УДК 004.896 Дата подачи статьи: 02.03.2014
КВАНТОВЫЕ ВЫЧИСЛЕНИЯ В ПРОЕКТИРОВАНИИ РОБАСТНОЙ ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ИЗБЫТОЧНЫМ РОБОТОМ-МАНИПУЛЯТОРОМ C СЕМЬЮ СТЕПЕНЯМИ СВОБОДЫ
А.В. Николаева, аспирант; И.А. Бархатова, ст. преподаватель;
С.В. Ульянов, д.ф.-м.н., профессор (Международный университет природы, общества и человека «Дубна», ул. Университетская, 19, г. Дубна, 141980, Россия, [email protected], [email protected], [email protected])
Рассматриваются проблемы проектирования интеллектуальных систем управления с применением технологий мягких и квантовых вычислений на примере сложного объекта управления - робота-манипулятора с семью степенями свободы. Предложена стратегия самоорганизации БЗ нечетких однотипных регуляторов с применением технологий квантовых вычислений. Применение интеллектуальных вычислений и квантового алгоритма самоорганизации БЗ позволяет достичь цели управления в непредвиденных ситуациях за счет повышения уровня робастности интеллектуальной системы управления в проблемно-ориентированной области. Важным результатом проектирования интеллектуальных систем управления является показанная возможность реализации квантовых алгоритмов и квантовых вычислений на типовом (а не на гибридном квантовом) процессоре в стандартной конфигурации аппаратной поддержки робота-манипулятора как объекта эксперимента. Описание на квантовом языке постановок многих классических (слабоструктурированных) инженерных задач (труднорешаемых на языке классической логики) позволяет найти их эффективное решение. Положительный результат применения технологий мягких интеллектуальных вычислений совместно с аппаратом квантовых вычислений привел к новому альтернативному подходу - применению технологии квантовых интеллектуальных вычислений в задачах оптимизации процессов управления. В данной работе демонстрируется эффективность спроектированных интеллектуальных систем управления с применением технологий мягких и квантовых вычислений. Для оценки работы систем управления вводится система критериев качества, адаптированная для рассматриваемого объекта управления - робота-манипулятора с семью степенями свободы в зависимости от требуемых точностных характеристик работы. Особое внимание уделено поведению робота-манипулятора под управлением предлагаемых интеллектуальных систем управления в критических непредвиденных ситуациях, связанных с возмущениями во внутренних узлах сложного объекта управления.
Ключевые слова: интеллектуальная система управления, квантовый нечеткий вывод, технологии мягких и квантовых вычислений, непредвиденная ситуация.
QUANTUM COMPUTING IN INTELLIGENT ROBUST CONTROL SYSTEM DESIGN FOR 7 DEGREES OF FREEDOM REDUNDANT ROBOT-MANIPULATOR
Nikolaeva A V., Postgraduate Student; Barkhatova I.A., Senior Lecturer;
Ulyanov S. V., Dr.Sc. (Physics and Mathematics), Professor;
(Dubna Internacional University for Nature, Socitty and Man, Universitetskaya St. 19, Dubna, 141980, Russian Federation, nikolaevaav@lenta. ru, i. a. barhatova@gmail. com, ulyanovsv@mail. ru)
Received 02.03.2014
Abstract. The problems of designing control systems using soft and quantum computing on the example of complex control object (redundant 7 degrees of freedom manipulator) are described. A self-organization strategy for a knowledge base of one-type fuzzy controllers using quantum computing technologies is considered. Application of intelligent computing and quantum self-organization algorithm allows reaching control purpose in unexpected situations. It it reached due to improving robustness level of intelligent control system in the problem-oriented field. An important result of intelligent control systems design is a possibility of implementing quantum algorithms and quantum computing in typical (not hybrid quantum) default configuration hardware processor for robot manipulator as the control object. Quantum language description of most classical (semistructured and difficult to solve using classical logic) engineering tasks allows finding an effective solution. Positive result of intelligent soft computing technologies application based on quantum computing toolkit led to a new alternative approach. It is using intelligent quantum computing technologies in tasks of control optimization.
The paper shows the efficiency of designed intelligent control systems using soft and quantum computing technologies. To estimate control systems work the authors introduce a set of performance criteria. This set is adjusted to concerned control object (7 degrees of freedom robot manipulator) according to required accuracy characteristics.
