Научная статья на тему 'Комплексный подход к демонстрационному эксперименту по физике'

Комплексный подход к демонстрационному эксперименту по физике Текст научной статьи по специальности «Прочие социальные науки»

CC BY
198
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МОДЕЛИРОВАНИЕ / ДЕМОНСТРАЦИОННЫЙ ЭКСПЕРИМЕНТ / ВИРТУАЛЬНЫЙ ЭКСПЕРИМЕНТ / РЕАЛЬНЫЙ ЭКСПЕРИМЕНТ / SIMULATION / DEMONSTRATION / VIRTUAL / REAL / EXPERIMENT

Аннотация научной статьи по прочим социальным наукам, автор научной работы — Бобылев Юрий Владимирович, Грибков Александр Иванович, Романов Роман Васильевич

Организация на современном уровне натурного демонстрационного эксперимента, а также лабораторного практикума по физике, как в средней, так и в высшей школе, связана с серьёзными финансовыми затратами, что создает зачастую непреодолимые трудности. Данные обстоятельства с неизбежностью приводят к повышению значимости применения в учебном процессе виртуальных демонстрационного эксперимента и лабораторного практикума, которые постепенно начинают вытеснять натурный эксперимент. Вместе с тем физика со времени своего появления является наукой экспериментальной, и реальный эксперимент, демонстрирующий какое-либо явление, вследствие своей наглядности, гораздо более полезен при первоначальном знакомстве с данным явлением, нежели его, пусть даже очень хорошее, компьютерное моделирование. В связи с этим, с учетом реалий сегодняшнего дня, при организации учебного процесса необходимо разумное сочетание натурного и виртуального экспериментов. Прежде всего, это касается лекционного демонстрационного эксперимента, который является одной из важнейших составляющих обучения физике. Традиционно подобная демонстрация проводится на заранее подготовленной экспериментальной установке и иллюстрирует базовые положения той или иной теории. При этом, если предлекционная подготовка эксперимента оказывается при росте нагрузки и сокращении аудиторных часов слишком затратной по времени для преподавателя, реальный эксперимент можно подготовить один раз, выполнить в наиболее подходящих условиях и записать на видео. Устные, вмонтированные в видео, или размещённые по известному студентам адресу комментарии дадут качественное объяснение эксперимента. Для последующего количественного описания эксперимента чаще всего бывает необходимо привлечение компьютерных средств моделирования физических процессов, таких как известные среды математической обработки или схемотехнического моделирования, или авторских программ. Методические аспекты такого комплексного подхода к демонстрационному эксперименту по физике, сочетающие натурный и виртуальный эксперименты, рассматриваются в настоящей работе на примере демонстраций по движению заряженных частиц в магнитном и электрическом полях. При этом детально обсуждается движение электролита в магнитном и электрическом полях, как наиболее доступный и наглядный способ подобных экспериментов, приводится достаточно подробное, как качественное, так и количественное аналитическое описание обсуждаемого эксперимента

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по прочим социальным наукам , автор научной работы — Бобылев Юрий Владимирович, Грибков Александр Иванович, Романов Роман Васильевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

AN INTEGRATED APPROACH TO THE DEMONSTRATION EXPERIMENT IN PHYSICS

Now, the organization of a full-scale demonstration experiment, as well as a laboratory workshop in physic sat a modern level, both in secondary and high schools, is associated with serious financial costs. This often creates insurmountable difficulties. These circumstances inevitably lead to an increase in the importance of the application in the educational process of a virtual demonstration experiment and a laboratory workshop, which are gradually beginning to displace the full-scale experiment. At the same time, physics has been an experimental science since its inception, and a real experiment demonstrating some phenomenon, due to its visibility, is much more useful at first acquaintance with this phenomenon, rather than its, even very good, computer simulation. In this regard, considering the realities of today, when organizing the educational process, a reasonable combination of full-scale and virtual experiments is necessary. This may be particularly true for a lecture demonstration experiment, which is one of the most important components in teaching physics. Traditionally, such demonstrations are conducted on a previously prepared experimental setup and illustrate the basic provisions of this or that theory. At the same time, if the pre-lecture preparation of the experiment occurs to be too time-consuming for the teacher, due to the increased workload and decreased classroom hours, a real experiment can be prepared once, performed under the most suitable conditions, and recorded on video. Any comments oral, embedded in the video, or placed at an information resource, well-known by students, will give a qualitative explanation of the experiment. For the subsequent quantitative description of the experiment, it is often necessary to involve computer simulation tools for physical processes, such as popular mathematical processing or circuit modeling environments, or authorial programs. The methodological aspects of such an integrated approach to the demonstration experiment in physics, combining full-scale and virtual experiments, are considered in the present work by the example of demonstrations on the motion of charged particles in magnetic and electric fields. In this case, the electrolyte motion in the magnetic and electric fields is discussed in detail, as the most accessible and vivid method of such experiments, and the qualitative and quantitative analytical description of the experiment under discussion is presented in sufficient detail.

