Научная статья на тему 'Lichens as bioindicators of air pollutants'

Lichens as bioindicators of air pollutants Текст научной статьи по специальности «Биологические науки»

CC BY
251
50
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
LICHENS / AIR POLLUTION / SULPHUR DIOXIDE / NITROGEN COMPOUNDS / RADIONUCLIDES

Аннотация научной статьи по биологическим наукам, автор научной работы — Türk R.

The specific sensitivity of lichens to air pollutants enables us to use them for monitoring the effects of airborne toxic gases, such as sulphur dioxide and nitrous oxides. The monitoring can be carried out by mapping the epiphytic lichen biodiver􏰀 sity and the exposure of sensitive lichen species to the environment. Because of their anatomical structure and the rela􏰀 tively high absorption layer of lichens they are able to accumulate heavy metals and radionuclides. Thus the spatial distri􏰀 bution of manmade radionuclides and of heavy metals originating from traffic and industrial processes can be demonstrated by using lichens as monitoring organisms.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Lichens as bioindicators of air pollutants»

LICHENS AS BIOINDICATORS OF AIR POLLUTANTS

R. Türk

International Academy ofScience (Health & Ecology)

Лишайники как биоиндикаторы загрязнителей воздуха

Р. Тюрк

Международная академия наук (Здоровье и Экология)

The specific sensitivity of lichens to air pollutants enables us to use them for monitoring the effects of airborne toxic gases, such as sulphur dioxide and nitrous oxides. The monitoring can be carried out by mapping the epiphytic lichen biodiversity and the exposure of sensitive lichen species to the environment. Because of their anatomical structure and the relatively high absorption layer of lichens they are able to accumulate heavy metals and radionuclides. Thus the spatial distribution of manmade radionuclides and of heavy metals originating from traffic and industrial processes can be demonstrated by using lichens as monitoring organisms.

Keywords: lichens, air pollution, sulphur dioxide, nitrogen compounds, radionuclides.

Избирательная чувствительность лишайников к загрязнителям воздуха позволяет нам использовать их для мониторинга воздействия воздушных токсичных газов, таких как диоксид серы и оксиды азота. Мониторинг может быть осуществлен путем сопоставления биоразнообразия эпифитного лишайника и воздействия на чувствительные виды лишайников к окружающей среде. Из-за их анатомической структуры и относительно высокого абсорбционного слоя они способны накапливать тяжелые металлы и радионуклиды. Таким образом, пространственное распределение искусственных радионуклидов и тяжелых металлов, происходящих в результате движения и промышленных процессов, может быть продемонстрировано с использованием лишайников в качестве контролирующих организмов.

Ключевые слова: лишайники., загрязнение воздуха, диоксид серы, соединения азота, радионуклиды.

Lichens are symbiotic organisms comprising fungi and algae or cyanobacteria as photosynthetic active partners (photobionts). Lichens rank as the most resistant living organisms against natural stress factors such as temperature, drought and radiation. In scientific experiments they are able to survive in the moist (hydrated) state at temperatures from — 196 °C and in the dry state up to +80°C. They can also survive more than two years of absolute dehydration and 15 days of long-term exposure under space conditions (Sancho et al. 2007). In the hydrated state they are very sensitive to temperatures over 35°C. Lichens from Antarctica and from cold sites in the high altitudes of the mountains maintain photosynthetic CO2-uptake down to — 18°C [9—11, 16].

However, the anatomical, morphological features and the physiological conditions between the symbiotic partners in lichens result in a very high sensitivity to chemical stressors such as air pollutants and diverse bio-cides used in agriculture. Lichens do not develop any dermal tissue like the epidermis of higher plants with wax layers. The symbiotic coexistence of the partners requires complicated physiological adaption processes, which can be severely disturbed by external chemical compounds. In the presence of gaseous or dusty air pollutants or aerosols they absorb these foreign substances through their open

surface. In the moist and physiological active state the poisonous substances can disturb — depending on the concentration — the physiological processes in the photo-biont and the interactive processes between the mycobiont, photobiont and the involved bacteria.

