УДК 371.315.7
КОМПЬЮТЕРНАЯ ПРОГРАММА ГЕНЕРАЦИИ КОНТРОЛЬНЫХ РАБОТ НА БАЗЕ СИСТЕМЫ LATEX
В.М. Карнаухов, к.ф.-м.н. (Московский государственный университет природообустройства, karnauhov. 60@mail ru)
В статье обсуждаются основные принципы построения компьютерного генератора контрольных работ по различным учебным дисциплинам. Представляемая программа использует известную типографскую систему LaTex, позволяющую создавать варианты контрольных работ в удобной графической форме.
Ключевые слова: LaTex, контрольная работа, генератор, задачи с параметрами, компьютерная программа, библиотека задач, преподаватель.
Созданная в середине 90-х годов система K-Commander [1, 2] активно использовалась на кафедре высшей математики Московского государственного университета природообустройства (МГУП) последние 10 лет. При помощи этой системы проводились текущие контрольные, итоговые зачетные и расчетно-графические работы. Однако графика подготовленных при помощи данной системы вариантов контрольных работ оставляла желать лучшего: специальные математические символы (знаки интегралов, арифметических корней, рядов и т.д.) набирались при помощи обыкновенного текстового редактора. Поэтому внимание преподавателей привлекла редакционная система LaTex, преимущество которой состоит в открытости формата, в котором набирается текст. Автором была создана новая система подготовки раздаточного материала контрольных работ на базе редактора LaTex с использованием инструментальной среды Delphi 7. Система получила название VmTex [3, 4]. Характерные особенности системы в том, что задачи ее базы набираются определенным способом при помощи всех доступных средств редактора LaTex, а система VmTex формирует различные контрольные работы, используя созданную базу.
Представляемая в данной статье система UniTex является значительно усовершенствованным вариантом VmTex. Благодаря широким возможностям инструментальной среды Delphi 7 автор упростил работу пользователя с библиотекой задач и хранилищем контрольных работ.
Схема, отражающая файловую и функциональную структуры представляемой системы, приведена на рисунке 1.
Программа, руководящая процессом генерации контрольных работ, находится в файле UniTex.exe. Опишем данный процесс.
При помощи встроенного редактора или внешнего специализированного редактора (например WinShell) создается структурированная библиотека задач на основе языка LaTex.
При помощи системы LaTex любые задачи библиотеки Library могут быть выведены в каталог временных файлов TMP, а затем на дисплей или на принтер.
При создании вариантов контрольных работ вначале в каталоге Z формируются файлы с номерами задач библиотеки. По этим номерам из библиотеки извлекаются соответствующие задачи, помещаются в каталог временных файлов TMP. Используя систему LaTex, можно просмотреть либо распечатать сформированные варианты.
UniTex.exe
LaTex Library <- Z
\ »
Принтер TMP Дисплей
Рис. 1. Функциональная структура системы
Окно программы состоит из двух панелей. Верхняя панель - основная, содержит два компонента TTreeView (рис. 2).
Одно из этих деревьев представляет собой хранилище сформированных контрольных работ системы. Верхний, 1-й, уровень дерева призван разделить весь набор контрольных работ по тематике (исчисления дифференциальное и интегральное, дифференциальные уравнения и т.д.), целенаправленности (расчетно-графические, стандартные контрольные, зачетные работы и т.д.), принадлежности преподавателям (именные папки работ преподавателей) и т.д. На этом уровне содержатся папки с контрольными работами.
Следующий, 2-й, уровень дерева содержит список контрольных работ.
Далее идет 3-й уровень (рис. 3), раскрывающийся при выборе (нажатии «+»). Он представляет собой набор задач, из которых составляется контрольная работа. Каждая задача может содержать подзадачи (4-й уровень). В этом случае подзадачи участвуют в формировании вариантов контрольных работ в той же степени, что и родительская задача.
Другое дерево содержит библиотеку задач. Верхний уровень (рис. 2) призван разделить все задачи по тематике (матричная алгебра, векторная алгебра, аналитическая геометрия и т.д.), целенаправленности (расчетно-графические работы № 1, № 2 и т.д.), принадлежности преподавателям. Этот уровень содержит папки, после раскрытия (нажатия «+») которых появляется их содержимое в виде задач (рис. 3).
Рис. 2. Главное окно программы UniTex
Рис. 3. Низшие уровни базы контрольных работ и библиотеки задач
Два компонента тесно взаимодействуют друг с другом: можно составлять различные контрольные работы при помощи задач библиотеки задач.
Элементы каждого дерева также взаимодействуют друг с другом в пределах компонента: можно копировать, перемещать, удалять элементы. Для элементов библиотеки задач существуют такие возможности, как запись задач на внешний источник, включение в систему задач с внешних носителей.
В хранилище контрольных работ можно просмотреть любую сформированную контрольную
работу и распечатать ее. В библиотеке задач также можно просмотреть любую созданную задачу и отредактировать ее.