A particular focus is on robot manipulator behavior that is controlled by proposed intelligent control systems in unexpected situations connected with internal noise in complex control object.
Keywords: intelligent control system, quantum fuzzy inference, soft and quantum computing technologies, unexpected situation.
В данной работе в качестве объекта управления (ОУ) выступают манипуляторы с избыточным числом степеней свободы. Избыточность степеней свободы позволяет манипулятору адаптироваться
в условиях недостаточной информации о внешней среде при изменении параметров самого ОУ.
Авторами уже были рассмотрены системы управления с постоянными и динамически изме-
няющимися коэффициентами (на основе технологий мягких вычислений) роботом-манипулятором с семью степенями свободы (см. с. 49-55 настоящего номера журнала).
Было продемонстрировано, что при использовании системы управления на основе пропорционально-интегрально-дифференциального (ПИД) регулятора в штатных ситуациях и во внешних непредвиденных ситуациях управления задача позиционирования не была решена, незначительные положительные результаты были получены только для внутренних непредвиденных ситуаций управления. Некоторое улучшение наблюдалось при использовании системы управления на основе генетического алгоритма (ГА): решение задачи позиционирования в штатных ситуациях управления достигалось в большинстве экспериментов, однако в непредвиденных ситуациях управления (как во внешних, так и во внутренних) решение было достигнуто менее чем в трети экспериментов.
Применение технологий мягких вычислений для проектирования интеллектуальной системы управления (ИСУ) с регулируемыми коэффициентами ПИД-регулятора (без разрушения нижнего исполнительного уровня) с использованием такого инструментария, как оптимизатор БЗ (ОБЗ) на мягких вычислениях, позволило значительно повысить процент решения задач управления как в штатных, так и в непредвиденных ситуациях. Общая оценка управления при использовании ИСУ на ОБЗ на мягких вычислениях увеличилась в 1,7 раза по сравнению с системой управления на основе ГА и в 3 раза по сравнению с системой управления на основе ПИД-регулятора.
При работе ИСУ на ОБЗ на мягких вычислениях быстродействие увеличилось более чем в 10 раз по сравнению с системами управления с постоянными коэффициентами (на основе ПИД-регулято-ра и с использованием ГА), но в целом осталось достаточно низким.
Ввиду того, что рассматриваемый ОУ - робот-манипулятор с семью степенями свободы - сложен, ИСУ на ОБЗ на мягких вычислениях была организована с разделением управления. Однако декомпозиция управления привела к рассогласованию работы и некоторому снижению качества управления. В настоящей статье рассматривается метод организации координационного управления без значительного увеличения сложности системы, предполагающий введение дополнительного обобщающего звена с применением технологий квантовых вычислений.
Организация координационного управления с применением технологий квантовых вычислений
В работе [1] описан новый вид квантового поискового алгоритма на обобщенном пространстве
БЗ нечетких регуляторов (НР), спроектированных на основе технологий мягких вычислений, -квантовый нечеткий вывод (КНВ) для проектирования обобщенного робастного сигнала управления. Модель КНВ реализует самоорганизацию БЗ, основывается на физических законах теории квантовых вычислений [2-6] и использовании четырех операторов: суперпозиции, квантовой корреляции, интерференции и измерения.
В [7] была показана эффективность применения алгоритма КНВ для организации координационного управления роботом-манипулятором с тремя степенями свободы. Алгоритм КНВ выполняет следующую последовательность шагов.
1. Нормализация.
2. Кодирование: построение всех нормализованных состояний и вычисление амплитуд вероятностей 10) и 11) из соответствующих гистограмм.
3. Выбор типа квантовой корреляции для построения выходных сигналов управления. Рассматриваются три типа смешанных корреляций: пространственная, пространственно-временная и временная [1], а помимо этого - корреляции различного числа НР. Зависимость выходных сигналов определяется корреляцией наборов входных коэффициентов, где каждый набор является запутанным состоянием.
4. Построение суперпозиции запутанных состояний [8].
5. Измерение интеллектуального квантового состояния.
6. Декодирование и денормализация.
Создание КНВ производится с помощью интеллектуального инструментария - ОБЗ - на основе квантовых вычислений. Схема подключения блока КНВ в ИСУ подробно рассмотрена в [7].
