Подробнее на:
www.sciencefirsthand.ru/50vearsSBRAS/ в разделе «Науки о жизни»
Лекарство для генов
¡Я НАУКИ О ЖИЗНИ
I Q/Г'у Опубликована L_Z_LLl_ первая работа по олигонуклеотидам — ген-направленным биологически активным веществам
Давняя мечта медиков — иметь в своем распоряжении вещества, которые действовали бы на конкретные гены, т. е. на первопричину многих болезней. Ведь на основе таких веществ можно создавать лекарственные препараты — настоящие «волшебные пули», способные поражать наследственный материал различных инфекционных агентов, не принося вреда организму человека, а также подавлять активность онкогенов, ответственных за злокачественный рост клеток. Создание подобных веществ, направленно воздействующих на генетический материал, — одна из главных задач молекулярной биологии, поскольку с их помощью можно исследовать функции генов и, в конечном счете, управлять работой последних.
Но каким образом можно изменить нужную генетическую программу? Ведь все гены имеют сходные химический состав и структуру: различия между ними сводятся лишь к порядку чередования четырех мономерных блоков — нуклеотидов А, Т, G, С. Для того чтобы воздействовать на определенный ген, молекула вещества должна каким-то образом распознать эту нуклеотидную последовательность — задача, на первый взгляд, неразрешимая.
Но группа сибирских химиков, приехавших в Новосибирский академгородок в первые годы его создания, считала иначе. Сотрудники Института органической химии СО АН СССР (Новосибирск) Н.И.Гринева
и Д. Г. Кнорре на основе принципа молекулярного узнавания, используемого самой природой, сформулировали идею направленного воздействия на гены с помощью олигонуклеотидов — фрагментов нуклеиновых кислот, «вооруженных» специальными химическими группами. Первую работу по олигонуклеотидам сибирские химики опубликовали в 1967 г.— именно эта дата и считается сегодня официальной датой возникновения нового направления в молекулярной биологии и фармакологии.
Они были первыми
Осуществление этого необычного по смелости проекта (в то время нигде в мире даже не планировалось проведение подобных исследований) на начальной стадии велось небольшой группой молодых сотрудников, аспирантов и студентов НГУ. Начинать пришлось практически с нуля, поскольку тогда еще не умели синтезировать олигонуклеотиды в заметных количествах; не существовало технических приборов, необходимых для работы с малыми количествами нуклеиновых кислот и эффективной методики определения их последовательности. Решить эти проблемы нашим химикам удалось благодаря междисциплинарности — одному из принципов, легших в основу деятельности Сибирского отделения.
В НИОХ было организовано производство нуклеиновых кислот, разработаны методы их химической модификации; совместно с сотрудниками Института ядерной физики удалось создать приборы для анализа нуклеиновых кислот и манипуляции с их малыми количествами, а совместно с химиками МГУ — развернуть работы по созданию автоматических синтезаторов оли-гонуклеотидов. В результате в распоряжении ученых оказались практически все необходимые аналитические методы и приборы — биологические исследования можно было начинать.
Эксперименты, проведенные сначала на простых моделях, а затем на природных нуклеиновых кислотах, показали, что олигонуклеотиды действительно взаимодействуют с нуклеиновыми кислотами — мишенями с высокой степенью избирательности. В том случае, когда к олигонуклеотидам присоединены реакционно-способные группы, происходит направленная химическая модификация мишеней — нуклеиновых кислот. К тому же, впервые было продемонстрировано, что с помощью этих реагентов можно подавить вирусные инфекции у животных, а также доказана возможность введения их в организм через кожу и слизистые оболочки и т.п.
Ранние публикации, посвященные биологическим эффектам, производимым олигонуклеотидами, вызвали огромный интерес специалистов во всем мире. В 1988 г. в Академгородке был проведен первый в мире симпозиум по ген-направленным веществам на основе фрагментов нуклеиновых кислот. В работу по созданию подобных препаратов включились ученые США, Франции, а затем и других стран; возникли десятки
.........