Текст научной работы на тему «Комплексный подход к демонстрационному эксперименту по физике»

Бобылев Ю.В., Грибков А.И., Романов Р.В. Комплексный подход к демонстрационному эксперименту по физике //Научный результат.

Педагогика и психология образования. Т. 4, №3:12-23

УДК 371

DOI: 10.18413/2313-8971-2018-4-3-0-2

Бобылев Ю.В.1 Грибков А.И.2 Романов Р.В.

КОМПЛЕКСНЫЙ ПОДХОД К ДЕМОНСТРАЦИОННОМУ ЭКСПЕРИМЕНТУ ПО ФИЗИКЕ

1) Тульский государственный педагогический университет им. Л.Н. Толстого,

пр. Ленина, 125, Тула, 300026, Россия, E-mail: [email protected]

2) Тульский государственный педагогический университет им. Л.Н. Толстого,

пр. Ленина, 125, Тула, 300026, Россия, E-mail: [email protected]

3) Тульский государственный педагогический университет им. Л.Н. Толстого,

пр. Ленина, 125, Тула, 300026, Россия, E-mail: [email protected]

Статья поступила 17 июля 2018 г.; Принята 3 сентября 2018 г.;

Опубликована 30 сентября 2018 г.

Аннотация. Организация на современном уровне натурного демонстрационного эксперимента, а также лабораторного практикума по физике, как в средней, так и в высшей школе, связана с серьёзными финансовыми затратами, что создает зачастую непреодолимые трудности. Данные обстоятельства с неизбежностью приводят к повышению значимости применения в учебном процессе виртуальных демонстрационного эксперимента и лабораторного практикума, которые постепенно начинают вытеснять натурный эксперимент. Вместе с тем физика со времени своего появления является наукой экспериментальной, и реальный эксперимент, демонстрирующий какое-либо явление, вследствие своей наглядности, гораздо более полезен при первоначальном знакомстве с данным явлением, нежели его, пусть даже очень хорошее, компьютерное моделирование. В связи с этим, с учетом реалий сегодняшнего дня, при организации учебного процесса необходимо разумное сочетание натурного и виртуального экспериментов. Прежде всего, это касается лекционного демонстрационного эксперимента, который является одной из важнейших составляющих обучения физике. Традиционно подобная демонстрация проводится на заранее подготовленной экспериментальной установке и иллюстрирует базовые положения той или иной теории. При этом, если пред-лекционная подготовка эксперимента оказывается при росте нагрузки и сокращении аудиторных часов слишком затратной по времени для преподавателя, реальный эксперимент можно подготовить один раз, выполнить в наиболее подходящих условиях и записать на видео. Устные, вмонтированные в видео, или размещённые по известному студентам адресу комментарии дадут качественное объяснение эксперимента. Для последующего количественного описания эксперимента чаще всего бывает необходимо привлечение компьютерных средств моделирования физических процессов, таких как известные среды математической обработки или схемотехнического моделирования, или

Бобылев Ю.В., Грибков А.И., Романов Р.В. Комплексный подход к демонстрационному эксперименту по физике //Научный результат.

Педагогика и психология образования. Т. 4, №3:12-23

авторских программ. Методические аспекты такого комплексного подхода к демонстрационному эксперименту по физике, сочетающие натурный и виртуальный эксперименты, рассматриваются в настоящей работе на примере демонстраций по движению заряженных частиц в магнитном и электрическом полях. При этом детально обсуждается движение электролита в магнитном и электрическом полях, как наиболее доступный и наглядный способ подобных экспериментов, приводится достаточно подробное, как качественное, так и количественное аналитическое описание обсуждаемого эксперимента. Ключевые слова: моделирование; демонстрационный эксперимент; виртуальный эксперимент; реальный эксперимент.

Yu.V. Bobylev1 A.I. Gribkov2 R.V. Romanov

3

AN INTEGRATED APPROACH TO THE DEMONSTRATION EXPERIMENT IN PHYSICS

1) Tula State Lev Tolstoy Pedagogical University,

125 Lenin Ave, Tula, 300026, Russia; E-mail: [email protected]

2) Tula State Lev Tolstoy Pedagogical University,

125 Lenin Ave., Tula, 300026, Russia; E-mail: [email protected]

3) Tula State Lev Tolstoy Pedagogical University,

125 Lenin Ave., Tula, 300026, Russia; E-mail: [email protected]

Received 17 July 2018; Accepted 3 September2018; Published 30 September2018

Abstract. Now, the organization of a full-scale demonstration experiment, as well as a laboratory workshop in physic sat a modern level, both in secondary and high schools, is associated with serious financial costs. This often creates insurmountable difficulties. These circumstances inevitably lead to an increase in the importance of the application in the educational process of a virtual demonstration experiment and a laboratory workshop, which are gradually beginning to displace the full-scale experiment. At the same time, physics has been an experimental science since its inception, and a real experiment demonstrating some phenomenon, due to its visibility, is much more useful at first acquaintance with this phenomenon, rather than its, even very good, computer simulation. In this regard, considering the realities of today, when organizing the educational process, a reasonable combination of full-scale and virtual experiments is necessary. This may be particularly true for a lecture demonstration experiment, which is one of the most important components in teaching physics. Traditionally, such demonstrations are conducted on a previously prepared experimental setup and illustrate the basic provisions of this or that theory. At the same time, if the pre-lecture preparation of the experiment occurs to be too time-consuming for the teacher, due to the increased workload and decreased classroom hours, a real experiment can be prepared once, performed under the most