В выбранной конфигурации структуры ИСУ реализованы семь НР, каждый из которых независимо от других управляет одним из семи звеньев. В качестве штатной ситуации управления для /-го НР выступает типовая ситуация управления, в условиях которой получен обучающий сигнал ТО,.
Непредвиденные ситуации управления разделяются на внешние (принудительное изменение положения ОУ в начале или в процессе работы, изменение опорных сигналов и др.) и внутренние (изменения параметров компонентов системы управления - ограничения, шумы и задержки сигналов).
Спроектированная авторами ИСУ на ОБЗ на мягких вычислениях может содержать информацию о семи ситуациях управления (штатных или непредвиденных) для каждого из звеньев. Например, в спроектированной ИСУ на ОБЗ на мягких вычислениях с разделенным управлением НР1 содержит информацию о штатной ситуации 1 (БЗ1) для звена 1, НР2 - о штатной ситуации 1 для звена 2 (БЗ2) и т.д. Блок КНВ, включенный в модель
ИСУ на ОБЗ на мягких вычислениях, реализует самоорганизацию БЗ НР. В этом случае имеется возможность не только объединять информацию о штатной ситуации 1 для всех звеньев, но и извлекать дополнительную информацию (методами квантовых вычислений и квантовой теории информации) из реакции спроектированных БЗ для реализации робастного управления в штатных и непредвиденных ситуациях управления (которые не включены в существующие спроектированные БЗ). При этом сами БЗ, реакции которых используются для проектирования робастного управления, в нештатных ситуациях могут быть неробаст-ными. Далее ИСУ с использованием КНВ будем называть ИСУ на основе ОБЗ на квантовых вычислениях.
Качество интеллектуальной системы управления с квантовым нечетким выводом
Для исследования качества систем управления были разработаны модели систем управления роботом-манипулятором с семью степенями свободы в среде MatLab/Simulink.
Исходная ИСУ на ОБЗ на мягких вычислениях содержит семь НР, каждый из которых может коррелировать с одним или несколькими НР системы.
В данной статье рассматриваются шесть комбинаций:
1) корреляция двух соседних нечетких БЗ: для управления /-м звеном манипулятора используется информация НР, и НР,+1 (см. рис. 1);
2) корреляция трех соседних нечетких БЗ: для управления /-м звеном манипулятора используется информация НР,, НР,+1 и НР,+2;
3) корреляция четырех соседних нечетких БЗ: для управления /-м звеном манипулятора используется информация НР,, НР,+Ь НР,+2 и НР,+3;
4) корреляция пяти соседних нечетких БЗ: для управления /-м звеном манипулятора используется информация НР,, НР,+Ь НР,+2, НР,+3, и НР,+4;
5) корреляция шести соседних нечетких БЗ: для управления /-м звеном манипулятора используется информация НР,, НР,+1, НР,+2, НР,+з, НР ,+4 и нр,+5;
6) корреляция всех семи нечетких БЗ.
Для каждой из шести комбинаций рассматриваются пространственная, пространственно-временная и временная корреляции. В таблице 1 приведено сравнение работы ИСУ на ОБЗ на квантовых вычислениях для пространственных, пространственно-временных и временных корреляций соответственно для шести комбинаций коррелируемых НР (два соседних НР, три соседних НР и т.д.) и ИСУ на ОБЗ на мягких вычислениях.
