Научная статья на тему 'Нуклеиновый конструктор'

Нуклеиновый конструктор Текст научной статьи по специальности «Нанотехнологии»

CC BY
473
126
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
НАНОТЕХНОЛОГИИ / НУКЛЕИНОВЫЕ КИСЛОТЫ / ДНК-КОНКАТЕМЕРЫ / ДНК-КОНСТРУКЦИИ / КВАНТОВЫЕ ТОЧКИ / НАНОДВИГАТЕЛИ / ДНКЗИМ / НАНОПЕРЕКЛЮЧАТЕЛИ / ТАНДЕМНЫЕ КОМПЛЕКСЫ / ПЦР / РЕПОРТЕРНЫЕ ГРУППЫ / РНК / ДНК

Аннотация научной статьи по нанотехнологиям, автор научной работы — Пышный Д.В., Веньяминова А.Г., Синяков А.Н., Зенкова М.А., Власов В.В.

Молекулы относительно простых соединений имеют размеры меньше одного нанометра. Однако в разряд нанообъектов попадают и биологические макромолекулы, такие как белки и нуклеиновые кислоты, а также еще более крупные молекулярные «клеточные машины» и даже самые «простые» живые организмы вирусы. Фундаментальными исследованиями этих объектов традиционно занималась и занимается молекулярная биология. Наряду с этим ученые работали над проблемами синтеза природных макромолекул, создания и применения их искусственных аналогов с новыми свойствами, причем делали это задолго до того, как нанотехнологии были объявлены государственным приоритетом.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Пышный Д.В., Веньяминова А.Г., Синяков А.Н., Зенкова М.А., Власов В.В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Нуклеиновый конструктор»

Д.В. ПЫШНЫЙ, А.Г. ВЕНЬЯМИНОВА, А.Н. СИНЯКОВ, М.А. ЗЕНКОВА, В.В. ВЛАСОВ

НУКЛЕИНОВЫЙ КОНСТРУКТОР

В нанодавние времена в наностране люди строили дома из нанокирпичей, которые валялись в информационном поле.

Нанофольклор

ПЫШНЫЙ Дмитрий Владимирович — кандидат химических наук, доцент, заместитель директора, заведующий лабораторией бионанотехнологии Института химической биологии и фундаментальной медицины СО РАН (Новосибирск).

Автор и соавтор 95 научных работ, в том числе 6 патентов

ВЕНЬЯМИНОВА Алия Гусейновна — кандидат химических наук, доцент, заведующая лабораторией химии РНК Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Лауреат Государственной премии РФ (1999). Автор и соавтор 156 научных работ, в том числе 5 патентов

СИНЯКОВ Александр Николаевич — кандидат химических наук, заведующей лабораторией медицинской химии Института химической биологии и фундаментальной медицины СО РАН (Новосибирск).

Автор и соавтор 85 научных работ, в том числе 15 патентов

Молекулы относительно простых соединений имеют размеры меньше одного нанометра. Однако в разряд нанообъектов попадают и биологические макромолекулы, такие как белки и нуклеиновые кислоты, а также еще более крупные молекулярные «клеточные машины» и даже самые «простые» живые организмы — вирусы. Фундаментальными исследованиями этих объектов традиционно занималась и занимается молекулярная биология. Наряду с этим ученые работали над проблемами синтеза природных макромолекул, создания и применения их искусственных аналогов с новыми свойствами, причем делали это задолго до того, как нанотехнологии были объявлены государственным приоритетом

ЗЕНКОВА Марина Аркадьевна — доктор биологических наук, профессор, заведующая лабораторией биохимии нуклеиновых кислот Института химической биологии и фундаментальной медицины СО РАН (Новосибирск).

Автор и соавтор 120 научных работ и 3 патентов

ВЛАСОВ Валентин Викторович — академик РАН, доктор химических наук, профессор, директор Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Лауреат Государственной премии РФ (1999). Автор и соавтор более 200 научных работ, в том числе 9 патентов

~ 100

20—30 нм

Молекула одного из самых простых неорганических соединений — воды

Бактериофаг Го1оИа, ' (вирус, поражающий бактерии). Рис. Д. Сунагатова

Рибосома — супрамолекулярная клеточная машина для синтеза белка

' V : _ '

Ь, й '' \

_ -•'¿'.^ ¿ЗШ .

: ^ £ _ ■ " V - ^ г ^.. .

