Научная статья на тему 'Математическая модель формирования видеоданных, получаемых с использованием сканирующей съемки'

Математическая модель формирования видеоданных, получаемых с использованием сканирующей съемки Текст научной статьи по специальности «Математика»

CC BY
440
116
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ / СКАНИРУЮЩАЯ СЪЕМКА / СМАЗ ИЗОБРАЖЕНИЙ / ПАРАМЕТРЫ СМАЗА / REMOTE SENSING / SCANNING PHOTOGRAPHY / BLUR IMAGE / THE BLUR PARAMETERS

Аннотация научной статьи по математике, автор научной работы — Кузнецов Павел Константинович, Мартемьянов Борис Викторович

Рассматривается вопросы формирования видеоданных, получаемых при сканирующей съемке сцены с помощью ПЗС матриц, работающих в режиме временной задержки и накопления. Построены точная и упрощенная математические модели возникновения смаза изображений при указанном виде съемки. Показаны области применимости предложенных моделей.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

MATHEMATICAL MODEL OF VIDEO DATA ACQUISITION WITH THE APPLICATION OF SCANNING CCD MODE

The article discusses the issues of forming the video data obtained by scanning the shooting scene using a CCD matrix operating mode TDI. Exact and simplified mathematical model of the occurrence of image blur at the specified mode is offered. The range of applicability of the proposed models is shown.

Текст научной работы на тему «Математическая модель формирования видеоданных, получаемых с использованием сканирующей съемки»

УДК 004.932

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ФОРМИРОВАНИЯ ВИДЕОДАННЫХ, ПОЛУЧАЕМЫХ С ИСПОЛЬЗОВАНИЕМ СКАНИРУЮЩЕЙ СЪЕМКИ

© 2014 П.К. Кузнецов1, Б.В. Мартемьянов2

1 Самарский научный центр РАН 2 Самарский государственный технический университет

Поступила в редакцию 22.12.2014

Рассматривается вопросы формирования видеоданных, получаемых при сканирующей съемке сцены с помощью ПЗС матриц, работающих в режиме временной задержки и накопления. Построены точная и упрощенная математические модели возникновения смаза изображений при указанном виде съемки. Показаны области применимости предложенных моделей.

Ключевые слова: дистанционное зондирование земли, сканирующая съемка, смаз изображений, параметры смаза.

ВЕДЕНИЕ

В статье рассмотрена задача построения математической модели процесса формирования видеоданных (наблюдаемых цифровых изображений) с помощью оптико-электронного преобразователя (ОЭП), выполненного на основе работающего в режиме временной задержки и накопления (ВЗН) матричного фотопреобразователя (ПЗС линейки). ОЭП такого типа применяются, например, в системах дистанционного зондирования Земли (ДЗЗ) [1] с целью повышения чувствительности ОЭП при формировании изображений сканированием сцены «заметанием» («push broom»). Одним из недостатков такой методики формирования видеоданных является возникновение "размытости» наблюдаемых изображений при рассогласовании режима работы ПЗС матриц, составляющих ОЭП, и режима работы системы управления сканированием (СУС). Этот дефект видеоданных в литературе называется «смазом видеоданных», иногда, что не совсем строго, «сма-зом изображения» [2].

На каждом такте работы ПЗС матрицы в режиме ВЗН с последней (выходной) строки матрицы, через выходной регистр, считывается ровно одна строка видеоданных. Остальные строки матрицы используются только для накопления зарядовых пакетов (ЗП), снимаемых с выходной строки матрицы.

При точной синхронизации скорости переноса зарядового пакета (СПЗ) вдоль столбцов матрицы со скоростью движения изображения (СДИ), проецируемого изобразительной систе-

Кузнецов Павел Константинович, доктор технических наук, профессор, начальник отдела динамики и управления движением. E-mail: [email protected] Мартемьянов Борис Викторович, кандидат технических наук, доцент кафедры «Вычислительная техника».

мой (ИС) на ПЗС матрицу, накопление ЗП достигает своей цели: увеличивается отношение «полезный сигнал/шум».

