Научная статья на тему 'Логика построения идеальных моделей в физике'

Логика построения идеальных моделей в физике Текст научной статьи по специальности «Философия, этика, религиоведение»

CC BY
1186
95
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по философии, этике, религиоведению, автор научной работы — Любичанковский В. А.

В статье на примере эволюции модельных представлений об атоме анализируются особенности идеального моделирования в физике.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Логика построения идеальных моделей в физике»

Любичанковский В.А.

Оренбургский государственный университет

ЛОГИКА ПОСТРОЕНИЯ ИДЕАЛЬНЫХ МОДЕЛЕЙ В ФИЗИКЕ

В статье на примере эволюции модельных представлений об атоме анализируются особенности идеального моделирования в физике.

В теоретическом естествознании объект может быть представлен по-разному.

Чтобы разобраться, как именно, нам необходимо вначале коснуться вопроса о предметной области теории и области ее применимости.

Созданные с помощью абстрактного мышления, которое опирается на установленные наукой факты, научные теории являются теориями об определенных объектах. Предметная область теории - это сфера реальности, включающая объекты, на описание и объяснение свойств и поведения которых претендует теория. Любая теория дает, как правило, достоверное знание только о некоторых объектах, т. е. о части предметной области. Эту ее часть принято называть областью применения данной теории.

Естествознание в целом, в том числе и физика, предельно ясно различает процесс мышления и сами явления. Объекты предметной области сами в теорию не входят. Они представлены там некоторыми другими (абстрактными) объектами. Одна из форм такого представления - идеальная модель [1]. Эти абстрактные объекты выступают в качестве имен реальных объектов. Другими словами, прежде чем моделировать какой-либо объект, необходимо как-то его обозначить. Простейшей является операция присвоения ему имени. Нет имени - нечего моделировать. Итак, базисный уровень моделирования любой научной теории образован именами объектов из ее предметной области. Например, для астронома, изучающего Солнечную систему, этот уровень включает имена: «планета», «комета», «астероид» и т. д. За каждым именем-понятием стоит не индивидуальный объект, а класс объектов с его сущностными характеристиками. Это предъявляет к субъекту действия определенное требование: оперируя словами как понятиями, он несет ответственность за то, чтобы в его рассуждениях были соблюдены все правила работы с понятиями.

Наличие следующего уровня обусловлено тем, что при продолжении исследования поименованных объектов выделяются и изучаются некоторые их свойства и отношения между ними. Для конкретного примера возьмем ато-

мы. Атом - наименьшая составная часть вещества, в которой сохраняется индивидуальность химического элемента. В современной науке доминирует взгляд, согласно которому в обычных земных условиях любые твердые, жидкие и газообразные вещества составлены из атомов (или молекул) одного или нескольких химических элементов. Поэтому можно утверждать, что атомы выступают в роли строительных «кирпичей» вещества. Значит, они должны быть ответственны за его механические, химические, электрические, магнитные и другие свойства.

Хорошо известно, что идея атомистического строения вещества зародилась в Древней Греции. Однако научное обоснование эта идея получила лишь в XIX веке, в результате исследования химических превращений, явления электролиза, разработки кинетической теории материи.

Вплоть до XX века атом рассматривался как неделимая, бесструктурная частица вещества. В 1897 году Дж. Дж. Томсон при исследовании катодных лучей открыл электрон. Однако еще в 1880-х гг. на основе законов электролиза Г. Гельмгольц и Дж. Стони независимо предсказали существование «атома электричества», то есть неделимого количества электрического заряда.

К началу XX века был поставлен вопрос о внутреннем строении атома. В то время не существовало технических устройств, которые позволяли бы заглянуть вовнутрь атома. В то же время было необходимо объяснить удивительную периодичность химических свойств элементов, открытую Д.И. Менделеевым, и закономерности оптических спектров. Остался один путь: мысленно конструировать структуру атома, другими словами, создавать его идеальную модель. Под идеальной моделью реального объекта будем понимать логический конструкт (иначе -абстрактный объект), построенный на базе реальных знаний об объекте, который позволяет объяснить то, что наблюдаемо в опыте, эксперименте. Когда мы называем идеальную модель реального объекта логическим конструктом, то тем самым подчеркиваем, что она существует только в головах людей. Ее нельзя наблюдать.