Т(\5- ^¡¡.ф ■■ ■

ДНК

РНК

В нанометровый диапазон укладываются размеры ряда объектов биологической природы

щ :|р§ -

Ш ЩШ ______'______

■■■

Один из самых удивительных природных полимеров — ДНК — в обычном состоянии представляет собой спираль из двух цепей, которые удерживаются вместе за счет комплементарных взаимодействий входящих в их состав мономеров (нуклеотидов). Другая нуклеиновая кислота — РНК — также может формировать спиральные структуры, только более плотные

'МШ

Ш

Нанотехнологии — современный подход к использованию таких свойств вещества, которые определяются его структурными элементами нанометровых размеров. Последнее означает, что при переходе вещества из макро- и микро- в нано-состояние может происходить резкое, скачкообразное изменение его характеристик: физических, химических и биологических. Нанотехнология, а точнее, ее «теоретическая» ветвь, нанонаука (nanoscience), как раз и занимается изучением причин появления у вещества подобных квантовых свойств.

В практической области существование феномена «нановещества» позволяет разрабатывать технологии направленного изменения свойств материалов за счет их специфического структурирования на наноуровне. Продуктом нанотехнологий становятся необычные по свойствам материалы; ультрамалые замысловатые пространственные структуры; невидимые глазу совершенные механизмы, способные выполнять только им посильные операции на микроскопическом уровне.

Один нанометр (одна милионная часть миллиметра) соответствует величине несложной молекулы, а

В природе сложные органические молекулы и надмолекулярные комплексы образуются по принципу самоорганизации из более простых молекул. Бионанотехнология стремится установить принципы взаимодействия таких структур, чтобы воспроизвести природный процесс самосборки в искусственной системе. Это позволяет не только «синтезировать» в пробирке разнообразные биологические структуры (от единичного фермента ДНК-лигазы до рибосомы или вирусоподобной частицы), но и шагнуть дальше, создавая биологические микрообъекты с заданными свойствами, которых в природе не существует

наиболее простые соединения, такие как вода, имеют значительно меньший размер. Основными деталями бионанотехнологического конструктора являются значительно более крупные органические молекулы, а также супрамолекулярные комплексы — сложно организованные надмолекулярные структуры. Их размер составляет от нескольких нанометров до десятков и сотен.

Роль главных структурных элементов в бионано-конструировании отводится молекулам нуклеиновых кислот — ДНК и РНК. Дело в том, что эти биополимеры обладают удивительной способностью самоорганизовываться в характерные пространственные конструкции — двуцепочечные структуры, удерживаемые комплементарными взаимодействиями. Это позволяет использовать нуклеиновые кислоты не только в качестве носителя генетической информации (записанной в последовательности биополимера четырьмя «буква-ми»-нуклеотидами), но и как удобные строительные блоки при создании наноконструкций.

Сегодня нуклеиновые кислоты являются доступным материалом благодаря разработке эффективных мето-

дов синтеза. Так, с помощью специальных приборов — синтезаторов можно в автоматическом режиме производить нуклеотидные цепи длиной до сотни звеньев. Поскольку «ассортимент» таких молекул ограничен лишь изобретательностью самого наноконструктора, сфера применения нуклеиновых кислот благодаря их доступности и практичности быстро расширяется.

От покрытий до моторов

Самым простым примером самоорганизованной сборки наноструктур из нуклеиновых кислот является формирование ДНК-конкатемеров — полимерных структур из блоков, образованных лишь парой олигонуклеотидов (фрагментов ДНК). С помощью подобного подхода можно сконструировать также дву- и трехмерные структуры. При создании плоских и объемных конструкций наряду с «простыми» олиго-нуклеотидами используются также их конъюгаты (от лат. conjugatio — соединение) с другими нанообъектами неорганической или органической природы, например, с молекулами белка.

45

а — конструирование протяженных линейных структур из ДНК-наноблоков

1,4 мкм

б — конструирование нелинейных структур из модифицированных ДНК-наноблоков

Флуоресценция полупроводниковых частиц сульфида кадмия (Сс!5)

хОЕПШГТ

i Простые линейные (а) и кольцевые (б) структуры из нуклеиновых кислот (ДНК-конкатемеры) можно получить из ДНК-блоков — двуцепочечных структур, на концах которых находится одноцепочечныи фрагмент. Если нуклеотидные последовательности концевых участков будут комплементарны друг другу, то произойдет Самопроизвольная сборка полимерной цепи.

Образцы ДНК получены О. Виноградовой (ИХБФМ СО РАН); их изображения с помощью атомно-силовой микроскопии — Е. Родякиной (ЦКП СО РАН «Наноструктуры») (Новосибирск)

4 Полупроводниковые наночастицы — квантовые точки — на основе сульфида кадмия флуоресцируют в водных растворах. Длина волны испускаемого ими света зависит от величины частиц: при увеличении размеров наблюдается смещение из коротковолновой (голубой)в длинноволновую (красную) область видимого спектра. Такие частицы используются в качестве эффективных меток при создании линейки олигонуклеотиднЫх зондов для биоаналитических целей. Фото Р.Анарбаева (ИХБФМ СО РАН)

Примеры возможных ДНК-конструкций

Используя принцип взаимной комплементарности отдельных фрагментов в составе олигонуклеотидных наноблоков и различные модификации, изменяющие структурные параметры спиральных доменов, можно получать самособирающиеся наноструктурированные пленки (а) и объемные конструкции (б)

В том числе можно получить упорядоченные пленочные структуры, где неорганические наночастицы выступают в качестве узлов-разветвителей. Такие материалы рассматриваются в качестве перспективных самособирающихся покрытий-шаблонов для полупроводниковых структур при создании современных микросхем. А объемные наноконструкции могут служить в качестве уникальных биосовместимых контейнеров для упаковки фармакологических препаратов и их адресной доставки к органам-мишеням.