Использование мягких вычислений
Оператор квантовой корреляции 1
Оператор квантовой корреляции 2
Оператор квантовой корреляции 3
Оператор квантовой корреляции 4
Оператор квантовой корреляции 5
Оператор квантовой корреляции 6
Оператор квантовой корреляции 7
Использование квантовых вычислений
Звено 1
Звено 2
Звено 3
Звено 4
Звено 5
Звено 6
Звено 7
Объект управления — робот-манипулятор с семью степенями свободы
Рис. 1. Применение корреляции двух соседних НР Fig. 1. Application of two nearest-neighbor fuzzy controllers correlation
Таблица 1
Сравнение работы ИСУ на квантовых и на мягких вычислениях
Table 1
Comparing of intelligent control systems work on quantum and soft computing technologies
ИСУ Комбинация Корреляция Штатные ситуации решения Внешние непредвиденные ситуации Внутренние непредвиденные ситуации Быстродействие Перерегулирование Устойчивость Время одной итерации Сложность реализации управления Общее управление
ИСУ на ОБЗ на квантовых вычислениях Корреляция двух соседних НР Пространственная 1,000 0,821 0,846 0,477 0,973 0,962 0,961 0,957 0,816
Пространственно-временная 1,000 0,821 0,846 0,464 0,973 0,961 0,943 0,948 0,812
Временная 1,000 0,744 0,827 0,453 0,971 0,954 0,943 0,945 0,787
Корреляция трех соседних НР: пространственно-временная Пространственная 1,000 0,872 0,827 0,426 0,966 0,944 0,961 0,972 0,814
Пространственно-временная 1,000 0,821 0,885 0,461 0,968 0,947 0,962 0,953 0,818
Временная 1,000 0,795 0,865 0,415 0,968 0,944 0,961 0,952 0,799
Корреляция четырех соседних НР: пространственная Пространственная 1,000 0,795 0,885 0,472 0,974 0,962 0,961 0,973 0,8163
Пространственно-временная 1,000 0,795 0,885 0,459 0,974 0,962 0,961 0,958 0,813
Временная 1,000 0,795 0,904 0,457 0,973 0,961 0,961 0,957 0,8156
Корреляция пяти соседних НР: пространственная Пространственная 1,000 0,769 0,923 0,476 0,974 0,962 0,961 0,977 0,817
Пространственно-временная 1,000 0,769 0,885 0,463 0,974 0,962 0,961 0,961 0,808
Временная 1,000 0,744 0,885 0,463 0,974 0,962 0,960 0,960 0,801
Корреляция шести соседних НР: пространственная Пространственная 1,000 0,795 0,923 0,465 0,974 0,962 0,961 0,982 0,821
Пространственно-временная 1,000 0,789 0,885 0,459 0,973 0,962 0,960 0,962 0,812
Временная 1,0 00 0,795 0,885 0,465 0,973 0,961 0,961 0,960 0,814
Корреляция семи НР: пространственная Пространственная 1,000 0,821 0,923 0,459 0,971 0,960 0,960 0,986 0,826
Пространственно-временная 1,000 0,821 0,904 0,465 0,972 0,960 0,959 0,961 0,823
Временная 1,000 0,795 0,904 0,465 0,972 0,961 0,958 0,959 0,817
ИСУ на ОБЗ на мягких вычислениях 0,923 0,744 0,923 0,092 0,969 0,911 0,973 0,946 0,721
Сравним работу ИСУ на ОБЗ на квантовых вычислениях при использовании отмеченных корреляций с работой ИСУ на ОБЗ на мягких вычислениях (табл. 1):
- при любом варианте корреляции ИСУ на квантовых вычислениях обеспечивает решение задачи позиционирования в штатных ситуациях в отличие от ИСУ на мягких вычислениях;
- при решении задачи позиционирования в условиях внешних непредвиденных ситуаций лучшие результаты получены при использовании ИСУ на квантовых вычислениях с пространствен-
ной корреляцией двух соседних НР, пространственно-временной корреляцией трех соседних НР и пространственной корреляцией всех семи НР;
- при решении задачи позиционирования в условиях внутренних непредвиденных ситуаций улучшения при использовании ИСУ на квантовых вычислениях по сравнению с ИСУ на мягких вычислениях не получено;
- при использовании ИСУ на квантовых вычислениях по сравнению с ИСУ на мягких вычислениях критерий «быстродействие» улучшен в 5 раз;
- оценки по критериям «перерегулирование», «устойчивость», «время одной итерации» и «сложность реализации управления» практически не изменились;
- оценка общего управления по сравнению с ИСУ на ОБЗ на мягких вычислениях улучшается при использовании ИСУ на ОБЗ на квантовых вычислениях с использованием любого типа корреляции, однако наилучший результат достигается при использовании пространственной корреляции всех семи.
На рисунке 2 продемонстрирована работа манипулятора при использовании ИСУ на ОБЗ на мягких и квантовых вычислениях в условиях второй внешней непредвиденной ситуации управления (изменено начальное положение). Как видим, ИСУ на ОБЗ на квантовых вычислениях в условиях рассмотренных штатной и внешней непредвиденной ситуаций управления решает задачу точного позиционирования робота-манипулятора с семью степенями свободы в отличие от ИСУ на ОБЗ на мягких вычислениях.
Как было отмечено, при решении задачи позиционирования в условиях внутренних непредви-
денных ситуаций улучшения при использовании ИСУ на квантовых вычислениях по сравнению с ИСУ на мягких вычислениях не получено.
