УДК 621.785
ЛЕГИРОВАНИЕ ПОВЕРХНОСТИ УГЛЕРОДИСТОЙ СТАЛИ МЕДЬЮ ПУТЕМ ЭЛЕКТРИЧЕСКОГО ВЗРЫВА ПРОВОДНИКА И ПОСЛЕДУЮЩЕЙ ЭЛЕКТРОННО-ПУЧКОВОЙ ОБРАБОТКИ
Ю.Ф. Иванов, С.Ю. Филимонов*, А.Д. Тересов, Ю.А. Колубаева, E.A. Будовских**, В.Е. Громов**
Институт сильноточной электроники, г. Томск *Томский политехнический университет **Сибирский государственный индустриальный университет, г. Новокузнецк E-mail: yufi@mail2000.ru
Представлены результаты анализа элементного и фазового состава, дефектной структуры и профиля микротвердости углеродистой стали, подвергнутой комплексной обработке, состоящей в ее электровзрывном легировании медью и последующем электронно-пучковом облучении. Выявлено кардинальное изменение структуры и кратное (в 5...6 раз по отношению к сердцевине образца) увеличение микротвердости поверхности.
Ключевые слова:
Электровзрывное легирование, электронно-пучковая обработка, меднение, элементный и фазовый состав, дефектная субструктура, профиль микротвердости. Key words:
Electroexplosive doping, electron beam treatment, copper plating, elemental and phase composition, defect substructure, microhar-dness profile.
Введение
В последние десятилетия широкое распространение получили методы обработки металлов и сплавов, основанные на использовании концентрированных потоков энергии (потоки плазмы, мощные ионные пучки и пучки электронов, лучи лазера) [1, 2]. Перспективным считается комплексная обработка материала, сочетающая несколько методов воздействия. Такой подход позволяет минимизировать недостатки отдельно взятых методов и усилить их достоинства [3-5]. Одним из методов модифицирования поверхности материалов, основанным на использовании концентрированных потоков энергии, является электровзрывное легирование [6, 7].
Электровзрывное легирование металлов и сплавов осуществляется при импульсном воздействии на поверхность многофазных плазменных струй, с формированных при электрическом взрыве проводников. Установки электровзрывного легирования, как правило, включают в себя емкостный накопитель энергии и плазменный ускоритель, состоящий из электродов с размещенным на них взрываемым проводником, разрядной камеры, локализующей продукты взрыва, и формирующего сопла, по которому они истекают в вакуумирован-ную технологическую камеру с некоторым остаточным давлением.
Продукты электрического взрыва представляют собой многофазную систему, включающую как плазменный компонент, так и конденсированные частицы различной дисперсности [6, 7]. При формировании струи ее фронт образует плазменный компонент, конденсированные же частицы, обладая большей инертностью, располагаются в тылу струи. Это приводит не только к поверхностному легированию, но и формированию покрытия, являющегося, как правило, высокопористым, содер-
жащим большое количество капельной фракции, микрократеров и микротрещин, что существенно снижает служебные характеристики обработанной детали. Одним из способов устранения данного недостатка электровзрывного метода легирования материала является дополнительная обработка поверхности концентрированными потоками энергии. В настоящей работе для этой цели были использованы низкоэнергетические сильноточные электронные пучки субмиллисекундной длительности воздействия. Применение таких пучков для обработки поверхности материалов позволяет сконцентрировать за короткий промежуток времени (10-5...10-4с) высокую плотность энергии (10...100 Дж/см2) в тонком (0,1...10 мкм) приповерхностном слое [8. Р. 205-240]. Сверхвысокие скорости разогрева до температур плавления и последующее высокоскоростное охлаждение тонкого приповерхностного слоя образца формируют нано-и субмикрокристаллические многофазные состояния, недостижимые для традиционных методов термической и термомеханической обработки [9].