Еще одним примером новых материалов служат конъ-югаты олигонуклеотидов с квантовыми точками — по-

,'Акцептор

Флуоресцирует частично акцептор, частично — донор

Метод FRET позволяет установить относительное расположение двух молекул или частей одной молекулы. Для этого используют две флуоресцентные метки — донорную и акцепторную, причем частота эмиссии донора должна соответствовать частоте возбуждения акцептора. Когда эти два флуорофора удалены друг от друга не более чем на несколько десятков ангстрем («спарены»), происходит перенос энергии флуоресценции с донора на акцептор. По мере увеличения расстояния между ними перенос энергии уменьшается, в результате чего флуоресценция акцептора начинает падать, а донора — увеличиваться

Флуоресцирует акцептор

Флуоресцирует, только донор

лупроводниковыми наночастицами, способными к флуоресценции в видимом диапазоне света. Наборы олигонуклеотидных зондов, меченных с помощью такой технологии, упрощают решение ряда биологических задач (например, параллельного отслеживания нескольких процессов в живой клетке), а также используются в области медицинской ДНК-диагностики и компьютерной томографии.

На основе нуклеиновых кислот можно создавать и так называемые клеточные молекулярные машины, или бионанодвигатели, — наноустройста, способные автономно совершать движения, трансформируя энергию химических реакций в механическую работу. Важной характеристикой молекулярных наномашин является их автономность или самоуправление. Наномоторы имеют множество потенциальных применений, таких как обработка информации и регуляция химических реакций, а также молекулярная сборка в различных наноэлектронных приборах и биосенсорах.

48 В 2004 г. созданы ДНК-наномоторы, действующим началом которых является ДНКзим «10-23» — своеобразный фермент на основе ДНК. Эти «двигатели» способны производить механические движения до тех пор, пока доступно «топливо» — РНК-субстрат. Хотя эти наноустройства вполне автономны, есть возможность регулировать их работу «извне», например, добавляя или убирая субстрат-топливо (по аналогии с автомобильным «поддаванием» или «сбрасыванием» газа). Более того, наномотор можно остановить и потом запустить вновь — для этих целей служат специально

сконструированные олигонуклеотидные цепочки «тормоз» и «удаление».

В 2005 г. сконструирован более сложный нанодви-гатель, управляемый ДНКзимом «10-23», способный автономно перемещаться по определенной траектории, заданной олигонуклеотидной цепочкой. Подобные системы в будущем могут использоваться для транспортировки молекул-«грузов».

Молекулы нуклеиновых кислот служат потенциальной основой для создания еще ряда устройств и соединений. В так называемых нанопереключателях используется способность двуцепочечной спирали нуклеиновых кислот менять свою конформацию под воздействием внешних факторов, например, при связывании со специфическими веществами-лигандами. Если такой чувствительный участок соединяет два элемента наноконструкции, то при добавлении ли-ганда конструкция перестраивается. Таким способом можно, например, менять уровень флуоресценции нанообъекта.

Современные возможности в области компьютерного моделирования и синтеза компонентов нуклеиновых кислот практически неограничены, что позволяет уже сейчас «строить» разнообразные причудливые супрамолекулярные фигуры, форма и предназначение которых ограничиваются лишь фантазией (Aldaye, Palmer, Sleiman, 2008)

ft

Флуорофор донор

Флуорофор-акцептор

Расщепление -У

гбстрата у

А г^

A Â

ДНКзим '

I ДНКзим связывается с субстратом

высвобождается из комплекса

шшшщ-^м i H s

о

I—

£ I—

о

s

I— 3

Проследить за движениями частей мотора можно благодаря особым флуоресцирующим меткам на концах ДНКзима. Акцептор способен снимать энергию с донора посредством РРЕТ-эффекта, сам ее не переизлучая. Флуоресценция в системе появляется лишь тогда, когда акцептор удаляется от донора. По изменению интенсивности излучаемого системой света можно судить о работе нанодвигателя

Наномотор на основе ДНКзима «10-23» представляет собой структуру из соединенных и сведенных вместе жестких спиральных стержней. Он работает на «топливе» — РНК-субстрате: химическая энергия ковалентных связей преобразуется в механические движения по сведению-разведению стержней. ДНКзим связывается с субстратом и расщепляет его на два продукта, которые затем высвобождаются из комплекса. Этот процесс сопровождается изменением конформации молекулы, в результате чего и совершаются движения.