Д J J/J Бобылев Ю.В., Грибков А.И., Романов Р.В. Комплексный подход

1 1 г 7"7~ГТ |~Г~1 74 Т к демонстрационному эксперименту по физике//Научный результат.

I Га") У J I П J. J. Педагогика и психология образования. Т. 4, №3:12-23

suitable conditions, and recorded on video. Any comments - oral, embedded in the video, or placed at an information resource, well-known by students, will give a qualitative explanation of the experiment. For the subsequent quantitative description of the experiment, it is often necessary to involve computer simulation tools for physical processes, such as popular mathematical processing or circuit modeling environments, or authorial programs. The methodological aspects of such an integrated approach to the demonstration experiment in physics, combining full-scale and virtual experiments, are considered in the present work by the example of demonstrations on the motion of charged particles in magnetic and electric fields. In this case, the electrolyte motion in the magnetic and electric fields is discussed in detail, as the most accessible and vivid method of such experiments, and the qualitative and quantitative analytical description of the experiment under discussion is presented in sufficient detail.

Keywords: simulation; demonstration; virtual; real; experiment.

Введение. Демонстрационный эксперимент является одним из важнейших методов обучения физике, как в средней, так и в высшей школе. Являясь, согласно педагогической науке, средством наглядности, он способствует организации восприятия учащимися и студентами учебного материала, его пониманию и запоминанию, способствует повышению интереса к изучению физики, созданию мотивации учения. Однако организация на современном уровне натурного демонстрационного эксперимента, как в средней, так и в высшей школе, связана с серьёзными финансовыми затратами, в результате чего существенно повышается значение виртуального демонстрационного эксперимента в учебном процессе и он начинает постепенно вытеснять реальный эксперимент. Нужно отметить, что причины актуализации применения виртуального лабораторного эксперимента в средней школе были подробно проанализированы в трудах Богатыревой Ю.И., Шахае-вой Д.В. [5]. Эти же причины, имеющие место и при изучении курса общей физики в педагогическом вузе, обсуждались авторами статьи в публикации «О применении виртуального демонстрационного и лабораторного эксперимента по физике в высшей школе» [1]. В настоящей работе на конкретном примере рассматриваются методические аспекты комплексного подхода к организации лекционного демонстрационного эксперимента, используемого авторами в учебном

процессе и заключающегося в сочетании натурного и виртуального экспериментов.

Лекционный демонстрационный эксперимент является одной из важнейших составляющих обучения физике. Традиционно такая демонстрация проводится на заранее подготовленной экспериментальной установке и иллюстрирует базовые положения той или иной теории. Однако, как правило, объяснение опыта даётся на качественном уровне без детального количественного анализа, так как за исключением простейших опытов, такое рассмотрение представляется достаточно сложным. Кроме того, такой подход требует тщательной предлекционной подготовки со стороны преподавателя, что в современных условиях при росте нагрузки и сокращении аудиторных часов представляет определённую проблему. Наконец, необходимо присутствие студента в аудитории, что в реальности тоже не всегда выполняется, а для заочного и дистанционного образования вообще не достижимо.

Наличие компьютерной и мультимедийной техники позволяет до определённой степени решить эту проблему. Реальный эксперимент готовится один раз, выполняется в наиболее подходящих условиях, записывается на видео, обрабатывается и монтируется с помощью видеоредактора, коих великое множество, в том числе и бесплатных, и выкладывается на официальной странице сайта кафедры. Заметим, что для выполнения этой работы можно и весьма

желательно привлекать самих студентов в рамках самостоятельной работы, выполнения курсовых или ВКР. Опыт, поставленный своими руками, надолго останется в памяти и вызовет больше доверия со стороны сокурсников. Примеры таких экспериментов можно посмотреть на странице кафедры общей и теоретической физики (http://tsput.ru/res/fizika/VIDEO_1/index_v.ht ш). Далее эту запись можно использовать, как во время лекции, так и дать на неё ссылку для самостоятельного просмотра и изучения, причём, в домашних абсолютно безопасных условиях с многократным повторением.

Устные, вмонтированные в видео, или размещённые по известным студентам адресу комментарии дают качественное объяснение эксперимента.