Материалы на основе сочетания элементов железо-медь (сталь-медь) к настоящему времени нашли широкое применение в различных отраслях промышленности, несмотря на сложности формирования, обусловленные ограниченной взаимной растворимостью данных элементов в равновесных условиях [10-14].
Целью работы являлось насыщение поверхностного слоя стали 45 медью методом, сочетающим электровзрывное легирование и последующую электронно-пучковую обработку, анализ ее структуры и свойств.
Материал и методика исследования
В качестве материала подложки использовали образцы углеродистой стали 45 в отожженном со-
стоянии (т. е. обладающей феррито-перлитной структурой). Образцы имели форму цилиндров толщиной 10 мм и диаметром 25 мм. Электровзрывное легирование (СибГИУ, г. Новокузнецк) осуществляли на установке, использующей коак-сиально-торцевые электроды, путем электрического взрыва медных фольг толщиной 20 мкм. Натека-ние струи на облучаемую поверхность при данном способе обработки сопровождается образованием вблизи нее ударно-сжатого слоя с высокими значениями температуры (~104К) и давления (~13 МПа). Это обеспечивало поглощаемую плотность мощности 5,5 ГВт/м2 и делало возможным оплавление и легирование поверхностных слоев за малое время воздействия (100 мкс) без выплеска расплава; остаточное давление в технологической камере ~100 Па [6]. Электронно-пучковую обработку поверхности проводили в ИСЭ СО РАН на установке «СОЛО» [15]. Плотность энергии пучка электронов изменяли с шагом в 5 Дж/см2 от 15 до 30 Дж/см2, число импульсов воздействия 10 при длительности импульса 50 мкс и частоте следования импульсов 0,3 Гц; обработку проводили в среде аргона при давлении 10-2Па. Исследования структуры и элементного состава стали осуществляли методами световой (на микроскопе OLYMPUS GX71) и сканирующей электронной микроскопии на микроскопе Philips SEM 515. Изменение механических характеристик материала характеризовали микротвердостью, определяемой по методу
Виккерса при нагрузке 0,98 Н по 80...100 отпечаткам на микротвердомере ПМТ-3. Погрешность измерения составила ~7 %.
Результаты исследований и их обсуждение
Исследования, выполненные методами световой микроскопии поперечного шлифа, позволили показать, что в результате электровзрывного меднения в приповерхностном объеме образца формируется многослойная структура: слой жидкофаз-ного легирования толщиной 11 мкм, следующий за ним слой термического влияния толщиной ~12,5 мкм, плавно переходящий в основной объем [16]. Слой жидкофазного легирования и слой термического влияния разделены зубчатой границей, формирование которой обусловлено течением расплава вдоль поверхности обработки [6, 7].
В связи с тем, что продукты электрического взрыва представляют собой многофазную систему, наряду с легированием электровзрывная обработка приводит к формированию на обрабатываемой поверхности высокодефектного покрытия (рис. 1, а). Последующая электронно-пучковая обработка образца в указанном выше режиме работы электронного источника приводит к плавлению и выглаживанию поверхностного слоя. При плотности энергии пучка электронов ~15 Дж/см2 реализуется режим начального плавления. Поверхность легирования выглаживается, однако остаются островки исходного покрытия (рис. 1, б). Плавление покры-
Рис. 1. Структура поверхности (а-в) и поперечного сечения (г) образца стали 45 после электровзрывного меднения (а) и последующей электронно-пучковой обработки (б-г) по режиму 15 Дж/см2; 10 имп.; 50 мкс. На (г): 1) слой жидкофазного легирования; 2) слой термического влияния; 3) основной объем стали
тия сопровождается формированием многочисленных капель меди, размеры которых изменяются в пределах от 2 до 10 мкм (рис. 1, в). Термоупругие напряжения, формирующиеся в поверхностном слое стали в результате высоких скоростей охлаждения, инициируют процесс трещинообразования (рис. 1, в). Микротрещины в большинстве случаев расположены хаотически на поверхности обработки. Толщина слоя жидкофазного легирования и слоя термического влияния, созданные при электровзрывном меднении стали, при данном режиме электронно-пучковой обработки практически не изменяются (рис. 1, г).