Наномотор можно остановить и потом запустить вновь. Для этих целей существуют специально сконструированные олигонуклеотиды «тормоз» и «удаление». Цепь «тормоз» по строению очень схожа с субстратом-топливом, но представляет собой ДНК, которая не расщепляется ДНКзимом и «замыкает» мотор в инактивированном состоянии. Цепь «удаление» полностью комплементарна цепи «тормоз» и способна вытеснять последнюю из каталитического центра наномотора, тем самым вновь его запуская. По: (Chen, Wang, Мао, 2004)

субстрат S, S2 S3

I ДНКзим связывается с субстратом II ДНКзим расщепляет субстрат ||| ДНКзим связывается со следующей

молекулой субстрата

Топливом для «шагающего» наномотора на основе ДНКзима «10-23» также служит РНК-субстрат, ряд молекул которого (Э^ Э2, Эд, ...Эп) зафиксирован на определенном расстоянии друг от друга на общей матрице. Связавшись с одной из молекул субстрата, ДНКзим расщепляет его

по определенному участку. Часть разрушенной молекулы субстрата освобождается, что позволяет ДНКзиму «переползти» на новую близлежащюю молекулу субстрата. Последнюю ждет та же участь, но результат налицо — направленное перемещение совершено. По: (Tian, Не, Chen et а!., 2005)

Сенсорный участок

Флуорофор-донор ■---■ Флуорофор-акцептор

>\х Л'Х'Х.АXX

>М,Х'ХЖ х х .1л'\,л.:'

Нанопереключатель состоит из жестко сочлененных нуклеотидных структур, соединенных в центральной части сенсорным фрагментом —участком, чувствительным к составу внешней среды. В исходном состоянии этот фрагмент находится в форме классической правозакрученной спирали. При этом пара флуорофоров, входящих в структуру переключателя, оказываются расположенными близко друг от друга, что обеспечивает ЕЯЕТ-зависимое свечение акцептора.

При появлении в среде специфических веществ, связывающихся с сенсорным участком, его структура резко меняется: спираль переходит в левозакрученную форму. Такая перегруппировка структуры приводит к изменению спектра флуоресценции системы. Функция выполнена — сигнал подан

Рассматривая различные наноустройства, нельзя не упомянуть об аптамерах — уникальных молекулах, сконструированных на основе нуклеиновых кислот. Аптамер представляет собой трехмерную структуру-«ключ», специфично подходящую к «замку» — определенной молекуле-мишени. В результате их взаимодействия образуются прочные стабильные надмолекулярные комплексы. Благодаря этому можно обнаружить молекулы веществ даже в сверхмалых концентрациях. Аптамеры являются важными деталями бионаноконструктора, которые используются при разработке различных супрамолекулярных устройств, в том числе биосенсоров.

Диагностируем мутации

В то время как одни достижения бионанотехнологии пока следует рассматривать лишь как некие прототипы устройств отдаленного будущего (так, сегодня вряд ли можно найти достойную работу наномотору), другие незамедлительным образом внедряются в важнейшие

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

прикладные области, в частности, в медицинскую диагностику. В их числе — диагностические сенсоры на основе нуклеиновых кислот, часть которых разрабатывалась в последние полтора десятилетия в ИХБФМ СО РАН (Новосибирск). Назначение подобных конструкций — распознавать с высокой точностью целевые последовательности ДНК благодаря специфическому связыванию нанозондов с ДНК-мишенями.

Диагностические системы, предлагаемые новосибирскими биохимиками, представляют собой своего рода кассеты из наборов коротких синтетических фрагментов ДНК. Последние способны связываться с исследуемой ДНК, формируя так называемые тандем ные комплексы.

В результате фундаментальных исследований этих комплексов удалось создать на их основе тест-систе-мы для выявления точечных мутаций в ДНК. А ведь подобные мутации нередко являются причиной серьезных наследственных заболеваний, а также определяют патогенность различных штаммов микроорганизмов и вирусов.

Нативный комплекс

Тандемные комплексы

апМп^ШпШппп

ДНК-мишень> ■ Олигонукле'отид-зонд

ппММпрпНпНппп

а) Простой тандемный комплекс. Образуется в результате связывания ДНК с набором коротких олигонуклеоти-дов-зондов

„шшшшпш

б) Сшитый тандемный комплекс. Образуется в результате комплексообра-зования ДНК с олигонуклеотидами, соединенными ненуклеотидным мостиком

Диагностические системы для детекции ДНК состоят из наборов коротких синтетических олигонуклеотидов, способных связываться с исследуемой одноцепочечной ДНК с формированием тандемных комплексов. Преимущество простого тандемного комплекса (а) — более высокая эффективность связывания отдельных олигонуклеотидов-зондов за счет кооперативных взаимодействий, возникающих при посадке таких зондов на соседних участках ДНК-мишени.

