Научная статья на тему 'Laboratory study of dielectric permittivity dispersion of porous fluid-saturated material in samples manufactured by 3D printing'

Laboratory study of dielectric permittivity dispersion of porous fluid-saturated material in samples manufactured by 3D printing Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
124
20
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ДИЭЛЕКТРИЧЕСКИЙ СПЕКТР / ПОРИСТЫЕ ФЛЮИДОНАСЫЩЕННЫЕ ОБРАЗЦЫ / 3D-ПЕЧАТЬ / DIELECTRIC PERMITTIVITY SPECTRUM / FLUID-SATURATED POROUS SAMPLES / 3D PRINTING

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Bondarenko Alexey V., Velker Nikolay N., Forgang Stanislav W., Dashevsky Yuliy A.

The paper presents the dielectric spectra of an artificial fluid-saturated rock sample. The artificial rock was produced by 3D printing and saturated with distilled and fresh water. The sample has vertically oriented coaxial rectangular pores. The experimentally obtained permittivities spectra make it possible to conclude that the complex permittivity of the sample has square root frequency dependence, regardless of mineralization of porous fluids used in the study.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Laboratory study of dielectric permittivity dispersion of porous fluid-saturated material in samples manufactured by 3D printing»

УДК 550.31

ЛАБОРАТОРНОЕ ИССЛЕДОВАНИЕ ДИСПЕРСИИ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПОРИСТОГО ФЛЮИДОНАСЫЩЕННОГО МАТЕРИАЛА НА ОБРАЗЦАХ, ИЗГОТОВЛЕННЫХ МЕТОДАМИ 3D-ПЕЧАТИ

Алексей Владимирович Бондаренко

Новосибирский технологический центр «Бейкер Хьюз», 630090, Россия, г. Новосибирск, ул. Кутателадзе, 4а, кандидат физико-математических наук, научный сотрудник, тел. (383)332-94-43 (доп. 146), e-mail: Alexey.Bondarenko@bakerhughes.com

Николай Николаевич Велькер

Новосибирский технологический центр «Бейкер Хьюз», 630090, Россия, г. Новосибирск, ул. Кутателадзе, 4а, научный сотрудник, тел. (383)332-94-43 (доп. 129), e-mail: Nikolay.Velker@bakerhughes.com

Станислав Вильгельмович Форганг

Хьюстонский технологический центр «Бейкер Хьюз», США, Техас 77073-5114, Хьюстон, 2001 Ранкин Роуд, доктор физико-математических наук, технический руководитель, тел. +1 713 879 3548, e-mail: Stanislav.Forgang@bakerhughes.com

Юлий Александрович Дашевский

Новосибирский технологический центр «Бейкер Хьюз», 630090, Россия, г. Новосибирск, ул. Кутателадзе, 4а, доктор физико-математических наук, директор, тел. (383)332-94-43 (доп. 102), e-mail: Yuliy.Dashevsky@bakerhughes.com

В статье представлены диэлектрические спектры искусственного флюидонасыщенного пористого образца горных пород. Образец был изготовлен с помощью метода 3D-печати, содержал вертикально-соосные прямоугольные поры и был насыщен дистиллированной и пресной водой. Полученные экспериментально спектры диэлектрической проницаемости позволяют сделать вывод о том, что независимо от минерализации поровой жидкости комплексная диэлектрическая проницаемость образца пропорциональна квадратному корню частоты.

Ключевые слова: диэлектрический спектр, пористые флюидонасыщенные образцы, 3D-печать.