Рассмотрим более подробно внутренние непредвиденные ситуации с внесением шумов в каналы управления и систему измерения. Усилим внутренние возмущения и сравним поведение ИСУ на мягких и на квантовых вычислениях.
Качество интеллектуальной системы управления с квантовым нечетким выводом в условиях сильных внутренних возмущающих воздействий
После рассмотрения таких внутренних непредвиденных ситуаций с внесением возмущающих воздействий, как внесение шумов в каналы управления (амплитуда шума = 1) и внесение погрешностей в систему измерения (1,5 градуса), опишем поведение систем управления в условиях значительно более сильных возмущающих воздействий.
Ранее решение задачи позиционирования определялось максимально точным позиционированием отдельных звеньев манипулятора. Однако в
Yf ш
Htt'iiiibiioc щ ашгажейие
Х5ш
N
Жс.и.к'мля ■точка
0,1379 m -
Достигнутая гичо
Y> №
Начальное долсдайие
E
Й. ; Желаемая
N
точка i i
У
0,00004 iii
Достигнутая /
\ ТОЧКА / :
4 / ^
Рис. 2. Движение манипулятора в условиях внешней непредвиденной ситуации: под управлением ПСУ на ОБЗ на мягких вычислениях (слева); ПСУ на ОБЗ на квантовых вычислениях (справа)
Fig. 2. Manipulator motion in external unpredicted situation: using ICS based on Soft Computing Optimizer (SCO) (left); using ICS based on Quantum Computing Optimizer (QCO) (right)
условиях сильных возмущающих воздействии точного позиционирования каждого звена добиться практически невозможно. По этой причине критерий качества «быстродействие» можно исключить из рассмотрения (время всегда будет равно числу допустимых итераций).
Поставим более общую задачу максимально точного позиционирования функционального устройства манипулятора. Для этого введем новый критерий качества - метрическая ошибка позиционирования функционального устройства EEP (EndEffector Positioning):
EEP = >/(Xre/ - X)2 + ( YEF - Y)2 + (ZRE/ - Z )2 ,
EEP выполнение =
N
z
'v i = 1
EEp
EEP„„,
где {X, Y, Z} - координаты достигнутой точки; {Хгф Yrф Zref} - координаты желаемой точки; N -число экспериментов; EEPmax - максимальная метрическая ошибка из оцениваемой серии экспериментов.
В соответствии с введенными обновлениями система критериев качества для оценки работы систем управления в условиях сильных внутренних возмущающих воздействий будет следующей.
1. Метрическая ошибка позиционирования функционального устройства EEP.
2. Относительное значение перерегулирования
о.
3. Относительная ошибка позиционирования звеньев е.
4. Время одной итерации t.
5. Сложность реализации управления P.
6. Общая оценка управления FCB=Wl■P[EEP]+ +w2■P[a]+w3■P[e]+w4■P[t]+w5■P, где w=[0,4 0,1 0,1 0,2 0,2] - вектор весовых коэффициентов.
Рассмотрим непредвиденную ситуацию с внесением сильного возмущающего воздействия в
каналы управления. Ранее уже была рассмотрена внутренняя непредвиденная ситуация с внесением в каналы управления случайных шумов с амплитудой = 1. Увеличим амплитуду вносимых случайных шумов до 10.
Проводим следующую серию экспериментов: для 13 точек рабочего пространства манипулятора генерируется 30 случайных шумов. Сгенерированные шумы вносятся в канал управления ИСУ на ОБЗ на мягких вычислениях с разделенным управлением и ИСУ на ОБЗ на квантовых вычислениях. По результатам 390 экспериментов сравниваем работу ИСУ на ОБЗ на мягких и на квантовых вычислениях в соответствии с введенной системой критериев качества (табл. 2).
Как видим, ИСУ на ОБЗ на квантовых вычислениях по всем критериям (за исключением времени одной итерации) превосходит ИСУ на ОБЗ на мягких вычислениях. В целом ошибка позиционирования функционального устройства при использовании только мягких вычислений не превышает 0,3 метра при длине одного звена 1 м.
Сгенерируем шумы, при которых метрическая ошибка позиционирования функционального устройства при работе ИСУ на ОБЗ на мягких вычислениях составит более 0,5 метра, и при тех же шумах оценим поведение ИСУ на квантовых вычислениях. Для этого увеличим амплитуду шумов, вносимых в каналы управления, до 100. Для 13 точек рабочего пространства манипулятора генерируется 5 случайных шумов.