Возможная несогласованность работы аппаратуры ОЭП и СУС, проявляющаяся в несовпадении векторов СПЗ и СДИ, приводит к искажению формируемых видеоданных. Если такое несовпадение существует, то каждый пиксел ПЗС матрицы накапливает сигнал с некоторой вытянутой по форме площадки изображения, размеры которой больше площади входной апертуры пиксела ПЗС матрицы. Поскольку накапливаемый ЗП переносится вдоль столбцов в пикселы последующих строк матрицы, то в процессе продвижения ЗП по матрице размеры указанной площадки на изображении увеличиваются, то есть смаз формируемых видеоданных «накапливается». В результате в видеоданных появляется искажение, имеющее вид ориентированной в определенном направлении размытости наблюдаемого изображения, что, естественно, ухудшает этого изображения.

Далее, там, где это не приводит к путанице понятий, видеоданные мы также будем называть «изображением». В частности, будем говорить о «смазе изображения», понимая под этим смаз, накопленный в видеоданных.

Предложенная ниже математическая модель имеет основной целью определение характеристик и параметров смаза изображения.

МОДЕЛЬ ФОРМИРОВАНИЯ ВИДЕОДАННЫХ

Рассмотрим процесс формирования видеоданных при съемке наблюдаемой сцены.

Обозначим Е(%, у) энергетическую функцию распределения освещенности изображения (ФРО), сформированного ИС на плоскости изоб-

ражений (ПИ), на которой установлены ПЗС матрицы ОЭП.

Е(х, у) е 0 < Е(х,у) < Ещах

ПЗС матрица регистрирует изображение, накапливая энергию освещенности в ячейках матрицы в виде ЗП, и преобразует их в видеосигнал. В процессе регистрации изображение ¿(.V. движется по ПИ. Движущееся изображение представляется, при математическом моделировании, с помощью динамической ФРО:

где воемя Г ё

V, и - компоненты вектора V СДИ: .

Требуемое время накопления ЗП обеспечивается использованием режима ВЗН. В режиме ВЗН время экспозиции определяется количеством q строк накопления (активно работающих строк накопления) в ПЗС матрице.

Здесь считается, что элементарная ячейка ПЗС матрицы имеет форму квадрата со стороной ¡5 [мм] (5 - «характерный размер» ПЗС ячейки). Положение отдельной ПЗС ячейки в пределах матрицы (рисунок 1) определено парой целочисленных координат у), где I - номер

столбца, (I £ {1, ...,71}); /

номер строки

ПЗС ячеек матрицы.

ПЗС матрица в режиме ВЗН работает тактами, длительность которых обозначена какТ- На интервале длительности каждого такта ЗП во всех ячейках матрицы получают дополнительные заряды и в конце такта переносятся из каждой ячейки с номером (¿,_/) в ячейку с номером

(Х,] — 1). Строка ПЗС матрицы с номером

/ = 1 является выходной строкой матрицы. Заряд, накопленный в ее ячейках (г, 1) далее не

переносится, а преобразуется в видеосигнал.

На рис. 1 схематично представлена структура ПЗС матрицы, расположенной в ПИ, и «привязанная» к ней система координат (СК).

Начало СК (С^, у} = (0,0)) совпадает с

центром пиксела (£,/) = (1,1}ПЗС матрицы. Ось Ох этой системы проходит через центры пикселов выходной строки матрицы и ориентирована в сторону возрастания номеров столбцов. Ось Оу проходит через центры пикселов столбца с номером 1 (I = 1) и ориентирована в сторону возрастания номеров столбцов.

На рис. 1 использованы следующие обозначения:

V = {V ,и) - вектор СДИ;уг = (0, -

вектор средней СПЗ ПЗС матрицы, ориентированный точно вдоль столбцов ПЗС матрицы, то есть параллельно оси Oy СК, но в противоположном направлении; осреднение скорости производится за время перемещения зарядового пакета от ячейки (7, д) до ячейки (¿, 1).