Следующий этап - это количественное описание. Аналитическое решение чаще всего бывает достаточно длинным, а иногда и невозможным, поэтому необходимо привлечение компьютерных средств моделирования физических процессов, таких как известные среды математической обработки или схемотехнического моделирования, или авторских программ, например [4]. Следует отметить, что натурный эксперимент и его количественный анализ могут быть разнесены во времени и пространстве, что создаёт дополнительные удобства для студента.

Заметим, что количественное описание позволяет глубже понять физику процесса, а также выявить детали, которые могут ускользнуть при качественном рассмотрении.

В качестве примера рассмотрим одну из возможных демонстраций по движению заряженных частиц в магнитном поле и действию силы Лоренца. Подобный эксперимент, основанный на движении электролита в скрещенных электрическом и магнитном полях, описан в учебнике под редакцией В.И. Ивероновой (1972) [9, с. 372], а его натурных реализаций, разной степени качества и наглядности, можно немало найти на просторах Интернета [7, 8].

Основная часть. 1. Реальный эксперимент 1. В опыте, выполненном автора-

ми [6], применено простое, широко распространённое и безопасное оборудование: стандартные подковоообразные магниты, дистиллированная вода, поваренная соль (ЫаСГ), чашка Петри, перманганат калия для хорошей визуализации, низковольтный источник постоянного тока, проволока для электродов.

Качественное объяснение эксперимента достаточно простое и может быть использовано при изучении соответствующих тем не только в ВУЗе, но и в школе. Ионы, разогнанные электрическим полем, под действием магнитного поля начинают двигаться по искривлённым, на первый взгляд, круговым или спиральным траекториям, передают свой импульс всей массе электролита, и тот приходит во вращательное движение.

Таким образом, первый этап демонстрационного эксперимента выполнен полностью.

Однако количественное описание представляется достаточно сложным, и поэтому практически нигде не приводится. Кроме того, при такой постановке затруднён ряд измерений, а, следовательно, сравнение теории и эксперимента весьма проблематично. Количественные оценки, приведённые в статье авторов «Демонстрация и моделирование движения заряженных частиц в магнитном и электрическом полях» [2], также носят скорее качественный характер.

2. Реальный эксперимент 2. Авторами был выполнен более удачно подготовленный эксперимент, и в настоящей публикации будет проведено его подробное количественное рассмотрение.

Экспериментальная установка представляет собой коаксиальные цилиндрические электроды, приклеенные термоклеем к плоскому основанию (см. рис. 1), пространство между которыми заполнено раствором медного купороса Сп804 в дистиллированной воде. Концентрация раствора составляла 2,2 г на 20 мл воды. Электроды изготовлены из латуни толщиной 0,25 мм. Их высота 9 мм, диаметры и, соответственно, радиусы й7=32 мм, г7=16 мм,^2=57 мм, г2=28,5 мм,

радиус средней линии г = полурасстояние между

Бобылев Ю.В., Грибков А.И., Романов Р.В. Комплексный подход к демонстрационному эксперименту по физике // Научный результат.

Педагогика и психология образования. Т. 4, №3:12-23

-=22,25 мм,

электродами г — г

а = 2 1 =6,25 мм. Неравномерность зазора

между электродами около 2 мм. Высота раствора ¿=4^5 мм, следовательно, все размеры сравнимы и ни о каких предельных случаях речь не идёт.

Источником магнитного поля, перпендикулярного плоскости рисунка, является постоянный цилиндрический магнит от старого динамика большого диаметра 74 мм, расположенный снизу (на рис. 1 не показан).

Схема опыта, а также силы, действующие на ионыСи+2и 50/2, образующиеся при диссоциации молекул медного купороса, со стороны электрического и магнитного полей, показаны на рис. 2 и рис. 3, соответственно.

Рис. 1. Общий вид установки Fig. 1. General view of the installation

Рис. 2. Схема опыта Fig. 2. Scheme of the experiment

Рис. 3. Вид сверху Fig. 3. Top view

2

Бобылев Ю.В., Грибков А.И., Романов Р.В. Комплексный подход к демонстрационному эксперименту по физике // Научный результат.

Педагогика и психология образования. Т. 4, №3: 12-23

Для разгона частиц электроды подключаются к стабилизированному источнику питания БП-2, напряжение на выходе которого составляет 5 В. Использование источника ВС-4-12 нежелательно, так как реально он даёт пульсирующий ток. Для демонстрации и её качественного описания это неважно, однако для количественных расчётов может сыграть существенную роль, так что зависимость полей от времени лучше устранить.

Период обращения определялся непосредственно наблюдением за мелкими частицами на поверхности электролита. Для этого многократно с помощью секундомера засекается время N оборотов частицы. Затем определяется среднее значение периода. Естественно, что при этом допускается немалая погрешность. Результаты эксперимента приведены в следующей таблице.