Сшитый тандемный зонд (б) благодаря вставкам различной природы, ковалентно соединяющим олигонуклеотидные блоки, обладает такими свойствами, как способность к комплексообразованию, устойчивость/чувствительность к действию ферментов. Разработка ИХБФМ СО РАН

Исследуемый фрагмент

ДНК-мишень

Набор зондов

Носитель

Зонды комлементарно связываются с ДНК

(•' -Г'

• •

М ¡а

Лигирование — сшивание зондов с помощью ДНК-лигазы

........ Да|

рммппнм.&ш

Отмывка —' удаление исследуемой ДНК"

¿МппШмШшйМи

Краситель Фермент

«

Ферментативное окрашивание

Метод высокоточного анализа генетического материала основан на ферментативном лигировании простого тандемного комплекса, (Образующегося при добавлении к исследуемой ДНК набора разных олигонуклеотидов-зондов. Лигирование (сшивание с помощью фермента ДНК-лигазы) трех коротких зондов (один из них «пришит» к твердотельному носителю, а другой несет репортерную группу) происходит только на полностью комплементарном участке цепи исследуемой ДНК. Основываясь на строении конкретного зонда, присоединившегося к исследуемому участку ДНК, можно выявить точечные мутации — последовательности ДНК, отличающиеся друг от друга лишь одним нуклеотидом. Визуализация результатов анализа достигается с помощью окрашивания продуктов ферментативных реакций. Это исключает необходимость использования дорогостоящей техники для регистрации результатов анализа. Разработка ИХБФМ СО РАН

т

<0

■§90 $ шщщЩ

тмттош

с

Носитель окрасился лишь в тех пробирках, где произошло комплементарное связывание исследуемой ДНК с конкретным набором молекул-зондов

Пример результатов генотипи-рования вируса гепатита С с помощью биочипа, позволяющего установить принадлежность вирусов из клинических проб к одному из шести диагностически значимых субтипов вируса: 1а, 1Ь, 2а, 2Ь, За, ЗЬ.

Биочип изготовлен в виде капроновых полосок — «стрипов», несущих набор специфичных олигонуклеотидных зондов. Он позволяет провести параллельный анализ сразу нескольких участков в образце ДНК вируса. Сравнив с шаблоном изображение, полученное после проявления биочипа, можно классифицировать вирус, что дает возможность определить степень его опасности для пациента. К1 + — контроль системы мечения зондов, К2+ — контроль системы выявления метки. Фото Е. Дмитриенко (ИХБФМ СО РАН)

Выявление HCV

Тип 1ab

Тип 1а и 2а

Тип 1Ь

Тип 2а

Тип 2Ь

Тип За

Тип ЗЬ

К1 +

К2+

Тип 1 b Тип 2Ь Тип 2а Тип За

Г|]

г^ц

pv

й Щ ЕЕ Ж ш

Шаблон Стрип Шаблон Стрип Шаблон

Разработанные в ИХБФМ СО РАН способы анализа структуры ДНК с использованием составных олигонуклеотидных конструкций в качестве специфических зондов признаны патентоспособными. На их основе уже разработаны тест-системы для выявления полиморфизма в различных локусах У-хромосомы человека, точечной мутации в гене фенилаланингидроксилазы, а также для генотипирования различных вирусов

Кроме того, с помощью этих тест-систем можно выявить и другие локальные нарушения в ДНК-последовательностях, такие как потеря сегмента ДНК, олигонуклеотидные замены и т.п.

Еще одно перспективное направление использования материалов из арсенала бионанотехнологии в медицинской диагностики — создание новых типов нанозондов для современных методов количественного анализа ДНК, таких как метод «ПЦР в реальном времени» (Real-time PCR). Этот метод используется для детекции и одновременного определения количества молекул ДНК-мишени в образце.

Транспорт для лекарства

Важнейшая проблема в клинической практике — адресная доставка в клетки-мишени биологически активных макромолекул, таких как «терапевтические гены» . Чтобы решить ее, необходимо обеспечить защиту этих препаратов во время транспорта и концентрирование их в определенных клетках.

Одно из основных препятствий для использования препаратов на основе нуклеиновых кислот — низкая эффективность их проникновения внутрь клеток, трансфекции. Проблема трансфекции обусловлена тем, что млекопитающие обладают рядом механизмов, препятствующих проникновению в них чужеродных молекул ДНК и РНК — генетического материала потенциально болезнетворных агентов (вирусов, бактерий и т.п.)