Увеличение плотности энергии пучка электронов до 20 Дж/см2 (10 имп.; 50 мкс) приводит к существенному изменению структуры поверхности электровзрывного легирования. Во-первых, формируется регулярная сетка микротрещин (рис. 2, а). Расстояние между микротрещинами изменяется в пределах от 20 до 65 мкм. Во-вторых, обнаруживаются микрократеры (рис. 2, а). В-третьих, выявляется структура дендритной кристаллизации (рис. 2, б, в). Размеры дендритов изменяются в пределах от 0,2 до 0,5 мкм. Анализируя структуру дендритной кристаллизации, можно выделить образования равноосной формы, эллипсоидальной формы и образования эллипсоидальной формы с боковыми отростками (рис. 2, б, в). Каждый из выделенных типов дендритов формирует замкнутые, разориентированные друг относительно друга, области на поверхности кристаллизации.
Размеры таких областей изменяются в пределах от 1,5 до 5,5 мкм. Очевидно, что данные разориентированные области являются зернами подповерхностного слоя стали, ориентация которых относительно поверхности обработки задает морфологию и направление роста дендритов. Анализ структуры поперечного сечения данного образца показал, что увеличение плотности энергии пучка электронов с 15 до 20 Дж/см2 (10 имп.; 50 мкс) сопровождается ростом толщины слоя жидкофазного легирования в ~1,4 раза (рис. 2, г).
Увеличение плотности энергии пучка электронов до 30 Дж/см2 (10 имп.; 50 мкс.), качественно не меняя структуры поверхности облучения (относительно структуры поверхности образца, обработанного электронным пучком с плотностью энергии 20 Дж/см2), приводит к некоторым количественным изменениям. А именно: увеличиваются расстояние между микротрещинами (изменяется в пределах от 30 до 85 мкм), размеры зерен подповерхностного слоя (изменяются в пределах от 5 до 11 мкм), толщина слоя термического влияния в ~1,7раза и слоя жидкофазного легирования в ~1,5 раза (по отношению к данным параметрам образца, подвергнутого только лишь электровзрывному легированию); размеры дендритов практически не изменяются.
Параллельно с исследованием структуры поверхности меднения методами сканирующей электронной микроскопии был осуществлен элементный анализ поверхностного слоя с целью опреде-
ления концентрации в нем меди (исследования осуществлялись на растровом электронном микроскопе Philips SEM 515, оснащенном микроанализатором EDAX ECON IV). Профили концентрации меди строили, используя методику косого шлифа (угол наклона плоскости шлифа к поверхности обработки ~7°). Результаты исследования представлены на рис. 3. Из представленных на рис. 3 результатов следует, что атомы меди обнаруживаются в слое толщиной 13...14 мкм, т. е. в слое, который плавится при электровзрывном легировании и электронно-пучковой обработке. Концентрация меди максимальна у поверхности обработки и быстро спадает по мере удаления вглубь образца. Электронно-пучковая обработка стали в режиме активного плавления приводит к многократному снижению концентрации меди в поверхностном слое как в результате диффузии меди в объем материала (при плотности энергии пучка электронов ES=20 и 25 Дж/см2), так и в результате испарения (ES=30 Дж/см2).
два максимума (один - на поверхности, второй в подповерхностном слое). Профили первой группы выявлены на образце, подвергнутом электровзрывному меднению (на рис. 4 - исходный) и образце после дополнительной обработки при плотности энергии пучка электронов £^=15 Дж/см2, при которой реализуется, как было установлено при исследовании структуры поверхности обработки, режим начального плавления поверхности (рис. 1). Профили второй группы выявлены на образцах, обработка поверхности меднения электронным пучком которых осуществлялась в режиме активного плавления (Д>20 Дж/см2). Отчетливо видно, что активное плавление поверхности электровзрывного меднения сопровождается существенным увеличением микротвердости поверхностного слоя (рис. 4, кривые 2-4). Максимальные значения микротвердости поверхностного слоя стали выявлены в образце, обработанном электронным пучком при Е=30 Дж/см2, минимальные - после облучения электронным пучком при Е=15 Дж/см2.