С ней можно работать только в мыслях и при помощи мысли. Но это такой логический конструкт, который позволяет объяснить то, что происходит с реальным объектом. Это позволяет предположить, что в идеальной модели реального объекта воспроизведены определенные свойства реального объекта. Конечно, не все, а лить некоторые. Идеальные модели строятся лить по отнотению к тем сторонам реальных объектов, которые ненаблюдаемы, то есть их нельзя воспринять ни с помощью органов чувств, ни с помощью приборов. Все, что наблюдаемо, ни в каких идеальных моделях не нуждается. Развитие науки раскрывает перед исследователем, сконструировавтим идеальную модель реального объекта, систему возможностей:

1. То, что сконструировано исследователем, в процессе развития приборной техники становится наблюдаемым. Тогда становится ясным, правильно ли была сконструирована модель и что не уловил исследователь в структуре реального объекта. Это редко встречающийся в научной практике вариант.

2. Сконструированная модель реального объекта объясняет определенные явления, но и одновременно противоречит другим явлениям, относящимся к этому же объекту. Здесь раскрываются два пути: а) переходить к более совер-тенным моделям реального объекта, сохраняя основы предыдущей; б) отказаться от введенной модели.

3. Нередки случаи, когда разные исследователи создают разные модели одних и тех же объектов, порой несовместимые друг с другом. Но они позволяют объяснить одни и те же факты, ретать один и тот же класс задач. В принципе это означает, что эти две модели «воспроизвели» разные свойства реального объекта, но среди них есть и общие. Пусть мы имеем в реальном мире некий объект А и пусть в процессе его познания созданы его две идеальные модели: модель А1, которая воспроизводит свойства Б, С, М, Т, О объекта А, и модель А2, которая воспроизводит свойства Б, С, Т, К, Н, Е, Г объекта А. Если задача сформулирована так, что для ее ретения достаточно знать свойства Б, С, Т объекта А, то эта задача может быть ретена и на модели А1, и на модели А2.

4. Идеальная модель может представлять собой такое построение, которое никогда и ни при каких условиях не будет поддаваться прямому наблюдению, но обладает объективным существованием. Подчеркнем, что в определен-

ном смысле идеальных моделей как определенной репрезентации нет ни в субъекте, ни вне объекта. «Идеальное возникает в пространстве между объектом и субъектом... Носителем идеального (как и виртуального) является не вещь (субъект как тело и объект), а взаимодействие, контакт субъекта и объекта, человеческая деятельность» [3, с. 85].

С одной стороны, от модели требуется, чтобы она содержала известную до ее построения информацию о моделируемом объекте, с другой - изучение самой модели должно вести к получению новой информации о моделируемом объекте. Отметим, что это принципиальное требование.

Идеальные модели, например, физических объектов строятся на основании экспериментальных данных и теоретических представлений о данной области физических объектов. Однако идеальные модели формально-логически из этих данных не выводятся. Они как бы «навеиваются» этими данными. Воображение здесь, как правило, обгоняет соображение. Воображение может больте, чем происходит на самом деле. Человек нередко придумывает всякого рода соответствия и отнотения, которых в действительности нет. Поэтому нужны ограничители воображения. Они создают определенный механизм направления мысли ученого-естественника в определенное русло. Так, например, в физике ряд принципов выполняет функцию ограничения фантазии ученых. Примером могут служить принципы симметрии, понимаемые как требование инвариантности физических законов относительно определенной группы преобразований (симметрий). Например, галилеевский принцип симметрии требует инвариантности законов относительно пространственных перемещений. Так, одно и то же явление должно подчиняться одним и тем же законам, независимо от того, где оно происходит: в Солнечной системе или в далекой галактике. Тем самым этот принцип из всех возможных для классической физики законов отбирает только те, которые остаются неизменными (инвариантными) при пространственных перемещениях явлений. Это позволяет выделять действительные модели из множества возможных.

Опыт использования таких ограничений накоплен и продолжает расти. Так, например, в создании физических моделей ограничителями являются законы сохранения, второй закон термодинамики, в химии это принцип Ле-Ша-телье и т. д. Академик Н.Н. Моисеев обратил

внимание на принцип минимума диссипатии энергии в мировом эволюционном процессе [2, с. 10]. Такие примеры можно продолжить.