Результаты натурного эксперимента The results of the full-scale experiment

Таблица 1 Table 1

Д анные эксперимента

№ п/п Сила тока I, A Напряжение U, B Период T, c

1 0,023 0,20 35,5

2 0,065 0,57 10,8

3 0,095 0,84 7,4

4 0,136 1,20 6,4

5 0,165 1,43 5,5

*асчёты

Угловая скорость а, рад/с Скорость по средней линии м/с

0,177 0,003938

0,582 0,012945

0,849 0,018892

0,982 0,021844

1,142 0,025418

3. Уравнения движения. Для количественного описания будем исходить из уравнений движения

{[vj]+4

(3.1)

с1г (К> с[

с11 ' Л т где с{ - заряд частицы, т- её масса, В - индукция магнитного поля, Е - напряжённость электрического поля. Вязкость среды не учитываем.

Рассматриваем плоский случай, цилиндрическую (полярную) геометрию и симметричные поля.

Тогда уравнения движения принимают вид

*г *уг дВх ^ 2

~г = V; -г = — £ (г )а Ег + гтг; ш ш т т

dp ' daz qß 1

(3.2)

dt

= a

dt

m r

~Vrfz (r)--vraz

где \г - радиальная (лучевая) скорость, ог -угловая скорость, г и р - полярные координаты, функция £ (г) определяет радиаль-

ную неоднородность магнитного поля: £ (г) = 1, если магнитное поле мы принимаем однородным, и £ (г)~ г 1 в случае неоднородного поля.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

дВ3

Если ввести обозначения а =

m

циклотронная частота, взятая со своим знаком (её знак определяется знаком заряда чади

стицы q), a =

m ln —

параметр, характери-

зующий электрическое поле, то система уравнений (3.2) принимает вид

*г *р

= v;

dvr , , ч a 2 -r = aJz (r)raz + -+ r®2'; dt r

(3.3)

1 2

* = а; = ~ас~/г£(г)"•

VII VII I /

Эти уравнения дополняются достаточно очевидными начальными условиями

г|/=о = г>; (х=0 = 0 • (3 4)

г?

r

Бобылев Ю.В., Грибков А.И., Романов Р.В. Комплексный подход к демонстрационному эксперименту по физике // Научный результат.

Педагогика и психология образования. Т. 4, №3: 12-23

4. Численные расчёты и результаты.

Для расчёта траекторий заряженных частиц в магнитных полях достаточно сложных конфигураций авторами написана программа [2], подробное описание которой дано в публикации авторов [3].

Моделирование данного эксперимента проводилось в приложении PTC Math Cad, которое очень хорошо приспособлено для подобных задач. Изучаемые функции записываются практически в общепринятой нотации, все параметры легко изменяются, результаты могут быть выведены графически.

Фрагмент подготовленного рабочего листа представлен на рис. 4 и рис. 5. Расчёты проведены для положительных и отрицательных двухзарядных ионов при напряжении U = 0,2 В (опыт 1 из таблицы) и завышенном в 2 раза магнитном поле Bs = 54 мТл (о причинах такого завышения в дальней-

шем будет дано соответствующее пояснение).

На этих рисунках: внешняя и внутренняя окружности - электроды, пунктирная окружность между ними - начальный (средний) радиус, кривые 1 и 2 - траектории положительногоСм+2 (Аг = 63,5 а. е. м.) и отрицательного 8042~ (Аг = 96 а. е. м.) ионов соответственно, толстая линия между этими кривыми - траектория центра масс продис-социировавшей молекулы.

Положение центра масс рассчитывается по определению

/и, /| +т1п, m + m

(4.1)

»j , ,,»2

после численного решения уравнений (4.4) встроенным в приложение методом Рунге-Кутта (C. D. Runge - M. W. Kutta) [11, 14] для каждого иона.

Рис. 4. Магнитное поле однородное Fig. 4. The magnetic field is homogeneous

Рис. 5. Магнитное поле неоднородное Fig. 5. The magnetic field is inhomogeneous

Заметим, что теорема о движении центра масс

К + т2= Ч[v, - v,,В] (4.2)

имеет первый интеграл

(.т1 + т0)vc = q^Jl - i?J + const.

Причём const = 0 из начальных условий. Тогда

Vc =

Я

m + m

[г\-г2,в].

(4.3)

Из приведённых рисунков видно, что частицы движутся по искривлённым «циклоидам» с границей на начальном радиусе. А центр масс - по весьма сложной кривой.

Если рассматривать положительный ион, то на начальной стадии всё происходит, как и предполагалось выше. Но по мере

Бобылев Ю.В., Грибков А.И., Романов Р.В. Комплексный подход к демонстрационному эксперименту по физике // Научный результат.

Педагогика и психология образования. Т. 4, №3: 12-23

приближения к оси установки, электрическое поле может остановить ион, и лармо-ровская окружность не будет завершена.

Система уравнений (3.1) также имеет первый интеграл, который можно получить из закона сохранения энергии

mv 2

= q (КО -<(r))

где потенциал

< = U

ln

1 -

In Г-2

(4.4)

(4.5)

'i J

Данное выражение в виде

mv

S = -

+ q<( r)

q<( r.)