Вдобавок самим клеткам трудно захватывать нуклеиновые кислоты, находящиеся в свободном («раздетом», как говорят специалисты) состоянии, из-за наличия своеобразного электростатического барьера. Дело в том, что клеточная мембрана и сахарофосфатный остов молекул нуклеиновых кислот обладают одноименным — отрицательным — зарядом, вследствие чего между ними возникает электростатическое отталкивание.

Транспорт в клетку протяженных нуклеиновых кислот осложняется еще и их относительно большим размером, жесткой пространственной структурой и

«Зримый» результат генотипирования образца вируса гепатита С (ВГС) с помощью метода «ПЦР в реальном времени», полученный при использовании ВГС-1 а-специфичного ТаяМап-зонда и фрагментов ДНК, соответствующих генотипам ВГС 1а и 1Ь.

Рост флуоресценции, отражающий степень разрушения ДНК-полимеразой зонда на комплементарной ДНК-матрице, свидетельствует о процессе копирования конкретной мишени. Зонды созданы на основе конъюгатов олигонуклеотидов с малобороздочным лигандом. ИХБФМ СО РАН

Справа — пример укладки малобороздочного лиганда в малой бороздке двойной спирали ДНК

_/ вируса гепатита С 1 в

_ У не происходит

5 10 15 20 25 30 35 40 45 50 Номер цикла полимеразной цепной реакции

лиганд

Зримые различия

На основе олигонуклеотидных зондов разработан точный и высокоэффективный метод «ПЦР в реальном времени» (Real-Time PCR), позволяющий не только детектировать ДНК-мишень, но и определять точное количество молекул этой мишени.

Суть обычной полимеразной цепной реакции (ПЦР) состоит в том, что на основе нуклеотидной последовательности первичной ДНК-матрицы с помощью фермента ДНК-полимеразы синтезируются цепи ДНК, служащие матрицами в следующем цикле копирования. В результате можно получить неограниченное число копий первичной ДНК. Метод «ПЦР в реальном времени» отличается тем, что позволяет определять количество ДНК по мере ее накопления в реакции. Наиболее перспективным является подход, основанный на использовании TaqMan-зондов. Они представляют собой олигонуклеотиды с флуоресцентной меткой на одном конце и «тушителем» флуоресценции — на другом, который

поглощает излучение от флуоресцентной метки, делая его незаметным для систем детекции. ДНК-полимераза обладает способностью разрушать фрагменты двухцепочечной структуры, встречающиеся ей по ходу синтеза второй цепи на матрице одноцепочечной ДНК. Та же участь постигает и ТаяМап-зонды, которые комплементарно присоединяются к определенному участку ДНК-мишени. В результате разрушения зонда флуоресцентная метка отделяется от тушителя, что приводит к появлению регистрируемой флуоресценции.

Недостатком метода является его низкая чувствительность для распознавания ДНК-мишеней, отличающихся друг от друга всего одной заменой нуклеотида. Для решения этой проблемы в лаборатории медицинской химии ИХБФМ СО РАН предложено использовать в качестве зондов конъюгаты коротких олигодезоксирибонуклеотидов с малобороздочными лигандами — синтетическими молекулами, прочно связывающимися с двойной спиралью ДНК

Лиганд к клеточным рецепторам!

ЛЕКАРСТВЕННАЯ МОЛЕКУЛА <

Трехмерная модель-схема гипотетической полифункциональной наночастицы — гексамера молекулы РНК, несущей различные функциональные группы, которые обеспечивают адресную доставку конструкции в клетки-мишени; сигнализируют о доставке агента по адресу; определяют внутриклеточную локализацию конструкции; воздействуют на передачу генетической информации и другие биохимические процессы в клетках.

По: (КЬаЫ, вио ef а!., 2005)

Репортерная группа

Эндосомолитический

агент

s РНК

Рибозим

невысокой подвижностью в биологических жидкостях и цитоплазме клеток.

Методы трансфекции постоянно совершенствуются на протяжении уже более трех десятилетий. Наиболее современные из них основаны на использовании хитроумных конструкций на основе нанокомплексов нуклеиновых кислот и их конъюгатов с органическими лигандами или наночастицами.

Некоторые встречающиеся в природе молекулы РНК обладают свойством формировать компактные молекулярные комплексы. Среди них ф29 — короткая (117 нуклеотидов) РНК бактериофага, участвующая в упаковке его ДНК-генома в белковую оболочку. На основе этой РНК сконструированы наночастицы так называемой «упаковочной» pRNA («packing RNA>>). Благодаря образованию водородных связей между отдельными доменами она может путем самосборки образовывать димеры, тримеры и гексамеры размерами до 10-30 нм (Shu, Huang et al., 2003; Khaled, Guo, Li et al., 2005).

