Р. Р. Хайдаров (ст. преп.)
Коррозионная стойкость алюминиевых сплавов марок 1421, 5083 с ультрамелкозернистой структурой, подвергнутых электрохимической обработке, в сравнении с их крупнозернистыми аналогами
Уфимский государственный авиационный технический университет, кафедра общей химии 450000, г. Уфа, ул. К. Маркса, 12; тел. (347) 2723877
R. R. Khaydarov
The corrosion behavior of aluminium alloys 1421, 5083 with ultrafine-grained structure, received by electrochemical processing, in comparison with their coarse-grained analogues
The Ufa State Aviation Technical University 12, K. Marks Str., 450000, Ufa, Russia; ph. (347) 2723877
Рассмотрено влияние ультрамелкозернистой структуры алюминиевых сплавов марок 1421, 5083, полученной с помощью равноканального углового прессования на коррозионные свойства данных сплавов в среде 3% ЫаС1, после электрохимической обработки на модельной установке МУ-1М в электролите на основе 15% ЫаЫ03 в сравнении с их крупнозернистыми аналогами. Установлено, что электрохимическая обработка алюминиевых сплавов в нанокрис-таллическом состоянии способствует значительному повышению их коррозионной стойкости.
Ключевые слова: алюминиевые сплавы; коррозионная стойкость; ультрамелкозернистая структура; электрохимическая обработка.
The influence of ultrafine-grained structure of aluminum alloys 1421, 5083, received by equal channel angular pressing on corrosion properties in 3% NaCl of the given alloys after electrochemical processing on the modeling installation in electrolyte solution- 15% NaNO3 in comparison with their coarse-grained analogs was considered. It is established that electrochemical processing of aluminum alloys in nanocrystalline state promotes substantial increase of their corrosion firmness.
Key words: aluminum alloys; corrosion behavior; ultrafine-grained structure; electrochemical processing.
В последние годы нанокристаллические материалы привлекают большое внимание благодаря своим уникальным физическим, химическим и механическим свойствам 1. Благодаря уникальной структуре нанокристалличес-ких материалов 2,3, свойства материалов невозможно предсказать на основе свойств соответствующих крупнозернистых (КЗ) аналогов.
Нанокристаллические алюминиевые сплавы определенной пластичности с ультрамелкозернистой (УМЗ) структурой, имеющие размер зерен 100—400 нм, в связи с их высокой прочностью на сжатие и изгиб рассматриваются, как перспективные конструкционные и функциональные материалы. Известно, что
Дата поступления 25.10.10
вследствие чувствительности УМЗ структуры к повышениям температуры, для получения деталей из подобных алюминиевых сплавов с ненарушенной структурностью предпочтительным является использование метода электрохимической обработки 4 (ЭХО), при котором не происходит такого нагрева поверхностного слоя, как при резании, фрезеровании и т. д. Вместе с тем, воздействие ЭХО на коррозионную стойкость нанокристаллических материалов не изучено и является актуальным.
В настоящей работе приводятся результаты исследования коррозионной стойкости алюминиевых сплавов с УМЗ структурой, полученных методом равноканального углового прессования (РКУП) до и после ЭХО.
Материалы и методы
Перед ЭХО образцы тщательно зачищались наждачной бумагой с убывающей степенью зернистости и алмазной пастой до блеска, промывались дистиллированной водой и спиртом, высушивались.
ЭХО исследуемых сплавов 1421, 5083 осуществлялась на модельной установке МУ-1М в электролите на основе 15% КаК03.
Поляризация осуществлялась импульсным током с длительностью импульса ^=8 мС, период следования импульсов 20 мС, при амплитуде напряжения и=8 В, поток электролита прокачивался через тело катода со скоростью прокачки в межэлектродном зазоре 20 м/с.
При снятии коррозионных кривых предварительно обработанные методом ЭХО образцы помещались в электрохимическую ячейку и выдерживались до установления потенциала без тока.
Поляризационные кривые снимались в электролите на основе 3% КаС1. Поляризация осуществлялась с разверткой 1х10-4В/с на по-тенциостате ПИ-50-1.1, от установившегося значения потенциала без тока до —200мВ в катодную область, и до +200 мВ в анодную. Строились кривые зависимости логарифма плотности тока от потенциала, к анодному и катодному участкам кривой строились касательные и по пересечению касательных определялись плотности токов коррозии.
Для выявления влияния ЭХО на коррозионную стойкость фиксировались изменения электродных потенциалов во времени, определялись токи коррозии для сплавов 1421, 5083 с КЗ и УМЗ структурами в коррозионной среде на основе 3% КаС1 после ЭХО.