нуклеиновая кислота олигонуклеотид
4.УУ.УУУ
химическая реакционно-способная группа
Узнавание последовательности
■т ЧТИ"" ■■яг
А пШпШ
комплементарные Образование нуклеотиды
химическои связи
........
На схеме — направленная химическая модификация нуклеиновой кислоты реакционно-способным производным олигонуклеотида
Д. Г. Кнорре с первыми сотрудниками лаборатории химии природных полимеров (1962 г., Институт гидродинамики СО АН СССР)
¡Я НАУКИ о жизни
Д. Г. КНОРРЕ — академик РАН, специалист в области химической кинетики, молекулярной биологии и биоорганической химии. Заведующий лабораторией химии природных полимеров (1960—1984 гг.), отделом биохимии и лабораторией химии нуклеиновых кислот (1970—1984 гг.) Института органической химии СО АН СССР, директор Института биоорганической химии СО АН СССР и СО РАН (1984—1996 гг.)
Антисмысловые подходы, основанные на использовании нуклеотидов и нуклеиновых кислот для подавления биологической активности нуклеиновых кислот, сулят интересные перспективы в тех случаях, когда нужно задавить реализацию нежелательной информации в живых организмах. В первую очередь открывается перспектива создания нового поколения противовирусных и противоопухолевых препаратов. Такие препараты имеют одно неоспоримое преимущество перед другими... Все олигонуклеотиды независимо от мишени, на которую они нацелены, могут быть созданы по единой технологии. Варьировать нужно только последовательность нуклеотидов. В частности, в вирусологии и онкологии часто приходится сталкиваться с таким явлением, как возникновение устойчивости к препаратам. Это происходит чаще всего потому, что у отдельной вирусной частицы или отдельной раковой клетки происходит мутация, приводящая к такой устойчивости. В любом другом случае нужно начинать эмпирический поиск нового лекарственного препарата. В случае антисмысловых воздействий нужно только определить, какое изменение в структуре вирусного генома или онкогена привело к появлению устойчивости. После чего сразу становится ясным, как по той же единой технологии создавать новый препарат*.
* Соросовский образовательный журнал. — 1998. — 12. - С. 25-31.
компаний, поставивших перед собой цель создать терапевтические препараты на основе олигонуклеотидов.
Комплементарное лекарство
Первыми из препаратов ген-направленного действия стали так называемые антисмысловые олигонуклеотиды, предназначенные для избирательной инактивации вирусных РНК и некоторых клеточных РНК. Изначально предполагалось, что к этим олигонуклеотидам будут присоединены реакционно-способные группы, которые должны химически модифицировать или разрушать целевые нуклеиновые кислоты. Однако выяснилось, что присоединение олигонуклеотидов к РНК-мишени само по себе оказывает на нее настолько большое влияние, что может провоцировать ее разрушение клеточными ферментами.
Самым мощным средством «выключения» генов оказались интерферирующие РНК — короткие двуце-почечные комплексы из РНК-олигонуклеотидов. Когда такой комплекс вводят в клетку, одна из цепочек связывается с комплементарной ей последовательностью в информационной РНК клетки. Это служит сигналом к началу работы группы ферментов, которые разрезают РНК, связанную с олигонуклеотидами. В результате программа синтеза определенного белка исчезает.
В 2006 г. за объяснение действия механизма РНК-интерференции два американских исследователя были удостоены Нобелевской премии по физиологии и медицине. Создание регуляторов экспрессии генов на основе интерферирующих РНК открыло большие возможности для получения широкого спектра высокоэффективных нетоксичных препаратов, подавляющих экспрессию практически всех, в том числе опухолевых и вирусных, генов.
Правильные мутации
Внимание специалистов давно привлекают и методы мутагенного воздействия на ДНК с помощью олигонуклеотидов или их производных. В случае успеха может стать реальным то, что сегодня кажется фантастикой: коррекция дефектных генетических программ.