Такие комплексы pRNA служат в качестве упаковывающего каркаса для «терапевтических» молекул нуклеиновых кислот. Их удается еще дополнительно «функционализировать», как говорят биологи, — путем присоединения различных функциональных группировок задать адрес доставки и клеточное назначение. Это могут быть так называемыерепортерные группы, позво-

ляющие контролировать эффективность трансфекции; генонаправленные молекулы (рибозимы, малые з1РНК), нарушающие выполнение определенных генетических клеточных программ; лиганды клеточных рецепторов и мембранных белков, определяющие адресованный захват наноконструкции клетками-мишенями.

Примером такой адресующей группировки может служить всем известный фолат (фолиевая кислота, витамин Вэ). Рецепторы к нему обычно отсутствуют на поверхности нормальных дифференцированных тканевых клеток, но во множестве присутствуют на поверхности клеток различных опухолей. В результате остаток фолата, присоединенный к наноконструкции, должен обеспечить ее доставку преимущественно в раковые клетки.

Эксперименты по доставке подобных рКМА-комплек-сов, несущих биологически активный олигонуклеотид (рибозим или интерферирующую з1РНК), показали, что они эффективно проникают в опухолевые клетки, имеющие фолатные рецепторы, где и подавляют работу генов-мишеней.

Поскольку pRNA-MO.neKy.na способна образовывать гексамерные комплексы, то можно увеличить ее функциональность путем присоединения к ней до шести различных субъединиц. В результате селективность и эффективность терапевтической наноконструкции могут значительно возрасти.

Пример перспективных материалов для создания микро- и наноканальных мембран для биотехнологических целей, разработанных в Институте физики полупроводников СО РАН. Сканирующий электронный микроскоп.

Результаты предоставлены к.ф.-м.н С. И. Романовым {ЦКП СО РАН «Наноструктуры», Новосибирск)

Самосборка наночастиц на основе рКЫА является контролируемым процессом, что дает возможность определять их размер путем манипуляции со структурными доменами. Димеры и тримеры р!ША образуют частицы размером 20—40 нм. Подобные структуры достаточно крупны, чтобы исключить их быстрое выведение из циркулирующей крови, но при этом не достигают критического (более 100 нм) размера, когда проникновение комплексов в клетки затрудняется.

Холестериновый посыльный

Другой подход к решению проблемы доставки терапевтических нуклеотидных последовательностей в клетку состоит в повышении эффективности их естественного транспорта через клеточную мембрану. Этот подход основан на формировании различных супрамолекулярных структур.

В частности, протяженные олигонуклеотидные на-нокомплексы, созданные в ИХБФМ СОРАН, активнее проникают в клетки разного тканевого происхождения из-за своего повышенного сродства к фосфолипидным мембранам клеток.

Эти наноконструкции представляют собой конката-мерные комплексы, т. е. длинные двуцепочечные моле-

кулы ДНК с перекрывающимися комплементарными нуклеотидными последовательностями. Одна из цепей представляет собой биологически активную молекулу которую надо доставить в клетку (адресная молекула); другая цепь — молекулу-транспортер (СшасЬепко е1 а1., 2008).

В качестве функциональной группировки в состав олигонуклеотидов-транспортеров вводят липофильный остаток холестерина, который способствует транспорту конструкции в клетку благодаря сродству с фосфоли-пидной клеточной мембраной. Нужно отметить, что функциональные группировки при этом присоединяют к транспортеру, а не к терапевтической молекуле, что позволяет сохранить высокую биологическую активность последней.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Проблема адресной доставки лекарства к органам- и клеткам-мишеням — одна из центральных в современной медицине. Бионанотехнологи создают на основе нуклеиновых кислот конструкции, способные нести сразу несколько функциональных групп, благодаря которым они успешно преодолевают барьеры на пути транспорта биологически активных молекул

»1*1 ■■«г:/' ■

Биологически активный олигонуклеотид

Флуоресцентная метка

Олигонуклеотид-транспортер

Липофильная группа

%

Липофильная группа

ЭШррег-олигонуклеотид

15

Для доставки в клетку терапевтических форм нуклеиновых кислот используются конкатемерные комплексы. 1 ж Разные типы комплексов . " .у»- • создаются по единому принципу: ■ первая цепь комплекса — биологически активный " > олигонуклеотид, который необходимо доставить внутрь клетки; последовательность второй цепи (.транспортера) ■комплементарна и антипараллельна первой

а — немодифицированный конкатемер;

б — конкатемер, содержащий : на разных цепях репортерную флуоресцентную группу и липофильные холестериновые группы, облегчающие транспорт через клеточную мембрану;

в— немодифицированный*; конкатемер, гйбр^дизир'ованный, с липофильно-моди'с^ц'иро^а^ным _'.. в^ррег-олигонуклеотдоом . , Д. Ир

ш-

га» <£

56

Эта система доставки была испытана в экспериментах по транспорту так называемого антисмыслового олигонуклеотид а, который вызывает выключение гена, кодирующего зеленый флуоресцирующий белок. В клетках, постоянно синтезирующих этот белок и обладающих благодаря этому зеленой флуоресценцией, такой нанокомплекс вызывал снижение флуоресценции до 30 %. Это свидетельствует о том, что антисмысловой олигонуклеотид проник в клетки и специфически подавил работу гена, кодирующего флуоресцирующий белок.