Необходимо учитывать, что всеми ограничениями надо пользоваться так, чтобы не закрывать для теоретика путь поиска новых смыслов и, следовательно, новых форм понимания. Без этого трудно надеяться на возникновение в естествознании новых, «сумастедтих» идей.

Идеальное моделирование должно удовлетворять всем требованиям, предъявляемым к научным гипотезам:

1. Обязательное согласие с тем фактическим материалом, для объяснения которого идеальная модель строится. Здесь есть одна существенная тонкость. Как правило, с первого захода такую идеальную модель реального объекта создать не удается. Возникает вопрос: что делать? Не публиковать работу? Или довольствоваться на первоначальном этапе и тем, что определенные факты она объясняет? Думается, что перспективен второй путь. И поэтому развитие теоретической физики - это и совертенствова-ние идеальных моделей одних и тех же объектов. Однако здесь необходимо учитывать: как бы ни была совертенна идеальная модель реального объекта, все факты (тем более, что с развитием науки их становится все больте и больте), относящиеся к реальному объекту, она никогда объяснить не может, так как идеальная модель «воспроизводит» не все, а лить некоторые ненаблюдаемые характеристики реального объекта. Мало того, в науке часто бывает и так, что появляющаяся модель противоречит некоторым фактам. Это еще не означает, что сделанное предположение принципиально неверно, если другие факты она объясняет. Дело в том, что всякое схватывание целостности оказывается все же условным. Это случай, когда модель надо совертенствовать, сохраняя ее основу. До тех пор, пока существующей модели не противопоставлена другая, более устойчивая, от прежней модели нельзя просто так отказаться. Ученый-теоретик задает вопросы реально существующим объектам, а ответы на них ищет на их идеальных моделях, так как у него просто нет иного представления об объекте.

2. Принципиальная проверяемость. Так как идеальная модель дает представление о ненаблюдаемых сторонах реального объекта, то единственный путь признания ее адекватности реальному объекту - это вывод из нее следствий, которые доступны опытной проверке. Если та-

ких следствий вывести нельзя, то такая идеальная модель реального объекта не может быть принята. Эти следствия - это, как правило, свойство реальных объектов, которые наблюдаемы. Другими словами, это то, что данная идеальная модель должна объяснить. Но исключительно важно, чтобы были и такие предсказания, которые наукой еще не зафиксированы, являются для нее новыми, порой неожиданными. Нельзя не учитывать и того, что подтвержденное опытом следствие может оказаться истинным, а идеальная модель реального объекта - неверной. Это связано с тем, что одно и то же следствие может вытекать из разных идеальных моделей одного и того же реального объекта. Это обстоятельство порождает проблему доверия к введенной идеальной модели реального объекта. И здесь ученый руководствуется следующим: чем больтая система разнообразных следствий оправдывается практически, тем менее вероятным становится то, что все они могли быть так же хорото выведены из другой идеальной модели реального объекта.

3. Идеальная модель реального объекта считается надежной, если она не содержит формально-логических противоречий, не противоречит установленным наукой законам природы и предсказывает новые явления.

При построении идеальной модели объекта использование как математических средств, так и содержательных идей должно постоянно контролироваться данными эмпирического изучения объекта. Это означает, что идеальные модели изучаемых объектов должны обладать способностью быть соотносимыми с данными экспериментального анализа моделируемых объектов.

Приведенное утверждение кажется тривиальным. Но это только на первый взгляд. Часто, замечает Ф. Бэкон, «слова насилуют разум, метая рассуждению, увлекая людей бесчисленными противоречиями и неверными заключениями». Люди при этом «верят, что их разум господствует над словом. Но случается и так, что слова обращают свою силу против разума, что делает философию и другие науки софистическими и бездеятельными» [цит. по: 3, с. 43].

А теперь вернемся к эволюции идеальных моделей атома [4, с. 118-130]. Одна из первых моделей структуры атома была предложена в 1904 г. Дж. Дж. Томпсоном. Согласно Томпсону, Ъ электронов, каждый из которых обладает зарядом -е, находятся в определенных равновесных положениях внутри непрерывно распре-

деленного по объему атома положительного электрического заряда +Ъе, образуя электрически нейтральную систему. Электроны могут колебаться около своих равновесных положений и испускать и поглощать электромагнитное излучение. В сложном атоме электроны распределены по кольцам определенного радиуса, что определяет периодичность свойств атома.