- область (окно) анализа на ПИ, границы которой совпадают с границами входной апертуры сЬоточувствительной зоны отдельной ячейки ПЗС матрицы. Здесь считается, что

окно анализа имеет форму квадрата, координаты границ которого имеют значения: по оси Ox -

— 1 + 0,5} [мм], по оси Оу -¿0 _ 1 = 0..5) [мм]. Далее окно анализа будем называть «апертурой пиксела

О,;)» ПЗС матрицы.

Зарядовый пакет (ЗП), пересылаемый по ячейкам столбца с номером ¿, обозначим как

сади) (свди)>о},

где 0 и I - идентификаторы конкретного ЗП,

Рис. 1. Система координат плоскости изображений с привязкой к ПЗС матрице

находящегося на такте 0 работы ПЗС матрицы в выходной ячейке (д 1) и к моменту окончания такта б готового к преобразованию в видеосигнал. Собственно преобразование СН(9,1,у ) в видеосигнал осуществляется на такте с номером 0 + 1;

} - номер ПЗС ячейки в столбце ¿, в которой находился данный ЗП на такте с номером

(0-У+1), 1 <)<<?.

Номер 0 такта работы ПЗС матрицы отсчи-тывается с момента начала съемки маршрута,

9 Ё {1, 0}, 0- количество строк в видеоданных; 0 обычно принимается, для простоты, равным количеству тактов, отработанных ПЗС матрицей в процессе съемки маршрута. Заметим, что количество полноценно сформированных строк изображения будет не более, чем 0 — Ц + 1, поскольку на формирование первой из них должно быть затрачено Ц тактов.

Зарядовый пакет накапливается тактами. Пеовый такт накопления происходит в ячейке и совпадает по времени с тактом

работы ПЗС матрицы. Далее ЗП,

в процессе своего накопления, проходит последовательно все активированные для накопления строки ПЗС матрицы, заканчивая процесс накопления в строке } = 1 (ячейка 1)). То есть в процессе накопления ЗП индекс] пробегает значения от q до 1. Номер такта накопления обозначим как к: 1 < к < д. Тогда / = Ц — к + 1.

В принятых обозначениях итерационная процедура накопления зп СВД г,]) может быть представлена в виде:

СНвЛ,Цк)У -СЬ(в, и ОТО + 1}) + е(_в, и(кУ) (1)

начальный заряд ЗП: СК{6, ¿, = 0; где в(9г1г][кУ) - дополнительный заряд, накопленный в ЗП в ячейке ](_&)) на такте к накопления на интервале времени

[т(в-)(к)), т(0-ЯЮ+1)]

Здесь считаем, что самый первый такт 0=1 работы ПЗС матрицы приходится на временной интервал [О, Т].

Из (1) следует, что зарядовый пакет

£, 1), снимаемый с выходной ячейки

(I, 1) матрицы в момент временитв, может быть вычислен как сумма дополнительно накопленных зарядов е (в, ] ):

= eiB.i.mx (2)

Видеосигнал

I(i,ey /(.,.} е (ОД, ...,Nmax}

получается оцифровыванием зарядового пакета (2):

I&e} = NAD(Ch(jBli,D), (3)

где (■) - оператор преобразования электрического заряда в цифровой целочисленный код;

Nmax - максимальное значение используемого в аппаратуре цифрового кода; в рассматриваемой аппаратуре используется 10-разрядный

двоичный код, поэтому — 1023- Важ-

Jr tUwb

ным свойством оператора jV^q (') является его монотонность.

Рассмотрим процесс накопления дополнительного заряда € (0, ¿, j).

На рис. 2 показан процесс формирования областей, на которых изображение интегрируется в пространстве и времени при накоплении заряда € (в, I,_/(&)). Прямоугольником

7l(i, ](кУ) показано положение апертуры ПЗС

ячейки (¿j_/(&)) на плоскости изображения в начале такта накопления с номером

к: 1 < k < д, то есть в ячейке (i,/} = (¿,<7 - к + 1).

Другими прямоугольниками, обозначенными как 7Г(¿jj(fr}jO> показаны проекции этой апертуры в моменты времени £

изображение Е(.Х. V), сдвинутое за счет его движения по плоскости изображения.