LABORATORY STUDY OF DIELECTRIC PERMITTIVITY DISPERSION OF POROUS FLUID-SATURATED MATERIAL IN SAMPLES MANUFACTURED BY 3D PRINTING

Alexey V. Bondarenko

Novosibirsk Technology Center «Baker Hughes», 630090, Russia, Novosibirsk, 4a Kutateladze St., Ph. D., RDD Scientist 3, tel. (383)332-94-43 Ext 146, e-mail: Alexey.Bondarenko@bakerhughes.com

Nikolay N. Velker

Novosibirsk Technology Center «Baker Hughes», 630090, Russia, Novosibirsk, 4a Kutateladze St., RDD Scientist 5, tel. (383)332-94-43 Ext 129, e-mail: Nikolay.Velker@bakerhughes.com

Stanislav W. Forgang

Houston Technology Center, Baker Hughes, USA, Texas 77073-5114, Houston, 2001 Rankin Road, Ph. D., Technical Advisor, tel. +1 713 879 3548, e-mail: Stanislav.Forgang@bakerhughes.com Yuliy A. Dashevsky

Novosibirsk Technology Center «Baker Hughes», 630090, Russia, Novosibirsk, 4a Kutateladze St., Ph. D., Deputy Director Science, tel. (383)332-94-43 Ext 102, e-mail: Yuliy.Dashevsky@bakerhughes.com

The paper presents the dielectric spectra of an artificial fluid-saturated rock sample. The artificial rock was produced by 3D printing and saturated with distilled and fresh water. The sample has vertically oriented coaxial rectangular pores. The experimentally obtained permittivities spectra make it possible to conclude that the complex permittivity of the sample has square root frequency dependence, regardless of mineralization of porous fluids used in the study.

Key words: dielectric permittivity spectrum, fluid-saturated porous samples, 3D printing.

Dispersion of dielectric permittivity is one of important rocks properties [1-6] and the bases of the dielectric borehole logging method, when water-saturated porosity and other formation parameters are evaluated [7]. In study of dielectric spectra of fluid-saturated porous rocks are the following difficulties of interpretation of the experimental data: uncertainty of matrix and porous fluid chemical composition, possible presence of clay in the sample, unknown pore structure.

The objective of our study was to develop the simplest model of fluid saturated porous material and investigate its dielectric permittivity spectrum. This approach has a number of advantages over the classical study of rock samples: known chemical composition of matrix and porous fluid; simple and known pore structure.

The sample of disc shape with the radius of 38 mm and the height of 6.35 mm was produced using a 3D printer. The sample contains vertically oriented coaxial rectangular pores of 1.5 mm thick and the distance between pore centers is 2.0 mm. To print the sample, one used a plastic nonconductive material with the dielectric permittivity value equal to 2. The drawing and scheme of the sample is represented in Fig. 1. The sample's photo is shown in Fig. 2.

Fig. 1. The porous artificial sample produced by a 3D printer. Sizes are given in inches (a); the scheme of water saturated sample (b)

The idea behind the experiment was to create such a fluid-saturated porous sample, where the electric fields induced by a parallel plate capacitor do not intersect the interfacial boundary between the matrix (plastic) and fluid. In this case, the pore surface should remain electrically neutral. Therefore, the described system should get polarized only due to the presence of an electrical double layer [8, 9] at the interfacial boundary.

Dielectric spectrum measurements in the sample saturated with distilled and fresh (10 Qm) water were carried out in a parallel plate capacitor (Fig. 2) within the range of 5 kHz - 10 MHz using the HP4194A impedance analyzer [10].

Fig. 2. The porous artificial sample produced in a 3D printer (a); the parallel plate capacitor used in the permittivity spectra measurements (b)

The measurement results are shown in Fig. 3 and 4.

Fig. 3. Frequency dependence of real (s') and imaginary (s'') parts of dielectric permittivity of the sample saturated with distilled water. The blue line is the measured values; the black line is an interpolation curve

Fig. 4. Frequency dependence of real (s') and imaginary (s'') parts of dielectric permittivity of the sample saturated with fresh (10 Qm) water. The blue line is the measured values; the black line is an interpolation curve

The experimental spectra were approximated by the Havriliak-Negami curve (1), which is a standard equation for approximation of dielectric spectra for various types of dielectric materials [5, 6, 11].

e(ra) = s-is =s^+--—F--, (1)

[ 1 + (/rax)1-" J ®so

where £ denotes complex dielectric permittivity, sm - permittivity in high-frequency limit, A£ - degree of polarization, t - relaxation time, a and p - polarization parameters, o - DC conductivity.