Нижняя панель окна программы представляет собой панель быстрой печати. Если известен номер контрольной работы, который можно узнать (всплывающая подсказка), зайдя в хранилище контрольных работ, программа предоставит возможность распечатать нужное количество вариантов (при необходимости с ответами) этой контрольной работы.
База задач системы. База задач, используемых в системе итТех, насчитывает около 200 задач (1800 вариантов) по пятнадцати темам, из них около 100 задач с параметрами. База содержит задачи по следующим темам: школьная математика, матричная алгебра, векторная алгебра, аналитическая геометрия, дифференциальное исчисление функции одной переменной, интегральное исчисление функции одной переменной, теория функций многих переменных, обыкновенные дифференциальные уравнения, кратные интегралы, теория поля, теория вероятностей, математическая статистика.
Рассмотрим три способа набора задач с вариантами: непосредственный, фрагментальный и параметрический.
Непосредственный способ состоит в простом наборе вариантов задания с использованием всех команд редактора La.Tex. В примере 1 набраны следующие варианты математической задачи получения общего интеграла дифференциального уравнения 1-го порядка с разделяющимися переменными.
1) Найти общий интеграл дифференциального уравнения: 4xdx — 3ydy = 3х2 ydy — 2ху2 dx
Ответ: С(х2 +1) (у2 + 2)3.
2) Найти общий интеграл дифференциального уравнения: + у2 + уу'л/Т+х2" = 0.
Ответ: ^1 + у2 =— 1 + х2 + С.
3) Найти общий интеграл дифференциального
уравнения: 4 + у2 dx—ydy = x2ydy.
Ответ: \)у2 + 4 = агС^(х) + С. В примере 1-я, 2-я и последняя строки являются в языке La.Tex обязательными. После текста варианта с новой строки, начинающейся с символа «/», записывается ответ. Формулы La.Tex располагают в скобках $...$.
Пример 1. \input <1еГ \Ь е »ш{ <о сшпеп!:}
Найти общий интеграл дифференциального уравнения:
$4х<<х - 3уйу = 3хЛ2уйу - 2хул2йх$. /$С(хЛ2+1)=\«дГ: {(УЛ2+2)Л3}$\\
Найти общий интеграл дифференциального уравнения:
$x \sqrt{1+ уЛ2} + yy\sqrt{1+ хл2} = 0$. /$\sqrt{1+yA2}=-\sqrt{1+xA2}+C$\\ Найти общий интеграл дифференциального уравнения:
$ \sqrt{4+ уЛ2}0х - ydy = хЛ2уау$. /$\sqrt^2+4}=\arctg x+C$\\
\end{document}
Фрагментальный способ использует команду \newcommand редактора LaTex, позволяющую программировать повторяющиеся фрагменты в тексте вариантов задания. В примере 2 набраны следующие варианты задачи вычисления двойного интеграла.
1) Вычислить двойной интеграл: JJху dxdy,
D
где D: x=2; y=3x; y=x. Ответ: 16.
2) Вычислить двойной интеграл: JJ у dxdy, где
D
D: y=0 ,y=3; y=x; y=x+2. Ответ: 9.
3) Вычислить двойной интеграл: JJ х dxdy, где
D
D: x+y=5; x=0; y=0.
n 125
Ответ: -.
6
Ответы указаны после текста задания с новой строки, начинающейся с символа «/».
Пример 2. \input def
\newcommand{\tf}[2]{Вычислmъ двойной интеграл: $\int\limits_D\!\!\int\,\,xy\,dx\,dy \quad,$ где $\; D: x=#1; y=#2x; y=x$}
\newcommand{\ti}[1]{Вычислmъ двойной интеграл: $\int\limits_D\!\!\int\,\,x\,dx\,dy \quad,$ где $\; D: x+y=#1; x=0; y=0$}
\newcommand{\tj}[2]{Вычислmъ двойной интеграл:
$\int\limits_D\!\!\int\,\,y\,dx\,dy \quad,$
где $\; D: y=0 ,y=#1; y=x; y=x+#2$}
\b e gin{ do cument}
\tf{2}{3}
/$16$\\
\tj{3}{2}
/$9$\\
\ti{5}
/$\frac{125}6$\\
\end{document}
Параметрический способ предполагает набор задач с параметрами. Опишем процесс получения одной из таких задач.
Пусть требуется решить иррациональное
уравнение вида Vx + A = x — 1 (A>0). Из графиков функций y =Vx + A и y=x-1 (рис. 4) видно, что имеется единственное решение a>1.
Пусть а - целое (для удобства проверки ответа) решение исходного иррационального уравнения. Тогда A=a2-3a+1 - целое число. Анализируя
y ' y=x-1
у =л/ x + A ' 1 >
/ *
-A O К 1 a x
-1
Рис. 4. Графики функций у = Vх + A и y=x-1
t A L
i 2 /
O \ 1 ' / a
-i
Рис. 5. График функции A=a2-3a+1
график квадратичной функции A=a2-3a+1 (рис. 5) и учитывая, что a>1 и A>0, приходим к диапазону изменения целочисленного параметра а: a>2. Для обеспечения равносложности вариантов целесообразно положить a<51.