Сдвиг изображения на момент времени £ определяется вектором сдвига

s(t) = (sx(_0, Sy (О), i Sx(t) = 17f, sy (£) = ut.

В принятых здесь обозначениях положение апептупы 7Гсовпадает с ее проекцией 7l(i,j, t) в момент времени £ = т[0 —j} на

изображение Е(х, VY

Объединение всех областей

- это фрагмент (площадка) изображения Е[ Х, ''.'), энергия облучения которого накапливается за время одного такта работы ПЗС матрицы в ее ячейке (i,j):

п (i,j,e) = u(tl ,

где £l = (в - q + к - 1)т,

Как следует из рис. 2, дополнительный заряд, накопленный на такте 9, может быть вычислен по соотношению:

где к2 - коэффициент преобразования световой энергии в электрический заряд.

Двойной интеграл, входящий в (4), может быть вычислен повторным интегрированием:

=

-се*»*-««'-»*

Величины Т, V, 11, к являются параметрами преобразования (1 - 4).

Массив видеоданных!^ = [/(X в)] образуется при переборе значений переменных ¿, 0 в диапазоне I Ё (1, ...,п}, в ё (1, 0}. Видеоданные получаются как результат сканирования ПЗС матрицей изображения подстилающей поверхности на временном интервале [О,Т0]. При этом следует учитывать, что первая строка видеоданных может быть сформирована только на такте с номером д, поскольку для формирования строки видеоданных необходимо затратить д тактов для накопления заряда.

В случае, когда V — Ф 0, то есть когда

движение изображения не полностью компенсировано движением зарядовых пакетов, видеоданные массива 10 содержат искажения, называемые «смазом» изображения. Формально эти искажения моделируются в (4) применением операции интегрирования по времени движущегося изображения. Как следует из (1, 3, 44» величина искажений определяется временем Т накопления заряда в ПЗС ячейке, количеством С[ использованных строк накопления заояда и значениями компонент у и и вектора УСДИ.

ОПЕРАТОРНАЯ ФОРМА МОДЕЛИ ФОРМИРОВАНИЯ «СМАЗАННЫХ» ВИДЕОДАННЫХ

Использование выражения (4) для численного моделирования не оправдано из-за завышенной вычислительной сложности алгоритмов, реализующих преобразование (4). Завышенный объем вычислений обусловлен применением в (4) процедуры многократного интегрирования данных с одних и тех же фрагментов изображения. Операции многократного интегрирования мож-

Рис. 2. Формирование области П(1,]) определения ядра К(1,х, у) смаза

но избежать, если использовать оператор интегрального преобразования, вытекающий из (2), с

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ядром К^ у-) (х, у) специального вида:

А':.; (.V,у): (л\у) - 7 (5)

У) = Л£йУ>, Л£ ь [Од], (6) Л£С^у) = £2(х,у) - £10, у), [ПС*,у)]:(Г Е [Е1(*,у),£2(х,у)]) О

(О - VI), Су - «о) е тга.л).

Содержательно АЕ^Х, у} - длительность интервала времени

максимального

[£ 1 (х,у), С2 (х, у}] Ё [Сб- 1}т,0т], В

течение которого точка (х, у}, зафиксированная на изображении Е(х,у} в момент времени , двигаясь вместе с изображением по закону Е^О — (У — !££})> на интервале времени [£ 1 (х,у), £2 (X, у}] остается в поеделах области, накрываемой пикселем То есть

Д£0* у) - время экспозиции указанной зафиксированной точки на апертуру ПЗС ячейки а,])-

Общий вид предлагаемого интегрального преобразования эквивалентного преобразованию (4) следующий:

■Е( О , (7)

гдеП(£,_/) - область на плоскости изобоажения такая, что для заданного пиксела (¿,_/) выполняется:

{(х,у) Е пал) О & Е [П(х,у)Мх,уШ (8)

где [£1(х,у)гт2(х,у)]:

(Е ё [е1 (х, у}, £2 (х, у}]) О

Область П(1,/} - это такая область, энергия облучения которой накапливается в пикселе (1,/) за время одного такта переноса зарядов длительностью Т-

Типовая ПЗС матрица, составляющая ОЭП космических аппаратов ДЗЗ [Бакланов], имеет размерность ш=128 строк на п= 1024 столбцов ПЗС ячеек при размере элементарной ячейки (пиксела матрицы) 5 X (5= 9X9 мкм. При работе матрицы в режиме ВЗН количество строк Ц накопления может задаваться из некоторого набора целых значений Ц < 128-

Приведенная ниже модель формирования смаза будет иллюстрироваться на примере такой типовой матрицы.

На рис. 3а представлен пример ядра

Л-. - 1Д. V,1, определенного на площадке

П (9, £,_/) для случая, когда за время Т такта накопления заряда изображение сдвигается по направлению оси Ох на 0,4 пиксела, по направлению оси

Оу - на 1 пиксел. На рис. 3а и 3б шаг сетки - это 6 ^ Цифры в клетках сетки - это значение

функции К(1 у] (X, у), выраженное в процентах от длительности интервала Т- На рис. 36 функция А '. - (.V. V) представлена раскрашенной полигональной поверхность, изображенной в аксонометрической проекции. При этом высота точки поверхности над точкой (х, у) СК Оху прямо пропорциональна значению Х,у), то есть прямо пропорциональна времени экспозиции точки (X, у) на ПЗС ячейку } ). Яркость точки поверхности пропорциональна модулю проекции нормального вектора к поверхности в этой точке на ось Oz, ориентированную перпендикулярно показанной на рис. 1 плоскости Oxy СК. Яркость используется здесь только для придания наглядности пространственной форме.

Заметим, что даже в идеальном случае точного совпадении соелней скорости движения зарядового пакета со значением компоненты V вектора УСДИ сдвиг изображения по направлению оси Оу за время Т равен точно (?.

УПРОЩЕННАЯ МОДЕЛЬ ФОРМИРОВАНИЯ ВИДЕОДАННЫХ

Преобразование (7) затруднительно использовать в общем случае для выявления и получения аналитических оценок параметров смаза. Поскольку такие оценки весьма полезны для практики, построим упрощенную модель формирования смаза.

С целью построения упрощенной модели смаза будем считать, что ЗП накапливается в ячейке (¿,7 ) матрицы, координата у которой изменяет свое значение не скачкообразно, а плавно. То есть будем считать, что зарядовый пакет в процессе накопления заряда движется вдоль столбца матрицы с постоянной скоростью, определяемой вектопом средней скорости движения ЗП \г — (0 ,Иг). При таком упрощении заряд смаза накапливается на площадке П опре-

деляемой разностью ¿V векторов V- и V:

А\ = V - (9)

или в координатной форме записи

.

С учетом (9) ФРО движущегося изображения запишется в виде:

= Е(_х -уЬ, у - (иг + Ди}£}. (Ю)

Введем подвижную систему координат , скрепленную с центром движущегося зарядового пакета:

х' = X у'=у — ЩЬ (11)

Заметим, что!хи < 0 (рис. 1) и поэтому у' со временем возрастает.

Из (11) получаем: у = у' + Цг£. Поэтому

в подвижной системе координат (11) ФРО (10) перепишется в виде:

= ^(Сх — Су'— ЛтхЕ}). (12)

Представим в (12) время £ в виде суммы момента считывания зарядового пакета СН (9,I,1) и приращения времени Д£ < 0):

Е = Тд + Д£.

С учетом последнего обозначения ФРО (12) перепишется в виде:

£ ((.V - г тв - V ¿г),( V1 - тв - ¿и ¿г) 1(13)

При использовании подвижной системы координат (11) накопление сигнала происходит на ин-

3а)

t2 = &т

3б)

Рис. 3. Вид ядра "смаза" (пиксел разделен на 256 частей) Ут = (0.4; — 1)[пикс; - область определения ядра смаза;

тг(1,_/, (:) - апертура ПЗС ячейки с номером (},/) в момент времени 3 а - матрица ядра «смаза»; 3 б - ядро «смаза» в виде аксонометрической проекции полигональной поверхности

(вид на поверхность сверху)

тервале времени С Ё [(-9—г] в ячейке, неподвижной относительно зарядового пакета.

