(Т' _©) + л2(Plп -PПw)'
где
А _ Сео3 Рео3 °еоз Ь
1 - ехр
( а-/■ к Л
V Своз Реоз ^еоз У
А2 = 0,622-
Рвоз -V воз • Г • Ь
Ст ■ ст ■ П
(20)
,(21)
(22)
1 - ехр
Р-/• к • П
0,622рв03 -ив03 • Кп • Т ,
Зависимость Pпw от температуры корма
0 определяется соотношением (18).
Из-за сложного вида подинтегральной функции интеграл (20) не берется в элементарных функциях, но он может быть вычислен с использованием одного из численных методов [3].
Далее приведен расчет процесса сушки. Определяется расход воздуха через сушильную установку:
(23)
О = • I ,
воз ТН с'
где Отн - расход влажного сырья на входе в
сушилку; 1С - удельный расход воздуха.
Скорость воздуха на свободное сечение аппарата:
и = , (24)
Рвоз ■ Ь ■ Ь
где рвоз - плотность воздуха, кг/м3; Ь - ширина камеры, м; Ь - длина камеры, м.
По формуле (5) определяется удельная площадь поверхности частиц.
Из соотношения (11) находится парциальное давление водяного пара в воздухе на входе в слой (после калорифера):
х + 0,622
(25)
где П - атмосферное давление, Па.
Определяется коэффициент диффузии водяного пара для рабочих условий [1]:
В = Д,
Т
воз
Т
(26)
где О0 - коэффициент диффузии водяного пара в воздухе при нормальных условиях (В0=2,19Т0-5 м2/с); Твоз - начальная температура воздуха (на входе в слой), К; Т0=273 К.
Число Рейнольдса для средней скорости воздуха:
" ' (27)
Яе = ^.
Число Рейнольдса для колебательного движения частиц:
2ж-у-А■ё
Ке еиб =-
(28)
Число Нуссельта для колебательного движения частиц:
Ни = 1,94 Яе0,21 Яе0:12
(г \-0'5
V *м1 У
(29)
На основе аналогии процессов тепломассообмена полагаем:
(30)
ИиО = Ни,
где НиВ = -
В
- диффузионное число Нус-
сельта.
Коэффициенты тепло- и массоотдачи:
а =-
Ии ■Хес ~ё~
(31)
где Хвоз - теплопроводность воздуха, Вт/мК.
Иип ■ В
Р=-
ё
(32)
где ё - эквивалентный диаметр частиц, м;
Ориентировочно принимаем среднее влагосодержание корма на решетке:
ш « ^, (33)
" 2
где Жн - начальное влагосодержание корма.
Тогда средний массовый расход корма будет равен:
Ш +1
От = о„
ш +1
(34)
Из уравнения (17) определяем темпера -
туру мокрого термометра
ё& ^0 ёг
при
Из(17)следует:
Л(Т/ -0) + А2(Рп - Рпш (0м)) = 0. (35)
Нелинейное алгебраическое уравнение (35) решается средствами Mathcad относительно температуры 0М.
Выполняется численное интегрирование в Mathcad с учетом зависимости (18). Определяется протяженность начального участка слоя Ьн из условия:
®к -0,01(®м -®н). (36) При всех практически интересных режимах сушки Ьн <Ь. Таким образом, высушиваемый корм приобретает температуру мокрого термометра 0М на верхней полке.
На всех последующих полках 0 = 0М .
Конечные значения «температуры 0», иИ
парциального давления Рп , влагосодержания
х2 определяются непосредственно по формулам (7), (15), (11).
Определяется длина участка Ьк верхней полки, на котором температура корма
0 = :
и = ь - и
(37)
• ь
(38)
Средняя температура воздуха на выходе из слоя корма:
Т11 — —
- ь
1емпература воздуха 1К определяется здесь по (9) для 0 = 0М :
{ Т"(г )ёг + Т/
Р// = I
Пер т
]>я'( г) ёг + р/
(39)
Для Р^ = Рдср по формуле (11) определяется конечное среднее влагосодержание па -ра хср// на выходе из слоя корма.
Конечное влагосодержание корма на выходе из решетки:
ш = шн - 1еш +1)(хр - х').
(40)
Уточняется среднее влагосодержание корма:
Ш + ш
Ш = н
ср
2
(41)
На рисунках 4-9 представлены результаты моделирования процесса сушки модифицированного корма.
Как видно из рисунка 4, протяженность участка Ьн, на котором температура корма изменяется от начальной до температуры мокрого термометра, равна 0,46 м при общей длине решетки 1 м.
Рисунок 4 - Распределение температуры корма по длине решетки
Моделирование других, интересных в техническом отношении режимов, позволяет утверждать, что температура модифицированного корма достигает температуры влажного термометра на верхней полке. На нижних полках можно считать что © = ©м, что существенно упрощает задачу.
Распределение температуры воздуха и пар -циального давления пара на выходе из решетки по ее длине представлены на рисунках 5 и 6.
Рисунок 5 - Распределение температуры воздуха на выходе из решетки по ее длине
Р§2
0 0.1 0.2 0.3
0.4 0.5
Рисунок 6 - Распределение парциального давления пара на выходе из решетки поее длине
Усредненные параметры воздуха на выходе из слоя (после перемешивания):
Т'тз = 382,4К; Р^ = 6284Па; х// = 0,041. Конечное влагосодержание корма Ш=0,092
08
Рисунок 7 - Распределение температуры корма по длине решетки при 0^=0.03 кг/с
Т82 385
0 0.2 0.4 0.6
Рисунок 8 - Распределение температуры воздуха на выходе из решетки по ее длине при 0^=0.03 кг/с
6x10
5x10
4x10
3x10
45
315
310
305
300
295
290
386
385.5
384.5
45
7x103 6x103 5x103
2x103-
0 0.2 0.4 0.6 0.8 1
zg
Рисунок 9 - Распределение парциального давления пара на выходе из решетки по ее длине при 0ТН=0.03 кг/с
Увеличение расхода корма Отн до 0,03 кг/с приводит к увеличению начального участка Ьн до 0,886 м. Соответственно изменяются графики зависимости температуры сырья и выходных параметров воздуха (рисунки 7-9).
ЛИТЕРАТУРА
1 Стабников, В. Н. Процессы и аппараты пищевых производств [Текст] / В. Н. Стабников, В. И. Баранцев. - М.: Агропромиздат, 1985. - 503 с.
2 Муштаев, В. И. Сушка в условиях пневмотранспорта [Текст] / В. И. Муштаев, В. М. Ульянов, А. С. Тимонин. - М.: Химия, 1984. - 232 с.
3 Бахвалов, Н. С. Численные методы [Текст] /Н. С. Бахвалов. - М.: Бином, 2010. - 636 с.
REFERENCES
1 Stabnikov, V. N. Processes and equipment for food production [Text] / V. N. Stabnikov, V. I. Barantsev. - M.: Agropromizdat, 1985. - 503 p.
2 Mushtaev, V. I. Drying in pneumatic conveying [Text] / V. I. Mushtaev, V. M. Ulyanov, A. S. Timonin. - M.: Himiya, 1984. - 232 p.
3 Bahvalov, N. S. Numerical methods [Text] / N. S. Bahvalov. - M.: Binom, 2010. - 636 p.