Besides air pollutants, the occurrence and frequency ofepiphytic lichens in conurbation (metropolitan) areas is a function of urban heat island effects and common climate changes [18]. Thus lichens also indicate changes in urban climate, climatic change and levels of air pollution.

Since the nineteenth century it is known that the gas sulphur dioxide is poisonous for epiphytic lichens. Many investigations on the epiphytic lichen vegetation in cities, industrial conurbations and around factories with high emission of smoke and gaseous compounds showed a decline in the diversity and abundance of macro-lichens. Only some very resistant crustose lichens were able to survive in areas with high emission rates. Observations on the differential growth of various lichen species in regions with high deposition rates led to the choice of lichens as bio-indicators for air pollution (e. g. [6, 7]). The observations of the differing SO2 resistance of various lichen species in the field were confirmed by physiological studies on the SO2-resistance oflichens under laboratory conditions [15, 22, 26].

of this air pollutant. In Central Europe many lichen species of the fruticose genera (Usnea, Bryoria and Evernia) as well as the foliose species (Lobaria, Nephroma, Hypogymnia and Parmelina) became extinct in wide areas. «Lichen deserts» in which absolutely no macrolichens occured were registered in the course of mapping studies in the city of Salzburg [19] and industrial conurbation areas of Linz, [1]. Both are located in Austria, where the climatic conditions are commonly well suitable for the growth of epiphytic lichens. Mapping studies on the diversity of epiphytic lichens as an indicator of air quality play an important role for determining the effects of air pollutants in the environment. In the Federal Republic of Germany applicable guidelines have been established (VDI-Richtlinie 3957 [25]).

Furthermore transplant experiments were initiated to evaluate the effects of SO2 pollution on lichens [2, 12, 17]. Fast results could be obtained after the exposure of the lichens at varying locations by measuring the CO2-gas exchange. In the city of Salzburg transplanted samples of Hypogymnia physodes and Parmelia sulcata ceased net photosynthesis after an exposition time of six weeks between November 1977 and March 1978 («heating season») [20]. The lower concentration of SO2 during spring and summer caused no physiological effect on the exposed specimens (Fig. 2).

Fig. 1. Means of the net photosynthesis (in % of the normal value) after 14 hours gassing with SO2 concentrations 0,5, 1, 2 and 4 mg SO2 m-3 air (from: Türk et al. [19]).

These studies showed that the SO2 resistance of lichens is species specific, dependent upon the growth form, the moisture status during the emission level of sulphur dioxide and the intensity of the physiological activity. Also the pH of the substrate and the thalli is an essential factor of the SO2 resistance. At a low pH the damaging effect is more pronounced than at a high pH. The species specificity of SO2 sensitivity is shown in Fig 1. The nitro-and neutrophytic species Xanthoria parietina and Parmelina scortea (syn. Parmelina tiliacea) are the most resistant, whereas the acidophytic species Platismatia glauca, Parmelia stenophylla (syn.: Xanthoparmelia stenophylla) and the foliose macrolichen Lobaria pulmonaria and the fruticose Evernia prunastri are the most sensitive lichens.

Thus the difference in the sensitivity of lichens to SO2 in concentrations which occur due to specific emissions in the environment is an important precondition for the interpretation of the distribution of lichens found by mapping studies in areas with different concentrations

Fig. 2. Net photosynthesis and dark respiration of transplanted Hypogymnia physodes and Parmelia sulcata at station 1 (in the city of Salzburg) and the average SO2-concentration during the exposure time (Türk & Christ [20]).

In the summer, the photosynthetic rate was determined depending upon the local climatic changes, especially moisture availability from precipitation. On days with moist, rainy weather the net photosynthesis was higher than during dryer weather periods.