Кооперация и интеграция специалистов и проектов — залог успеха современных бионанотехнологических исследований. Эти принципы успешно реализуются в Сибирском отделении РАН

Сегодня большинство разработок в области бионанотехнологии реализуется в рамках междисциплинарных проектов. Для того, чтобы добиться успеха, принципиально необходимо тесное сотрудничество исследовательских организа-циий различного профиля.

В связи с этим нельзя не отметить совместные разработки новосибирских биохимиков и специалистов из Института физики полупроводников СО РАН, в распоряжении которых имеются уникальные микро- и нанопористые мембраны на основе кремния. Эти материалы являются перспективными платформами как для разработки современных биосенсорных устройств и проведения Д НК-диагностических исследований, так и для ультраселективного выделения клеток-мишеней.

Другим междисциплинарным проектом является разработка микро- и нанофлюидных устройств для амплификации (умножения) и анализа нуклеиновых кислот, которая проводится совместно со специалистами Института катализа СО РАН.

.. к;, ■ у ■ -.f •• .;

t ty , .

ТШаШ

Ядра клеток

Контроль

f.V*y

Процесс проникновения в клетки-мишени различных конкатемерных комплексов, несущих одинаковый терапевтический олигонуклеотид, можно визуально отследить благодаря флуоресцентной метке, входящей в его состав (зеленое свечение). Видно, что наличие липофильных холестериновых групп в составе комплеска способствует его транспорту

Флуоресценция

ш

а — инкубация с немодифицированным конкатемерным комплексом;

б — инкубация с холестерин-модифицированным конкатемерным комплексом в течение 3 часов: комплесы накапливаются в цитоплазме клеток;

в — инкубация с холестерин-модифицированным конкатемерным комплексом в течение 17 часов: терапевтический олигонуклеотид проник из цитоплазмы в ядра клеток;

г— инкубация с конкатемерным комплексом, несущим только один остаток холестерина

Фотографии микропрепаратов ядер клеток линии 293, окрашеных НоесЬэ133258 (синее свечение), совмещены с фотографиями распределения конкатемерных комплексов, полученными с помощью флуоресцентной микроскопии (зеленое свечение). Фото О. Гусаченко (ИХБФМ СО РАН)

Кроме того, ряд институтов Сибирского отделения, работающих в областях химии, физики и даже петрографии, готовы предоставить ценные для развития бионанотех-нологии объекты: нанопорошки (наносферы, нанотрубки, квантовые точки) и наноканальные материалы.

Возможность такого сотрудничества в области материалов и технологий в рамках интеграционных проектов Сибирского отделения РАН открывает перспективу создания у нас высокотехнологичных интеллектуальных биосенсоров и «умных» лекарственных препаратов, которые будут определять лицо медицины и биотехнологии завтрашнего дня.

JIumepamypa:

Aldaye F.A., Palmer A.L., Sleiman H.F. Assembling Materials with DNA as the Guide //Science. - 2008. - V. 321. - P. 1795-1799.

Chen Y., Wang M., Mao C. An autonomous DNA nanomotor powered by a DNA enzyme//Angew. Chem. Int .Ed. Engl. — 2004. — V. 43. — P. 3554—3557.

Gusachenko (Simonova) O.N., PyshnyiD. V., Vlassov V. V., ZenkovaM.A. Modified concatemeric oligonucleotide complexes: new system for efficient oligonucleotide transfer into mammalian cells//Hum. Gene. Ther. — 2008. — V. 19. — P. 532—546.

KhaledA., GuoS., LiF., GuoP. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology // Nano Lett. - 2005. - V. 5. - P. 1797-1808.

Shu D., HuangL. P., Hoeprich S., Guo P. Construction of phi29 DNA -packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices//J. Nanosci. Nanotechnol. — 2003. — V.3. — P. 295—302.

Simmel F. C„ Dittmer W. U. DNA Nanodevices // Small. - 2005. - V. 1, N. 3. -P. 284-299.

Tian Y., He Y., Chen Y. et al. DNAzyme that walks processively and autonomously along a one-dimensional track // Angew. Chem. Int. Ed. Engl. — 2005. — V.44. — P. 4355-4358.

57

i Надоели баннеры? Вы всегда можете отключить рекламу.