Сгенерированные шумы вносятся в каналы управления ИСУ на ОБЗ на мягких вычислениях с разделенным управлением и ИСУ на ОБЗ на квантовых вычислениях. По результатам 65 экспериментов сравниваем работу ИСУ на ОБЗ на мягких и ИСУ на ОБЗ на квантовых вычислениях в соответствии с введенной системой критериев качества (табл. 2).
Сравнение работы ИСУ на ОБЗ на квантовых и на мягких вычислениях Comparing the work of ICS based on SCO and based on QCO
Таблица 2 Table 2
№ Критерий качества Шум в канале управления Сильный шум в канале управления Шум в изме системе рения Сильный шум в системе измерения
SCO QCO SCO QCO SCO QCO SCO QCO
1 Метрическая ошибка позиционирования функционального устройства 0,864 0,906 0,767 0,904 0,888 0,907 0,517 0,882
2 Относительное значение перерегулирования 0,717 0,742 0,683 0,745 0,642 0,656 0,330 0,504
3 Относительная ошибка позиционирования звеньев 0,457 0,544 0,414 0,494 0,359 0,395 0,062 0,258
4 Время одной итерации 0,978 0,923 0,976 0,926 0,974 0,941 0,977 0,933
5 Сложность реализации управления 0,817 0,942 0,817 0,941 0,807 0,956 0,780 0,968
6 Общее управление 0,822 0,864 0,775 0,859 0,811 0,847 0,597 0,809
Примечание: SCO - ИСУ на мягких вычислениях, QCO - ИСУ на квантовых вычислениях.
Как видим, ИСУ на ОБЗ на квантовых вычислениях по всем критериям (за исключением времени одной итерации) превосходит ИСУ на ОБЗ на мягких вычислениях. В рассмотренных непредвиденных ситуациях с внесением сильных шумов в каналы управления ИСУ на ОБЗ на квантовых вычислениях показала преимущество перед ИСУ на ОБЗ на мягких вычислениях.
Рассмотрим непредвиденную ситуацию с внесением сильного возмущающего воздействия в систему измерения. Ранее уже была рассмотрена внутренняя непредвиденная ситуация с внесением в систему измерения случайных шумов с амплитудой = 1,5. Увеличим амплитуду вносимых случайных шумов до 5 градусов.
Для 13 точек рабочего пространства генерируется 30 случайных шумов. Сгенерированные шумы вносятся в систему измерения ИСУ на ОБЗ на мягких вычислениях с разделенным управлением и ИСУ на ОБЗ на квантовых вычислениях. По результатам 380 экспериментов сравниваем работу ИСУ на ОБЗ на мягких и ИСУ на ОБЗ на квантовых вычислениях (табл. 2).
Как видим, ИСУ на ОБЗ на квантовых вычислениях по всем критериям (за исключением времени одной итерации) превосходит ИСУ на ОБЗ на мягких вычислениях.
Применение ИСУ на ОБЗ на квантовых вычислениях позволяет несколько улучшить работу по сравнению с ИСУ на ОБЗ на мягких вычислениях, однако улучшение незначительное. В целом ошибка позиционирования функционального устройства при использовании только мягких вычислений не превышает 0,3 метра при длине одного звена 1 м.
Сгенерируем шумы, при которых метрическая ошибка позиционирования функционального устройства при работе ИСУ на ОБЗ на мягких вычислениях составит более 1,5-2 метров, и при тех же шумах оценим поведение ИСУ на квантовых вычислениях. Для этого увеличим амплитуду шумов, вносимых в систему измерения, до 10 градусов.
Для 13 точек рабочего пространства манипулятора генерируются 5 случайных шумов. Сгенерированные шумы вносятся в систему измерения ИСУ на ОБЗ на мягких вычислениях с разделенным управлением и ИСУ на ОБЗ на квантовых вычислениях. По результатам 65 экспериментов сравниваем работу ИСУ на ОБЗ на мягких и ИСУ на ОБЗ на квантовых вычислениях (табл. 2). Видим, что ИСУ на ОБЗ на квантовых вычислениях по всем критериям (за исключением времени одной итерации) превосходит ИСУ на ОБЗ на мягких вычислениях.