The improvement in the air quality as a result ofthe reduction of the SO2 concentration by stricter environmental laws between 1980 and 1990 led to a reinvasion of lichens into former highly polluted areas within five to eight years. However, since the beginning of the 1990s until present the emission of gaseous nitrogen compounds has increased dramatically in Central Europe. In the northern parts ofthe Austrian Alps the deposition ofthese airborne nitrogen compounds have reached such high levels that they have detrimental effects on the forest ecosystems and their biodiversity [3, 14]. Long term (1993— 2010) monitoring results of lichens from a remote site in Austria, showed that the lichen cover on tree trunks has decreased significantly. N-sensitive species vanished significantly, whereas the amount and the coverage of nitro-phytic species increased. Epiphytic lichens with cyanobac-teria as photobiontes (e. g. species of the genera Collema, Leptogium, Lobarina, Nephroma, Peltigera, Pannaria, Sticta) disappeared almost entirely along the slopes of the northern Alps up to the ascent of the calcareous mountains in Austria. Acidophytic and sensitive macrolichens (e.g. Lobaria pulmonaria, Ramalina spec., Parmelia saxatilis etc.) also vanished [21, 28]. In the pre-Alpi foothills nitrophilous and nitrotolerant species (Xanthoria spec., Physcia spec., Phaeophyscia spec.) dominate the epiphytic eutrophic associations not only on broadleaf trees with neutral bark, but also surprisingly on trees with acidic

Литература

1. Bortenschlager S, Schmidt H. Luftverunreinigung und Flechtenverbreitung in Linz, Ber. Naturwiss. — Med. Ver. Innsbruck. 1963, 53: 23—27.

2. Brodo I. Transplant experiments with corticolous lichens using a new technique, Ecology. 1961, 42: 838—841.

3. Dirnbock T, Mirtl M, Dullinger S., Grabner M.-T., Hochrathner P, Hülber K, Karrer G, Kleinbauern I, Mayer W, Perterseil J, Pfefferkorn-Dellal V, Reimoser F, Reimoser S., Türk R., Willner W, Zechmeister H. Effetcs of nitrogen and sulphur deposition on forests and forest diversity. Austrian Integrated Monitoring Zobelboden, Umweltbundesamt Report Rep-0077 2007: 60 pp.

4. Eckl P., Türk R, Hofmann W. Anreicherung natürlich und künstlich radioaktiver Spurenelemente in Flechten und Pilzen, Jahrb. Univ. Salzburg (1981—1983). Salzburg, 1984 (Hrsg. A. Buschmann) 227—235.

5. Eckl P, Hofmann W, Türk R. Uptake of natural and man-made radionuclides by lichens and mushrooms, Radiat. Environ. Biophys. 1986; 25: 43—54.

6. Fenton A.F. Lichens as indicators of atmospheric pollution, Irish Nat. J. 1960; 13: 153-158.

7. Gilbert O.L. The effects of SO2 on lichens and bryophytes around Newcastle upon Tyne. In: Air Pollution. Proc. Of the First European Congress on the Influence of Air pollution on plants and animals, Wageningen 1968.Wageningen: Pudoc 1969: 223—235.

8. lurian A.R., Hofmann W, Lettner H., Türk R, Cosma C. Long term study of Cs-137 concentration in lichens and mosses. Rom. Journ. Phys. 2011; 56: 983—992.

9. Kappen L., Sommerkorn M, Schroeter B. Carbon acquisition and water relations of lichens in polar regions — potentials and limitations, Lichenologist 2011; 27(6): 531—545.

10. Kappen L, Schroeter B. Surviving in the cold: how lichens cope with the environmental conditions in polar regions. Physiological plant ecology. Springer Verlag Berlin — Heidelberg — New York. 2003: 369—372.

11. Lange O.L. Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen, Planta. 1965; 64: 1—19.

bark (Abies alba, Picea abies, Larix decidua). These observations agree very closely with the results ofmapping studies in the Netherlands and other countries in Europe [24].