1

(4.6)

используется для контроля точности численных расчётов, которая при разумном выборе шага интегрирования составляет сотые доли процента.

В явном виде интеграл (4.4) имеет вид

г

In

mv 2

= qU

In Г

(4.7)

v =

max

2qU

In

1 ±

Я

'0 J

2qU 1 RL

m

In ^

m

ln ^ ro

r

(4.8)

'1 '1

где знак соответствует знаку заряда. Получив из выражения для ларморовского радиуса

ту

Rl =■

q I в

(4.9)

значение максимальном скорости

|q I brl

v„„„ = ■

m

(4.10)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

и подставив в (4.8), можно записать

q I brl

= +

m

После чего

2qU 1 Я m ln ^ ro

Rl =

2mU 1 1

q I в2

ln ^ r0

r1

а максимальная скорость 2U 1

v = ■

max

1

в

ln ^ ro

(4.11)

(4.12)

(4.13)

Считая, что Яь<<го, можно записать, что в момент максимального отклонения от начального радиуса г=г0±Я достигается максимальная скорость

одинакова для обоих ионов, если не учитывать неоднородность поля (рис. 6).

В случае неоднородного поля результат также вполне ожидаем (рис. 7).

Рис. 6. Зависимости v=v(t) для обоих ионов. Поле однородно Fig. 6. Dependence of v=v(t) for both ions. The field is homogeneous

2

r

о

Бобылев Ю.В., Грибков А.И., Романов Р.В. Комплексный подход к демонстрационному эксперименту по физике // Научный результат.

Педагогика и психология образования. Т. 4, №3: 12-23

Рис. 7. Зависимости v=v(t) для обоих ионов. Поле неоднородно Fig. 7. Dependence of v=v(t) for both ions. The field is in homogeneous

Из первого интеграла (4.7) также видно, что положительный ион не может приблизиться к оси ближе начального радиуса, а отрицательный - не может удалиться дальше.

Рисунки 4 и 5 отличаются также структурой магнитного поля. На рис. 5 поле неоднородное, соответствует эксперименту, а на рис. 4 - однородное.

В случае неоднородного магнитного поля, поскольку индукция поля уменьшается при увеличении г, а положительный и отрицательный ионы движутся от средней линии Гц в радиально противоположных направлениях - первый в область меньшего, а второй - большего поля, то их ларморов-ские радиусы будут, при прочих равных условиях (одинаковых массах и заряде), увеличиваться и уменьшаться, соответственно (см. (4.9)).

Достаточно сложное «циклоидальное» движение частиц, изображённое на рисунках 4 и 5, может быть представлено в виде совокупности двух движений - циклотронного вращения и некоторого среднего, дрейфового движения [12, 15], осуществляемого, как положительными, так и отрицательно заряженными частицами по часовой

стрелке по окружности перпендикулярно скрещенным магнитному и электрическому полям. Скорость этого дрейфового движения не зависит от заряда и массы частицы и может быть оценена по формуле [10, С.32] л'Е =[ЕВ]/В2, которая в нашем случае принимает вид уе = Е / В, где величины полей

берутся на начальном радиусе. Сопоставление расчётов, проведённых по данной формуле, с описанными численными расчётами даёт достаточно хорошее совпадение.

Поясним теперь, почему для проведения расчётов понадобилось использовать завышенное магнитное поле. Причина этого заключается в том, что при величине поля, применяемой в эксперименте, частица выходит из исследуемой области, не совершив даже одного цикла, как это показано на рисунках 8 и 9.Завышенное же магнитное поле позволяет «удержать» ионы, получившиеся при диссоциации молекул, в области между электродами, и промоделировать их последующее дрейфовое движение. Сравнение же результатов реального эксперимента и численных расчётов, давшее достаточно хорошее согласие, показывает, что такой подход является вполне оправданным.

/

/ / \

/ / \

1

Ш5 -0 Ю28 -0 i\: -o 0114-5.7 <io-3 0 5.7* 10"3 0.0 114 iji: fn^ijii

v \ ; /

\ / /

** /

Рис. 8. Магнитное поле однородное

Fig. 8. The magnetic field is homogeneous

Заключение. Рассмотренный в данной статье пример демонстрирует возможность интеграции компьютерного моделирования в натурный эксперимент. Такой комплексный подход к организации демонстрационного эксперимента по физике в высшей школе, как показывает наша практика, является достаточно эффективным. Это подход включает в себя как подготовку непосредственно натурного эксперимента, для чего вполне можно привлекать в той или иной форме самих студентов, так и его компьютерное моделирование, а по возможности, и аналитическое описание. Всё это позволит глубже понять физику изучаемых явлений, уяснить различные тонкие моменты, поскольку для студентов педвузов, будущих учителей физики, просто пассивно «посмотреть» эксперимент и ограничиться его качественным объяснением, с нашей точки зрения, недостаточно. Что касается конкретного примера, рассмотренного в настоящей работе, то здесь нужно пояснить следующее. С целью упрощения расчёты были проведены для движения частицы в вакууме. Использование такой упрощённой модели эксперимента обусловлено её доступностью для понимания и реализации большинством студентов, обучающихся по программам педагогических вузов. Более же реальная модель эксперимента представляет со-