Поэтому, с учетом (13), выражение для полного, накопленного на интервале времени

- С;)Т. Г], заряде примет вид:

ового пакета

СК{в, и 1)

Ск(6,1,1) =

- УМ), (у' - Ди (т0) - Ди Д£)) йх <1у'. (14)

В операторной форме (14) перепишется в виде:

(у' - мОК1^'-

у) = £ 2 (х, у} — £ 1 (х, у}; Д£ Ё [0,<?т];

[£2(х,у)Д1(х,у)]:а Е [£2(х,у),£1(х,у)]}0

(15) О

где К(х, у) - ядро смаза, П - область определения ядра смаза.

Ядро смаза К^Х, у} в (15) вычисляется по поавилу. аналогичному (6), но в нем Д£ Ё [0, дг], а П(1,)} заменено натг(1, 1}:

,

((Сл'-гг)..|у-1!г)) £ "(:Д)).

Использование функции веса в виде ядра смаза К[х, у} позволяет заменить интегрирование по времени интегрированием по пространственным координатам. Это существенно упрощает вычисления.

На рис. 4 представлен пример формирования ядра смаза.

0 0 0 0 0 0 0 0 0 0 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 М 0

0 0 0 [1 0 0 0 0 0 0 0 0 3 11 15 15 15 15 15 15 15 15 1 .о 5 15 иИГ4 2 12 4 0

0 0 0 [1 0 0 0 0 0 0 0 6 13 21 25 25 25 25 25 25 25 25 0

0 0 0 [1 0 0 0 0 0 0 8 16 23 31 35 35 35 35 35 35 35 35 35 35 35кУ|27 19 12 4 0

0 0 0 [1 0 0 0 0 3 10 10 26 33 41 45 45 45 45 45 45Н5Н5 45 4^235 27 13 12 4 0

0 0 0 0 0 0 0 5 13 20 20 36 43 51 55 55 55 55 55 55 55 55 ЯШ! 42 35 27 19 12 4 0

0 0 0 [1 0 0 7 15 23 30 30 46 53 61 65 65 65 05 65 65 65 & ЪВ 58 42 35 27 13 12 4 0

0 0 0 0 2 10 17 25 33 40 40 56 03 71 75 75 75 75 75 55 58 50 42 35 27 13 12 4 0

0 0 0 4 12 20 27 35 43 50 50 66 73 01 65 65 05 05 МП 73 65 58 50 42 35 27 13 12 4 0

0 0 7 14 22 30 37 45 53 60 60 76 03 31 35 35 35 » ТО 81 73 65 58 58 42 35 27 13 12 4 0

0 II I I 36 88 81 73 65 58 58 42 35 27 13 12 4 0

0 II 96 88 81 73 65 58 58 42 35 27 13 12 4 0

0 II 96 88 81 73 65 58 58 42 35 27 13 12 4 0

0 11 96 88 81 73 65 58 58 42 35 27 13 12 4 0

0 11 96 88 81 73 65 58 58 42 35 27 13 12 4 0

0 11 96 88 81 73 65 58 58 42 35 27 13 12 4 0

0 11 И91 83 76 68 66 53 45 37 36 22 14 7 8 0

0 I И81 73 66 58 58 43 35 27 28 12 4 0 0 0

0 1 И71 63 56 48 40 33 25 17 10 2 0 0 0 0

0 1 И61 53 46 30 36 23 15 7 8 0 0 0 6 0

0 I И51 43 36 28 26 13 5 8 0 0 0 6 0 0

0 I И41 33 26 18 18 3 6 0 0 0 О 6 0 0

0 I И31 23 16 8 8 0 6 0 0 0 1] 0 0 0

0 I И21 13 6 8 0 0 6 0 0 0 1] 0 0 0

0 II И11 3 0 0 0 0 0 0 0 0 1] 0 0 0

0 ■ ■ 1 0 0 О О 0 1] 0 [1 0 0 1] 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 8 8 0 0 6 8 0 0 0 6 0