X, мкм
Рис. 3. Профиль концентрации меди в поверхностном слое стали, подвергнутой электровзрывному меднению и последующей электронно-пучковой обработке при плотности энергии пучка электронов (Дж/см2): 1) 15; 2) 20; 3) 25; 4) 30 (10 имп.; 50 мкс; 0,3 Гц)
Очевидно, что столь существенное изменение структуры и элементного состава поверхностного слоя стали должно способствовать изменению механических свойств материала, которые характеризовали путем определения микротвердости. Профили микротвердости образцов стали после электровзрывного легирования и дополнительной электронно-пучковой обработки строили, используя методику косого шлифа (угол наклона плоскости шлифа к поверхности обработки ~7°). Анализируя результаты, представленные на рис. 4, можно отметить, что по характеру изменения микротвердости от расстояния до поверхности обработки представленные на рис. 4 зависимости разделяются на две группы.
К первой отнесем профили микротвердости, имеющие один максимум, располагающийся в подповерхностном слое на глубине ~7 мкм; ко второй - профили микротвердости, имеющие
Рис. 4. Профиль микротвердости стали, подвергнутой электровзрывному легированию медью (исходный) и последующей электронно-пучковой обработке при плотности энергии пучка электронов (Дж/см2): 1) 15; 2) 20; 3) 25; 4) 30 (10 имп.; 50 мкс; 0,3 Гц). ЗЛ - зона жидкофазного легирования; ЗТВ - зона термического влияния
Очевидно, что кратное увеличение микротвердости поверхностного слоя стали, подвергнутой электровзрывному легированию медью и последующей электронно-пучковой обработке, обусловлено модификацией элементного и фазового со-
HV
1400 1200 1000800600 400
12
16
20
24
Cu, мас.%
Рис. 5. Зависимость твердости поверхностного слоя стали 45, подвергнутой электровзрывному меднению и последующей электронно-пучковой обработке, от концентрации меди в стали
става, а также дефектной структуры материала. Представленные в настоящей работе результаты позволяют осветить роль меди в увеличении микротвердости стали. На рис. 5 приведена зависимость микротвердости поверхности легирования стали от концентрации в ней меди. Анализируя представленную зависимость, можно отметить, что с увеличением концентрации атомов меди в поверхностном слое стали ее микротвердость уменьшается. По мере уменьшения концентрации меди
микротвердость поверхностного слоя увеличивается, демонстрируя тенденцию к насыщению.
Заключение
Выполнено легирование стали 45 медью посредством электрического взрыва проводника и последующей электронно-пучковой обработки. Выполнены исследования структуры и элементного состава приповерхностного слоя. Установлено, что электровзрывное легирование стали медью сопровождается формированием многослойной структуры, состоящей из высокодефектного покрытия, слоя плавления и слоя термического влияния, плавно переходящего в основной объём стали. В результате электровзрывного легирования микротвердость поверхностного слоя стали увеличивается в ~3,5 раза по отношению к микротвердости сердцевины образца. Последующее электронно-пучковое облучение сопровождается выглаживанием поверхности образца в результате плавления поверхностного слоя, снижением концентрации меди на поверхности обработки за счет диффузии в объем материала и частичного испарения, кратным (в ~6 раз по отношению к микротвердости сердцевины образца) увеличением микротвердости. Показано, что избыточная концентрация меди приводит к снижению микротвердости стали.
Работа выполнена при частичной финансовой поддержке грантов РФФИ (проекты № 08-02-00024, 08-08-92207, 09-02-90456), а также совместного проекта фундаментальных исследований НАН Беларуси и СО РАН № 7.