Результаты и их обсуждение
На рис. 1—3 представлены поляризационные зависимости и гистограммы значений токов коррозии для алюминиевого сплава 1421 в КЗ и УМЗ состояниях до и после ЭХО.
Как видно из рис. 3., алюминиевый сплав 1421 в УМЗ состоянии менее коррозионно стоек по сравнению со сплавом в КЗ состоянии, т. к. токи коррозии в 3% КаС1 для сплава в УМЗ состоянии в 2.24 раза больше, чем для сплава с КЗ структурой. Высокие значения токов коррозии для сплава с УМЗ структурой в сравнении с КЗ аналогом обусловлены тем, что в
, В
Рис. 1. Поляризационные зависимости для алюминиевого сплава 1421 с КЗ структурой в электролите на основе 3% ЫаС1; 1 — до ЭХО, 2 — после ЭХО в 15% ЫаЫ03
Н В
Рис. 2. Поляризационные зависимости для алюминиевого сплава 1421 с УМЗ структурой в электролите на основе 3% ЫаС1; 1 — до ЭХО, 2 — после ЭХО в 15% ЫаЫ03
і мА/см‘ 3
до ЭХО
ЭХО
Рис. 3. Токи коррозии для алюминиевого сплава 1421 с КЗ и УМЗ структурами в электролите на основе 3% ЫаС1 до и после ЭХО в 15% ЫаЫ03
2
0
УМЗ структуре значительно большее количество активных центров, которые являются центрами коррозионного разрушения.
После ЭХО наблюдается значительное увеличение коррозионной стойкости для сплава с УМЗ структурой, т. к. активные центры УМЗ структуры сплава пассивируются в большей степени, чем у сплава в КЗ состоянии. Значения токов коррозии до и после ЭХО для сплава с УМЗ структурой различаются в 36 раз, а для сплава с КЗ структурой токи коррозии уменьшаются в незначительной степени (1,2 раза).
На рис. 4—6 представлены поляризационные зависимости и гистограммы значений токов коррозии для сплава 5083 в КЗ и УМЗ состояниях до и после ЭХО.
а, в
-1,6
-0,8
0,8
1,6
2,4
а, В
Рис. 5. Поляризационные зависимости для алюминиевого сплава 5083 с УМЗ структурой в электролите на основе 3% ЫаС1; 1 — до ЭХО, 2 — после ЭХО в 15% ЫаЫ03
, мА/см 14 ■
12
10
8
6
4
2
0
□ УМЗ
□ КЗ
до ЭХО
ЭХО
Рис. 4. Поляризационные зависимости для алюминиевого сплава 5083 с КЗ структурой в электролите на основе 3% ЫаС1; 1 — до ЭХО, 2 — после ЭХО в 15% ЫаЫ03
Рис. 6. Токи коррозии для алюминиевого сплава 5083 с КЗ и УМЗ структурами в электролите на основе 3% NaCl до и после ЭХО в 15% NaNO3
Как видно из рис. 6, в активной коррозионной среде (3% NaCl) алюминиевый сплав 5083 в УМЗ состоянии, как и сплав 1421, корродирует со скоростью в 2.4 раза большей, чем сплав в КЗ состоянии. Согласно значениям токов коррозии сплава 5083 в КЗ и УМЗ состояниях после ЭХО, сплав с УМЗ структурой в этом случае запассивирован в значительно большей степени. Наблюдается значительное увеличение коррозионной стойкости сплава 5083 с УМЗ структурой, т. к. токи коррозии для него в УМЗ состоянии составляют 0.05 мА/см2, что в 70 раз меньше, чем для сплава с КЗ структурой.
Таким образом, изучение коррозионной стойкости после ЭХО алюминиевых сплавов в КЗ и УМЗ состояниях показало, что ЭХО в электролите на основе 15% NaNO3 способствует не только съему металла, но и формированию прочного барьерного пассивирующего оксидного слоя, способствующего повышению коррозионной стойкости, в особенности для алюминиевых сплавов с УМЗ структурой.
Литература
1. Валиев Р. З., Александров И. В. Объемные наноструктурные металлические материалы.— М.: ИКЦ «Академкнига», 2007.— 398 с.
2. Gogotsi Y. G. Nanomaterials handbook.— Taylor & Francis Group, 2006. — P. 780.
3. Tsakalakos T., Ovid’ko I. A., Vasudevan A. K. Nanostructures: synthesis, functional properties and applications.—Kluwer Academ. Publ., 2003. — P. 694.
4. Амирханова H. А., Хайдаров Р. Р., Хамзина А. Р. // Баш. хим. ж.- 2007.- Т.14, №4.- С. 130.
0