Экспериментально уже доказано, что с помощью коротких олигонуклеотидов можно вносить в генетические программы точечные мутации. Как это осуществить? Мутагенные олигонуклеотиды, содержащие «неправильные» нуклеотидные блоки, вводятся в клетку, где они соединяются с ДНК. В результате в некоторых участках нуклеотидных последовательностей появляются «неправильные», т. е. некомплементарные, пары оснований, что и воспринимается клеточной системой репарации («ремонта») ДНК как повреждение. Нуклеотиды в подобной паре заменяются репаратив-
ными ферментами таким образом, чтобы она стала «правильной», комплементарной. При этом замена может происходить как в олигонук-леотидной последовательности, так и в самой клеточной ДНК.
В последнем случае мы имеем дело с изменением генетической программы, т. е. с мутацией. И хотя эффективность подобного мутационного процесса в целом невелика, он может быть использован применительно к новым клеточным технологиям. Например, стволовые клетки больного с каким-либо наследственным нарушением можно обработать избирательным мутагеном, а затем отобрать те из них, в которых произошла нужная мутация (т. е. клетки с «исправленной» генетической программой), размножить и ввести в организм.
Таким образом, существующие на сегодняшний день олигонуклеоти-ды способны регулировать «работу» генов на различных уровнях. Так, вышеупомянутые антисмысловые олигонуклеотиды и интерферирующие РНК работают на стадии синтеза белка, воздействуя на матричные РНК — информационные молекулы, в которых происходит сборка полипептидных цепочек. Антигенные олигонуклеотиды, образующие комплексы с ДНК, подавляют экспрессию генов — образование самих матричных РНК, а олиго-нуклеотиды-аптамеры могут, подобно антителам, образовывать связи с определенными белками, блокируя их. Кроме того, некоторые олигонуклеотиды способны стимулировать работу иммунной системы — сегодня их используют в качестве компонентов вакцин.
В настоящее время разработку и синтез олигонуклеотидов и их аналогов ведут большие исследовательский и индустриальный секторы. Так, в прошлом году только объем рынка олигонуклеотидов, предназначенных для исследовательских целей, превысил 800 млн долларов! Сейчас разработаны
и синтезированы десятки новых видов химически модифицированных олигонуклеотидов, идут испытания ряда противовирусных и противовоспалительных препаратов, полученных на их основе. Исследования подобного рода в России сейчас проводятся в основном в Институте химической биологии и фундаментальной медицины СО РАН, где работают ученики и последователи академика Д. Г. Кнорре.
Вот так плодотворность идеи, возникшей в Сибирском отделении сорок лет назад, была доказана самой жизнью. Используя в качестве базовых структур для создания ген-направленных биологически активных веществ короткие фрагменты нуклеиновых кислот, можно быстро разработать и внедрить в производство специфические лекарственные препараты практически против любого вируса. Для этого необходимо лишь расшифровать нуклеотидную последовательность вирусных генов, что несложно сделать с помощью современных технологий. У этого универсального подхода большое будущее: результаты исследований последних лет, в частности по на-
без лечения
лечение
традиционными
препаратами
лечение традиционными препаратами в сочетании с малыми интерферирующими
Ученик Д. Г. Кнорре директор ИХБФМ СО РАН В. В. Власов
правленному мутагенезу, позволяют рассчитывать на появление в скором времени эффективных лекарств для борьбы с заболеваниями, до сих пор считающихся неизлечимыми.
Академик В. В. Власов (Институт химической биологии и фундаментальной медицины СО РАН, ННЦ)
)
размер опухоли (%)
РНК о 20 40 60 80 100
Специалисты ИХБФМ СО РАН на примере лимфосаркомы мышей линии СВА показали, что развитие опухоли можно подавить более эффективно, если проводить лечение традиционными лекарственными препаратами в сочетании со специфическими малыми интерферирующими РНК. Эти РНК способны подавлять функцию гена тс1г1, обеспечивающего устойчивость опухолей к ряду лекарственных средств