Studies on the effects of nitrogen compounds and other air pollutants on the growth rates of lichens in the city of Linz, Upper Austria showed clearly, that the annual growth of the nitrophytic species Phaeophyscia orbicu-laris increases with higher traffic impact. The growth rate of the more sensitive Parmelia sulcata decreases with higher traffic density [27]. A survey of epiphytic lichen populations in a side valley of the river Salzach in the province of Salzburg confirmed the negative effect of vehicle exhaust pollution. The diversity of lichens was reduced and the lichen community altered.

Biomonitoring of heavy metals and radionuclides in the environment with lichens depends on the favorable accumulation properties of chemical and radioactive pollutants. Eckl et al. [4, 5] found that lichens are much more efficient in the accumulation of radioactive cesium than higher plants. Hence they are suitable bioindicators of the radioactive fallout. The large surface area relative to their mass is one ofthe main reasons for their high capacity to accumulate radionuclides or other elements. Long term studies on the Cs-137 concentration in lichens made it possible to determine the biological half-life of 137Cs. For the epiphytic lichen Pseudevernia furfuracea a biological half-time of 12.9 years was found [11].

Acknowledgement: The author expresses his gratitude to Prof Dr. Walter Kofler (Innsbruck) for the suggestion to write this article and Dr. Wolfhard Ruetz (Laufen) for valuable discussions and assistance with the text.

12. LeBlanc F, Rao D.N. Effects of sulfur dioxide on lichen and moss transplants. Ecology 1973;54: 612—617.

13. Sancho L.G., de la Torre R., Horneck G, Ascaso C, de los Rios A, Pintado A, Wierzchos J., Schuster M. Lichens Survive in Space: Results from the 2005 Lichens Experiment, Astrobiology 2007; 7 (3): 443—454..

14. Mayer W., Pfefferkorn-Dellali V, Türk R, Dullinger, S. Mirtl M., Dirnböck T. Significant decrease in epiphytic lichen diversity in a remote area in the European Alps, Austria, Basic and Applied Ecology. 2013; 14: 396—403.

15. Puckett K.J., Nieboer F., Flora W.P., Richardson D.H.S. Sulphur dioxide: Its effect on photosynthetic 14C fixation in lichens and suggested mechanisms of phy-totoxicity, New Phytol. 1973; 72: 141—154.

16. Reiter R, Green A.T.G., Schroeter B., Türk R Photosynthesis ofthree Umbilicaria species from lichen dominated communities of the alpine/nival belt of the Alps measured under controlled conditions, Phyton (Horn, Austria). 2007; 46: 247—258.

17. Schönbeck H. Einflub von Luftverunreinigungen (SO2) auf transplantierte Flechten. — Naturwissenschaften. 1968; 55: 451—452.

18. Stapper N.J. Baumflechten in Düsseldorf unter dem Einfluss von Luftverunreinigungen, Stadtklima und Klimawandel, Bibliotheca Lichenologica. 2012; 108: 221—240.

19. Türk R Die Veränderungen der Flechtenzonen und der Luftqualität im Stadtgebiet von Salzburg von den Jahren 1948/49 bis 1974/75. — In: Studie über die umwelthygienisch-ökologische Situation der Stadt Salzburg (Hrsg.: Bundesministerium für Gesundheit und Umweltschutz). 1975: 131—135.

20. Türk R, Christ R Untersuchungen des CO2-Gaswechsels von Flechtenexplantaten zur Indikation von SO2-Belastung im Stadtgebiet von Salzburg. — In: Bioindikation auf subzellularer und zellularer Ebene (Hrsg.: R. Schubert & J. Schuh), Martin-Luther-Universität Halle-Wittenberg. Wissenschaftliche Beiträge 1980/25 (P 9) Halle (Saale) 1980: 39—45.