в) г)

Рис. 4. Вид ядра смаза (апертура пиксела разделена на 256 частей) при непрерывном движении зарядового пакета по столбцу ПЗС матрицы для случая скоростей Уг и Vтаких, что за время ЦТ накопления полного ЗП сдвиг изображения относительно ячейки накопления составил

= 0.8 пике., 5у = 1.6 пике, а - матрица числовых значений ядра К[хгу) смаза; б - треугольник векторов смещения, где а - угол сноса изображения показан для наглядности утрированно большим; в - ядро смаза, представленное полигональной поверхностью в аксонометрической проекции; г - вид полигональной поверхности ядра смаза после поворота вокруг осей Ox и Oy)

Принято:

- ЗП в процессе накопления заряда движется вдоль столбца матрицы с постоянной скоростью V-, определяемой вектором средней скорости переноса ЗП;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- полное время формирования «выходного» ЗП равно Тф

- полный сдвиг изображения относительно ЗП за время ТЦ его накопления составляет 5ГТ = 0,8 пике; = 1,6 пике.

В таком случае: ;

иг = §Ч/ТЧ = 5/т[пикс/с] и = (5 + $у1<\)1т [пикс/с]

При этом из (1.9) ¿V = V — следует:

ДУ= {ях/тц, Яу/тц).

Тогда за время Тф •

Физика формирования ЗП в режиме ВЗН такова, что в идеальном случае ЗП всегда «догоняет» изображение. Это значит, что изображение, в идеальном случае, «бежит» впереди ЗП на одну апертуру ПЗС ячейки. Поэтому в заданном сдвиге изображения избыточный сдвиг Д5 составляет Д5 = — 1} = (0.8, 0.6) пике.

Из рис. 4а видно что область ненуле-

вых значений ядра К^ ^ [х, у) см аза вытянута вдоль вектора Д5- Это означает, что именно вектор ¿\5 определяет формирование смаза видеоданных.

ЗАКЛЮЧЕНИЕ

В статье предложена модель процесса формирования смаза изображения при использовании технологии сканирования сцены «заметанием». В общем случае оператор смаза имеет вид интегрального оператора с ядром смаза, имеющим достаточно сложную конфигурацию, которая определяется вектором разности векторов СДИ и СПЗ, а также количеством активированных строк накопления матрицы. При этом ориентация области на изображении, формирующей смаз, определяется направлением вектора разности векторов СДИ и СПЗ.

Работа выполнена при поддержке гранта РФФИ "офи_м" № 13-01-12014

СПИСОК ЛИТЕРАТУРЫ

1. Злобин В.К., Еремеев В.В. Обработка аэрокосмических изображений. М.: ФИЗМАТЛИТ, 2006. 288 с.

2. Егошкин Н.А., Еремеев В.В. Коррекция смаза изображений в системах космического наблюдения Земли // Цифровая обработка сигналов. 2010. № 4. С. 28-32.

MATHEMATICAL MODEL OF VIDEO DATA ACQUISITION WITH THE APPLICATION OF SCANNING CCD MODE

© 2014 P.K. Kuznetsov1, B.V. Martemyanov2

1 Samara Science Center of the Russian Academy of Sciences 2 Samara State Technical University

The article discusses the issues of forming the video data obtained by scanning the shooting scene using a CCD matrix operating mode TDI. Exact and simplified mathematical model of the occurrence of image blur at the specified mode is offered. The range of applicability of the proposed models is shown. Key words: remote sensing, scanning photography, blur image, the blur parameters

Pavel Kuznetsov, Doctor of Technics, Professor, Head at the Dynamics and Motion Control Department. E-mail: [email protected]

Boris Martemyanov, Candidate of Technics, Associate Pro fessor at the Computer Engineering Department.

i Надоели баннеры? Вы всегда можете отключить рекламу.