The Havriliak-Negami curve parameters obtained by inversion of the experimental data are shown in Tab. 1. Comparison of the approximating curves and experimental values of measured permittivity is shown in Fig. 3 and 4.

Table 1

The Havriliak-Negami curve parameters

Porous fluid sro As a ß t, ms a, ^S/m

Distilled water 2.30 18.7 0.429 0.859 0.258 0.376

Fresh (10 Qm) water 8.03 690 0.355 0.749 0.185 22.1

The data in the Table 1 allows us to conclude the following: • In the frequency range of 5 kHz-10 MHz the following condition is true:

©T >> 1. (2)

• In both cases (distilled and fresh water saturation) coefficients a and p of the Havriliak-Negami curve satisfy the following condition:

(1 -a)P = 0.5 ± 0.02. (3)

Then the Havriliak-Negami curve can be reduced to the following:

e(ro) = + -—, (4)

yjm ras0

where:

A = As/Vr. (5)

The second term in (4) describes the dielectric permittivity dispersion. Thus, the conducted experiments suggest that the complex permittivity dispersion of the sample has a square root frequency dependence, regardless of porous fluid mineralization.

According to [12] one of possible explanation of the square root frequency dependence is the polarization of the electric double layer at the interfacial boundary due to the motion of diffusion ions along the Stern layer. This effect should lead to the following relation between dielectric permittivity and frequency (equation 34 in [12]):

£(W)~W-(3-d/)/2 (6)

here Df is fractal dimension of the interfacial boundary. The considered sample has identical rectangular pores, thus Df should be equal to 2. This leads to a square root dependence of permittivity on frequency and agrees with the experimentally obtained relation (4).

REFERENCES

1. Josh M. Dielectric Permittivity: A Petrophysical Parameter for Shales // Petrophysics. -2014. - Vol. 55, N 4. - P. 319-332.

2. Josh M., Clennell B., Han M.C.T. Dielectric Permittivity and Anisotropy of Intact Multi-Saturated Organic Shales // SPWLA 57th Annual Logging Symposium (Reykjavik 25-29 June 2016). - 2016. - P. 1-14.

3. Patent №: US 0094/65131 B2 / B. Anderson, Th.D. Barber, E. Legendre, M.G. Luling, P. Sen, R. Taherian.

4. Uniaxial Complex Relative Permittivity Tensor Measurement of Rocks from 40 Hz to 4.5 GHz / F. Shehab, M.T. Myers, H. Ott et al. // IEEE Transactions on Geoscience and Remote Sensing. - 2016. - Vol. 55, Issue 2. - P. 1-15.

5. Levitskaya Ts.M. Dielectric Relaxation in Rocks. Earth Physics // Proceedings of USSR Academy of Science. - 1984. - Vol. 10. - P. 82-87.

6. Levitskaya Ts.M., Sternberg B.K. Polarization processes in rocks 1. Complex dielectric permittivity method // Radio Sci. - 1996. - Vol. 31, N 4. - P. 755-779.

7. Dielectric Dispersion: A New Wireline Petrophysical Measurement / M. Hizem, H. Budan, B. Deville et al. // in Soc. Petroleum Eng. - 2008. - P. 116-130.

8. Stern O. Zur Theorie der Elektrolytischen Doppelschicht // Z. Electrochem. - 1924. -Vol. 30, Issue 21-22. - P. 508-516.

9. Dukhin S.S., Shilov V.N. Dielectric phenomena and double layer in dispersed systems, and polyelectrolytes. - Kiev: Naukova Dumka, 1972. - 206 p.

10. HP 4194A impedance/gain-phase analyzer, Manual.

11. Chelidze T.L. Electronic spectroscopy of heterogeneous systems. - Kiev: Naukova Dumka, 1977. - 232 p.

12. Chelidze T.L., Gueguen Y. Electrical spectroscopy of porous rocks: a review - I. Theoretical models // Geophysical Journal International. - 1999. - Vol. 137. - P. 1-15.

© А. В. Бондаренко, Н. Н. Велькер, С. В. Форганг, Ю. А. Дашевский, 2017

i Надоели баннеры? Вы всегда можете отключить рекламу.