Рассмотрим пример влияния шума в системе измерения на работу ИСУ на мягких и на квантовых вычислениях. На рисунке 3 приведено положение манипулятора при работе ИСУ на мягких (слева) и на квантовых вычислениях (справа).
В рассмотренных непредвиденных ситуациях с внесением сильных шумов в систему измерения ИСУ на ОБЗ на квантовых вычислениях показала преимущество перед ИСУ на ОБЗ на мягких вычислениях.
Подытоживая, отметим, что на примере сложного ОУ - робота-манипулятора с семью степенями свободы - были рассмотрены принципы проектирования систем управления с применением технологий квантовых вычислений.
Рис. 3. Положение манипулятора в пространстве при работе ИСУ на мягких (слева) и на квантовых вычислениях (справа)
Fig. 3. Manipulator attitude when using ICS on soft (left) quantum (right) computing
На уровне моделирования (с использованием пакета MatLab/Simulink) продемонстрировано, что включение обобщающего звена КНВ в ИСУ на основе ОБЗ на мягких вычислениях позволило обеспечить полное решение задачи позиционирования в штатных ситуациях управления при применении ИСУ на ОБЗ на квантовых вычислениях в отличие от ИСУ на ОБЗ на мягких вычислениях; улучшить показатель решения задачи точного позиционирования в условиях внешних непредвиденных ситуаций управления; значительно улучшить показатель точности позиционирования функционального устройства в условиях сильных внутренних возмущений и в 5 раз показатель быстродействия, а также уменьшить относительную ошибку позиционирования звеньев.
Литература
1. Литвинцева Л.В., Ульянов И.С., Ульянов C.B., Ульянов С.С. Квантовый нечеткий вывод для создания баз знаний в робастных интеллектуальных регуляторах // Изв. РАН: Теория и системы управления. 2007. № 6. C. 71-126.
2. Nielsen M.A., Chuang I.L. Quantum computation and quantum information. UK, Cambridge, Cambridge Univ. Press, 2000, 700 p.
3. Chen G., Diao С. Mathematical Theory of Quantum Computation. NY, Chapman Hall CRC, 2013, 320 p.
4. Yanofsky N.S., Mannucci M.A. Quantum Computing for Computer Scientists. Cambridge, Cambridge Univ. Press, 2008, 368 p.
5. Jaeger G. Quantum Information: An overview. NY: Springer Verlag, 2007, 284 p.
6. Marinescu D.C., Marinescu G.M. Approaching quantum computing. NJ, Pearson Prentice Hall, 2005, 400 p.
7. Николаева А.В., Ульянов С.В. Интеллектуальное управление роботом-манипулятором на основе квантовых мягких вычислений // Программные продукты и системы. 2014. № 1. С. 108-116.
8. Jozsa R., Linden N. On the role of entanglement in quantum computational speed-up. Proc. of the Royal Society, 2003, vol. 459, no. 2036, pp. 2011-2032.
References
1. Litvintseva L.V., Ulyanov I.S., Ulyanov S.V., Ulya-nov S.S. Quantum fuzzy inference for knowledge base design in robust intelligent controllers. Izvestiya RAN. Teoriya i sistemy upravleniya [Journ. of Computer and Systems Sciences Int.]. 2007, no. 6, pp. 71-126.
2. Nielsen M.A., Chuang I.L. Quantum computation and quantum information. UK, Cambridge, Univ. Press, 2000, 700 p.
3. Chen G., Diao С. Mathematical theory of quantum computation. NY, Chapman Hall CRC, 2013, 320 p.
4. Yanofsky N.S., Mannucci M.A. Quantum computing for computer scientists. Cambridge, Univ. Press, 2008, 368 p.
5. Jaeger G. Quantum information: an overview. NY, Springer Verlag Publ., 2007, 284 p.
6. Marinescu D.C., Marinescu G.M. Approaching quantum computing. NJ, Pearson Prentice Hall Publ., 2005, 400 p.
7. Nikolaeva A.V., Ulyanov S.V. Intelligent robust control of a robot manipulator based on quantum soft computing. Programmnye produkty i sistemy [Software & Systems]. 2014, no. 1, pp. 108-116.
8. Jozsa R., Linden N. On the role of entanglement in quantum computational speed-up. Proc. of the Royal Society. 2003, vol. 459, no. 2036, pp. 2011-2032.