Рис. 9. Магнитное поле неоднородное Fig. 9. The magnetic field is inhomogeneous

бой задачу, заключающуюся в описании движения вязкой жидкости (электролита) в заданной геометрии в стационарных электрическом и магнитном полях и в наиболее общей постановке представляет собой весьма сложную задачу магнитной гидродинамики. При ряде упрощающих предположений эта задача была рассмотрена авторами в публикации «Натурный эксперимент по вращению электролита в электрическом и магнитном полях и его аналитическое описание» [3].

Список литературы

1. Бобылев Ю.В., Грибков А.И., Романов Р.В. О применении виртуального демонстрационного и лабораторного эксперимента по физике в высшей школе // Научные ведомости Белгородского государственного университета. Серия: Гуманитарные науки. 2016. № 21(242). Выпуск 31, С.163-167.

2. Бобылев Ю.В., Грибков А.И., Романов Р.В. Демонстрация и моделирование движения заряженных частиц в магнитном и электрическом полях // Информационно-коммуникационные технологии преподавателя физики и преподавателя технологии: сборник материалов десятой Всероссийской научно-практической конференции: /отв. ред. Е.А. Смирнова. - Коломна: Государственный социально-гуманитарный университет. 2017. С.11-14.

3. Бобылев Ю.В., Грибков А.И., Романов Р.В. Натурный эксперимент по вращению элек-

тролита в электрическом и магнитном полях и его аналитическое описание // Вестник Адыгейского государственного университета. серия 4: естественно-математические и технические науки, 2018. №1. С.59-67.

4. Бобылев Ю.В., Панин В.А., Романов Р.В., Тюрина М.О. Использование компьютерного моделирования при изучении движения заряженных частиц в стационарных неоднородных магнитных полях // Физическое образование в ВУЗах. 2016. Т.22. №4. С.102-114.

5. Богатырева Ю.И., Шахаева Д.В. О применении виртуального эксперимента по физике в основной школе // Научные ведомости Белгородского государственного университета. Серия: Гуманитарные науки. 2016. № 7 (228). Выпуск 29. С. 191-197.

6. Бочарова Т.А., Романов Р.В. Демонстрация движения заряженных частиц в магнитном поле // Новации и традиции в преподавании физики: от школы до ВУЗа: тезисы докладов V-ой Международной научно-практической конференции, Тула, 5-6 ноября 2015 г. Тула: Изд-во ТГПУ им. Л.Н. Толстого. 2015. С.37-39.

7. Вращение электролита [электронный ресурс]. - URL: https: //www .youtube.com/watch?v=Icv3 Zrkl 1EM& list=PL9ic5Fm tDXlvdibwxvL OQ 3HRytboTK (дата обращения: 20.09.2018)

8. Кройтор Р.В. Патент на изобретение «Учебный прибор для демонстрации движения ионов электролита в магнитном поле» [электронный ресурс]. - URL: http://patents.su/3-1027754-uchebnyij-pribor-dlya-demonstracii-dvizheniya-ionov-ehlektrolita-v-magnitnom-pole.html (дата обращения: 20.09.2018)

9. Лекционные демонстрации по физике / под ред. В.И. Ивероновой. М.: Наука. 1972. 572 с.

10.Чен Ф. Введение в физику плазмы. М.: Мир. 1987. 400 с.

11. Butcher J. (2005), Runge-Kutta methods for ordinary differential equations, The University of Auckland, New Zealand, Kyushu University, -URL

https: //www .math.auckland.ac .nz/~butcher/CONFE RENCES/JAPAN/KYUSHU/kyushu-slides.pdf (дата обращения: 20.09.2018)

12. Chen F.F., Chang J.P. (2002), Lecture notes on Principles of plasma processing, Kluwer, 249.

13. Rotation of liquid mercury generated by a magnetic field, - URL https://www.youtube.com/watch?time_continue=11 1&v=kt-n8N kqto (дата обращения: 20.09.2018)

14. Runge-Kutta 4th Order Method to Solve Differential Equation, — URL https: //www .geeksforgeeks.org/runge -kutta-4th-order-method-solve-differential-equation/ (дата обращения: 20.09.2018)

15. Shukla P.K., Mamun A.A. (2002), Introduction to Dusty Plasma Physics, IoP Publishing, London, 271.

16.Water rotating in a magnetic field, —

URL

https://www.youtube.com/watch?time continue=11 1&v=kt-n8N kqto (дата обращения: 20.09.2018)

References

1. Bobylev, Yu.V., Gribkov, A.I. and Romanov R.V. (2016), "About the useof the virtual demonstration and laboratory experiment in physics in high school", Nauchnyye vedomosti Belgo-rodskogo gosudarstvennogo universiteta. Seriya: Gumanitarnyye nauki, 2016, (242), 31, 163-167.