Итак, получена следующая задача с переменными полями A и B и одним параметром a.
Текст: Найти решение или сумму решений,
если существует не одно решение: -\/x + A = x — 1.
Ответ: B.
Параметр: a=3^50.
Переменные поля и их формулы: A=a2-3a+1, B=a.
В тексте задачи не зря указывается на случай с двумя корнями уравнения. Это является ключевым в таких задачах, так как учащийся должен уметь отбрасывать лишние корни.
На языке LaTex данная задача будет выглядеть, как в примере 3. После текста задачи с новой строки, начинающейся с символа «/», указывается ответ.
Пример 3. \input def \b e gin{ do cument} %a=3 50 1 %@1=a2-3a+1 %@2=a
Найти решение или сумму решений, если существует не одно решение\\
д/х + @1 = х-1
/$@2$\\
\endJdocument}
Предложенная в статье компьютерная система позволяет автоматизировать процесс подготовки вариантов контрольных работ по различным темам высшей математики и другим дисциплинам и обладает следующими положительными особенностями:
- к каждому подготовленному комплекту вариантов прилагаются ответы задач, наличие которых существенно облегчает процесс проверки результатов проведенных контрольных работ;
- благодаря использованию известной издательской системы La.Tex можно
а)готовить варианты контрольных работ в правильной математической форме,
б) набирать тексты задач в любом текстовом редакторе ОС Windows,
в) манипулировать с набранными текстами в соответствии с пожеланиями программиста.
Кроме того, созданная программа достаточно проста в использовании.
Литература
1. Карнаухов В.М. Пакет прикладных программ для преподавания математики // Функциональные пространства. Дифференциальные операторы. Проблемы математического образования: тез. докл. Междунар. конф., посвящ. 75-летию чл.-корр. РАН, проф. Л.Д. Кудрявцева. М.: РУДН, 1998. С. 211.
2. Карнаухов В.М. Компьютерная программа для подготовки раздаточного материала K-Commander // Вопросы повышения качества образования в области природообустройства и водопользования: сб. матер. 4-й межвуз. науч.-методич. и на-уч.-технич. конф. М.: МГУП, 2002.
3. Карнаухов В.М., Денисова О.И. Генератор контрольных работ на основе программируемого редактора LaTex // Новые технологии в аграрном образовании: 4-я Междунар. конф. М.: МГУП, 2003.
4. Карнаухов В.М. Использование редактора LaTex для создания генератора контрольных работ // Информатика и образование. 2008. № 11. С. 114-116.
УДК 004.85, 629.113.004
КОНЦЕПТУАЛЬНОЕ ПРОЕКТИРОВАНИЕ ФУНКЦИЙ ОБУЧАЮЩИХ СИСТЕМ В ОБЛАСТИ АВТОМОБИЛЬНОГО ТРАНСПОРТА
Д. В. Бутенко, к. т. н.; К. Н. Богучаров; М.М. Байбаков (Волгоградский, государственный технический университет, gindenburg@mail.ru, baibakov@inbox.ru)
В современной системе образования при создании методических пособий по диагностике узлов автомобилей предпочтение отдается компьютерным обучающим системам. Большинство этих систем является электронным вариантом изложения текстового теоретического материала. Такие продукты имеют ограниченные функциональные возможности. Использование 30-моделей агрегатов, алгоритма в виде блок-схемы в процессе обучения предполагает улучшение восприятия и понимания объекта изучения, а также повышает активность обучаемого.
Ключевые слова: обучающая система, алгоритм ремонта автомобиля, модель узла автомобиля.
Разработка обучающих систем приобретает все большую актуальность. В современной системе образования при создании методических пособий предпочтение отдается компьютерным обучающим системам, являющимся эффективным средством обучения.
Была поставлена задача разработки модели обучающей системы и для такого направления, как автомобильный транспорт. Эта модель должна быть ориентирована на получение человеком знаний об устройстве автомобиля и о диагностике деталей, узлов транспорта. Для ее разработки рассматривались модели уже существующих обучающих систем и систем, направленных на диагностику автомобиля и его ремонт.
Для оценки функциональной структуры проведен обзор аналогов систем. Как ключевые были
выбраны системы «Мастера России: учимся ремонтировать автомобиль», «Устройство автомобиля ВАЗ 2114» и «Практикум автомеханика по ремонту автомобилей». Большинство таких систем является электронным вариантом текстового теоретического материала, поэтому они имеют ограниченные функциональные возможности и не позволяют интенсифицировать освоение учебного материала об устройстве узлов, систем автомобиля и принципах их работы, возможностях диагностики и ремонта узлов, что в конечном итоге сводит к минимуму эффективность разработанной обучающей системы.
На основе обзора аналогов и прототипов моделей систем была выявлена общая функциональная схема обучающих систем для предметной области автомобильный транспорт. В состав функ-