21. Türk R., Pfleger H.S. Das stumme Siechtum der Flechten. NATUR&Land. 2007; 93 (Heft 6): 22—26.

22. Türk R., Wirth V. The pH dependence of SO2-damage to lichens. Oecologia (Berl.) 1975; 19: 285—291.

23. Türk R, Wirth V, Lange O.L. CO2-Gaswechsel-Untersuchungen zur SO2-Resistenz von Flechten, Oecologia (Berl.). 1974; 15: 33—64.

24. Van Herk C.M., Mathijssen-Spiekman E.A.M., de Zwart D. Long distance nitrogen air pollution effects on lichens in Europe, The Lichenologist 2003; 35: 413—415.

25. VDI 3957 Blatt 13, Biologische Messverfahren zur Ermittlung und Beurteilung der Wirkung von Luftverunreinigungen auf Pflanzen (Bioindikation): Kartierung der Diversität epiphytischer Flechten als Indikator für die Luftgüte, 2005, Beuth-Verlag, Berlin.

26. Wirth V., Türk R Zur SO2-Resistenz von Flechten verschiedener Wuchsform Flora 1975; 164: 133—1443.

27. Wunder B., Türk R Effects of air pollutants on the growth rates of lichens in Linz, Upper Austria, Berichte f Ökologie u. Naturschutz der Stadt Linz. 2012; 3: 55—112.

28. Zechmeister H. G, Türk R., Kropik M. Atmosphärische Stickstoffdepositionen im Gebiet des Biosphärenparks Wienerwald 2014, Wiss. Mitt. Niederösterr. Landesmuseum 25: 237—248. St. Pölten.

Сведения об авторе:

Роман Тюрк — доктор наук, профессор Отделения биологических наук Университета Зальцбурга, Австрия, действительный член Международной академии наук (Здоровье и Экология),

Roman Turk — Univ. Prof; i. R, Dr. phil, University ofSalzburg Department ofBiological Sciences, Austria, Active Member of the International Academy of Science (Health&Ecology)

О ПРОБЛЕМЕ СТРАТЕГИЧЕСКОГО ПРОСТРАНСТВЕННОГО РАЗВИТИЯ: НА ПРИМЕРЕ ГОРОДА ГРОЗНЫЙ И ГРОЗНЕНСКОЙ АГЛОМЕРАЦИИ

П. М. Крылов

Московский государственный областной университет, Мытищи, Россия Российский институт градостроительства и инвестиционного развития «Гипрогор»

About the Problem of Strategic Spatial Development on the Example of the City of Grozny and the Grozny Agglomeration

P. M. Krylov

Moscow state regional university, Mytischi, Russia Russian Institute ofTown Planning and Investment Development «Giprogor»

В статье дается описание и анализ стратегического пространственного развития (на примере транспортной инфраструктуры генерального плана городского округа «город Грозный» на современном этапе его развития). Грозный рассматривается как ядро Грозненской городской агломерации. Приводится краткий исторический анализ транспортной составляющей генеральных планов прошлых лет. Рассматриваются основные направления перспективного развития городской транспортной системы.

Ключевые слова-, пространственное развитие, город Грозный,, городская агломерация, генеральный план, городская транспортная система

In article the description and the analysis of strategic spatial development is given (on the example of transport infrastructure of the master plan of the city district «city of Grozny» at the present stage of his development). Grozny is considered as a kernel of the Grozny city agglomeration. The short historical analysis ofa transport component ofmaster plans of last years is provided. The main directions of perspective development of the city transport system are considered.

Keywords, spatial development, city of Grozny, city agglomeration, master plan, city transport system

Грозный как центр формирующейся агломерации

Новая общественно-политическая ситуация в России, становление местного самоуправления, изме-

нившиеся экономические, земельно-имущественные отношения в городах и других населенных пунктах требуют иных подходов и методов регулирования, планирования и организации градостроительной деятельности в регионах [1].

i Надоели баннеры? Вы всегда можете отключить рекламу.