2. Bobylev, Yu.V., Gribkov, A.I. and Romanov, R.V. (2017), "Demonstration and simulation of motion of charged particles in the magnetic and electric fields", Informatsionno-kommunikatsionnyye tekhnologii prepodavatelya fiziki i prepodavatelya tekhnologii: sbornik materi-alov desyatoy Vserossiyskoy nauchno-prakticheskoy konferentsii Ed. E.A. Smirnova-Kolomna: State Socio-humanitarian University, 11-14.

3. Bobylev, Yu.V., Gribkov, A.I. and Romanov, R.V. (2018), "Field experiment on the rotation of the electrolyte in the electric and magnetic fields and its analytical description", Vestnik Ady-geyskogo gosudarstvennogo universiteta. seriya 4: yestestvenno-matematicheskiye i tekhnicheskiye nauki, 1, 59-67.

4. Bobylev, Yu.V., Panin, V.A., Romanov, R.V. and Tyurina, M.O. (2016), "The use of computer simulation in studying the movement of charged particles in stationary inhomogeneous magnetic fields", Fizicheskoye obrazovaniye v VUZakh, 22 (4), 102-114.

5. Bogatyreva Yu.I. and Shahaeva A.I. (2016), "About the application of virtual experiment in physics in the secondary school Scientific statements", Nauchnyye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Gumanitarnyye nauki, 7 (228). 29, 191-197.

6. Bocharova T.A. and Romanov R.V. (2015), "Demonstration of the movement of charged particles in a magnetic field", Novatsii i traditsii v prepodavanii fiziki: ot shkoly do VUZa: tezisy dokladov V-oy Mezhdunarodnoy nauchno-prakticheskoy konferentsii, 37-39.

7. Rotation of the electrolyte, - URL: https: //www .youtube.com/watch?v=Icv3 Zrkl 1EM& list=PL9ic5Fm tDXlvdibwxvL OQ 3HRytboTK( Accessed 20 September 2018)

8. Croitor R.V. (1983), Training device for demonstrating the movement of ions in the electrolyte in magnetic field, Pat.№1027754. - URL: http://patents .su/3-1027754-uchebnyjj -pribor-dlya-demonstracii-dvizheniya-ionov-ehlektrolita-v-magnitnom-pole.html(Accessed 20 September 2018)

9. Iveronovoj, V.I. Lektsionnyye demon-stratsii po fizike [Lecture demonstrations in physics] (1972), ed., Nauka, Moscow, Russia.

10. Chen F. (1987), Vvedeniye v fiziku plazmy [Introduction to plasma physics], Mir, Moscow, Russia.

11. Butcher J. (2005), Runge-Kutta methods for ordinary differential equations, The University of Auckland, New Zealand, Kyushu University, - URL https: //www .math.auckland.ac .nz/~butcher/CONFE RENCES/JAPAN/KYUSHU/kyushu-slides.pdf(Accessed 20 September 2018)

12. Chen F.F., Chang J.P. (2002), Lecture notes on Principles of plasma processing, Kluwer, 249.

13. Rotation of liquid mercury generated by amagnetic field, — URL https://www.youtube.com/watch?time continue=11 1&v=kt-n8N_kqto(Accessed 20 September 2018)

14. Runge-Kutta 4th Order Method to Solve Differential Equation, - URL https://www.geeksforgeeks.org/runge-kutta-4th-order-method-solve-differential-equation/(Accessed 20 September 2018)

15. Shukla P.K., Mamun A.A. (2002), Introduction to Dusty Plasma Physics, IoP Publishing, London, 271.

16. Water rotating in a magnetic field, -

URL

https://www.youtube.com/watch7time continue=11 1&v=kt-n8N kqto (Accessed 20 September 2018)

Информация о конфликте интересов: авторы не имеют конфликта интересов для декларации.

Conflicts of Interest: the authors have no conflict of interests to declare.

Данные авторов:

Бобылев Юрий Владимирович, доктор физико-математических наук, профессор кафедры общей и теоретической физики, доцент Грибков Александр Иванович, кандидат физико-математических наук, доцент кафедры общей и теоретической физики, доцент Романов Роман Васильевич, кандидат физико-математических наук, доцент кафедры общей и теоретической физики, доцент

About the authors:

Bobylev Yuriy Vladimirovich, Doctor of Physics and Mathematical Sciences, Professor of the Department of General and Theoretical Physics, Associate Professor

Gribkov Alexander Ivanovich, Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of General and Theoretical Physics, Associate Professor Romanov Roman Vasilievich, Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of General and Theoretical Physics, Associate Professor

i Надоели баннеры? Вы всегда можете отключить рекламу.