«Прямое» экспериментальное исследование строения атома было проведено в 1911 году Э. Резерфордом. Он изучал прохождение а-частиц через тонкую фольгу. Эти частицы отклонялись на маленькие углы (10 - 20), что свидетельствовало о том, что положительный заряд атома сконцентрирован в очень маленькой области, порядка 10-13 см. На основании этого вывода Э. Резерфорд создает планетарную модель атома: атом состоит из тяжелого положительно заряженного ядра малых размеров и вращающихся вокруг него отрицательно заряженных электронов.

Ядро атома водорода назвали протоном. Электрический заряд протона положителен и равен по величине заряду электрона. Протоны входят в состав всех ядер. Лить в 1932 году был открыт нейтрон и было установлено, что атомное ядро состоит из протонов и нейтронов. Масса протона в 1836, а масса нейтрона в 1839 раз больте массы электрона. Значит, практически вся масса атома сосредоточена в его ядре. Размеры атома определяются размерами его электронной оболочки. Они порядка 10-8 см.

Эта модель атома объяснила (практически позволила глубоко понять) химические и боль-тинство физических свойств (оптические, электрические, магнитные) вещества. Однако по законам классической электродинамики вращающийся вокруг ядра электрон должен непрерывно излучать электромагнитные волны и вследствие этого терять свою энергию. Радиус его орбиты должен непрерывно уменьтаться. Электрон через короткое время должен упасть на ядро. Это противоречит наблюдаемой стабильности атома. Кроме того, спектр атома не непрерывен, а состоит из узких спектральных линий. Это означает, что атом испускает и поглощает электромагнитные волны лить избранных, определенных частот, характерных для данного химического элемента.

Наука требовала совертенствования модели атома Резерфорда. Его произвел Н. Бор. В основу идеальной модели атома Н. Бор положил два постулата:

1. Существуют стационарные (не изменяющиеся со временем) состояния атома, характеризуемые дискретным набором «разретенных» значений энергии: Е1, Е2, Е . В этих состояниях атом не излучает. Изменение энергии атома возможно лить при квантовом (скачкообразном) переходе из одного стационарного состояния в другое.

2. Атом испускает и поглощает электромагнитное излучение определенной частоты в виде кванта света (фотона) с энергией Ьуік (где Ь - постоянная Планка), переходя из одного стационарного состояния с энергией еі в другое с энергией ек, при этом

Ьп = є - є, (е > є,).

ік і к і к

При испускании фотона атом переходит в состояние с меньтей энергией, при поглощении -с больтей. Набор возможных дискретных частот у1к = (єі - ек) / Ь квантовых переходов и определяет линейчатый спектр атома.

Теория Н. Бора встретилась с принципиальными трудностями при попытках описания сложных (содержащих более одного электрона) атомов. Например, она не могла объяснить соединение атомов в молекулы. Окончательное ретение всех вопросов и противоречий, вскрывтихся при исследовании атомных явлений, было достигнуто в результате создания квантовой механики.

Такова вкратце эволюция идеальных моделей атома.

Из всего сказанного можно сделать следующие выводы.

1. Создание идеальных моделей в физике -это путь перехода физики к пониманию физических явлений.

2. Идеальные модели строятся в физике только по отнотению к ненаблюдаемым сторонам изучаемых объектов.

3. Эволюция модельных представлений об атоме является хоротей иллюстрацией особенностей создания и развития идеальных моделей в физике.

Список использованной литературы:

1. Бургин М.С., Кузнецов В.И. Введение в современную точную методологию науки: Структура систем знаний: Пособие для вузов. - М.: АО «Аспект Трест», 1994. - 303 с.

2. Илиев С. Памяти Н.Н. Моисеева // Вестник Международного института А. Богданова. - 2000. - №3. - С. 3-13.

3. Кашин В.В. Онтологические и гносеологические проблемы генезиса понимания. - Уфа: Башкир. гос. ун-т, 2000. - 182 с.

4. Физика микромира: Маленькая энциклопедия. - М.: «Советская энциклопедия», 1980. - 528 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.