4
8
СПИСОК ЛИТЕРАТУРЫ
1. Крапошин В.С. Термическая обработка стали и сплавов с применением лазерного луча и прочих прогрессивных видов нагрева // Итоги науки и техники. Металловедение и термическая обработка. - М.: ВИНИТИ, 1987. - Т. 21. - С. 144-206.
2. Грибков В.А., Григорьев Ф.И., Калин Б.А., Якушин В.Л. Перспективные радиационно-пучковые технологии обработки металлов. - М.: Круглый год, 2001. - 528 с.
3. Чудина О.В. Комбинированные методы поверхностного упрочнения сталей с применением лазерного нагрева: теория и технология. - М.: МАДИ (ГТУ), 2003. - 248 с.
4. Приходько В.М., Петрова Л.Г., Чудина О.В. Металлофизиче-ские основы разработки упрочняющих технологий. - М.: Машиностроение, 2003. - 384 с.
5. Чудина О.В., Александров В.А., Уханов Н.В., Самойлов В.И. Повышение износостойкости конструкционных сталей комбинированным методом термодиффузионного упрочнения // Упрочняющие технологии и покрытия. - 2007. - № 4. -С. 29-33.
6. Будовских Е.А., Сарычев В.Д., Громов В.Е., Носарев П.С., Мартусевич Е.В. Основы технологии обработки поверхности материалов импульсной гетерогенной плазмой. - Новокузнецк: Изд-во СибГИУ, 2002. - 170 с.
7. Багаутдинов А.Я., Будовских Е.А., Иванов Ю.Ф., Громов В.Е. Физические основы электровзрывного легирования металлов и сплавов. - Новокузнецк: Изд-во СибГИУ, 2007. - 301 с.
8. Rotshtein V., Ivanov Yu., Markov A. Materials surface processing by directed energy techniques. Surface treatment of materials with low-energy, high-current electron beams. Charter 6 in Book / Ed. by Y. Pauleau. - Grenoble: Elsevier, 2006. - 763 р.
9. Коваль Н.Н., Иванов Ю.Ф. Наноструктурирование поверхности металлокерамических и керамических материалов при импульсной электронно-пучковой обработке // Известия вузов. Физика. - 2008. - Т. 51. - № 5. - С. 60-70.
10. Вол А.Е. Строение и свойства двойных металлических систем. - М.: Гос. изд-во физ.-мат. лит-ры, 1962. - Т. 2. - 984 с.
11. Двойные и многокомпонентные системы на основе меди / Отв. ред. Н.Х. Абрикосов. - М.: Наука, 1979 г. - 248 с.
12. Кубашевски О. Диаграммы состояния двойных систем на основе железа. Справочное издание. - М.: Металлургия, 1985. -184 с.
13. Банных О. А., Будберг П.Б., Алисова С. П. и др. Диаграммы состояния двойных и многокомпонентных систем на основе железа. - М.: Металлургия, 1986. - 440 с.
14. Диаграммы состояния двойных металлических систем / под ред. Н.П. Лякишева. - М.: Машиностроение, 1996. - Т. 1. -992 c.
15. Devyatkov V.N., Koval N.N., Schanin P.M., Grigoryev V.P., Ko-val T.V. Generation and propagation of high-current low-energy electron beams // Laser and Particle Beams. - 2003. - V. 21. -№ 2. - P. 243-248.
16. Вострецова А.В., Ващук Е.С., Будовских Е.А., Иванов Ю.Ф., Громов В.Е. Влияние параметров электронно-пучковой обработки на микротвердость поверхности стали 45 после электровзрывного меднения // Материаловедение и термическая обработка металлов: Междунар. сб. науч. тр. / под ред. А.Н. Емелюшина и Е.В. Петроченко. - Магнитогорск: ГОУ ВПО «МГТУ», 2009. - С. 209-212.
Поступила 09.06.2010 г.