Научная статья на тему 'Комплекс автоматизированного проектирования геотехнических сооружений "каппа"'

Комплекс автоматизированного проектирования геотехнических сооружений "каппа" Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
78
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Комплекс автоматизированного проектирования геотехнических сооружений "каппа"»

3. Zlatareva N. P. A refinement framework to support validation and maintenance of knowledge-based systems. (Основы фильтрации для обеспечения проверки достоверности и ведения систем баз знаний) //Expert Systems with Applications 15, 1998, 245-252.

4. Zakharov V.N., Stefanyuk T.A. Knowledge Base Update in the Decision Making Process. (Обновление базы знаний в процессе принятия решений) //Abstracts of 3rd Moscow International Conference On Operations Research (ORM 2001), Moscow, 2001, p.128.

КОМПЛЕКС АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ГЕОТЕХНИЧЕСКИХ СООРУЖЕНИЙ "КАППА"

А.В. Осокин

Автоматизированному проектированию стало уделяться заслуженно больше внимания, нежели ранее. Причиной тому неподдельная заинтересованность в росте производительности труда проектировщиков.

Сегодня речь пойдет о комплексе "КАППА" -российском продукте, созданном в Уфимском государственном нефтяном техническом университете. Комплекс предназначен для расчета широкого диапазона геотехнических сооружений: автодорог, каналов, причалов, дамб, набережных, береговых опор мостов, дорожных насыпей и хранилищ, в которых используются геосинтетические (ГС) материалы.

Необходимость разработки комплекса обоснованна тем, что российские строительные САПР не имеют возможности моделирования подобного анизотропного материала, а приобретение зарубежных универсальных комплексов не всегда оправдывается экономически.

В основу комплекса положен анализ геотехнических сооружений методом конечных элементов. Времена, когда инженер-геотехник занимался составлением малопонятных таблиц чисел, безвозвратно миновали, как и времена диалогового режима, когда после заполнения многочисленных окон и диалогов на экране отображалось совсем не то, что надо, и все приходилось делать заново. Настала эра графического интерфейса с простым и легким использованием мыши. Но поскольку комплекс носит утилитарный характер, в процессе разработки концепции САПР решено было использовать огромные графические возможности AutoCAD2000 фирмы Autodesk Inc. (США).

Метод конечных элементов предполагает нанесение на все сооружение конечно-элементной сети. Хорошо известно, что от качества ее нанесения зависит точность проводимой аппроксимации. Теоретически конечный элемент (КЭ) может быть любой формы, однако поскольку слои ГС располагаются строго горизонтально или вертикально, был разработан изопараметрический четырехугольный КЭ произвольной формы. Изопарамет-

рическим он называется по причине равенства узловых точек и сторон КЭ, а следовательно, функций формы этих сторон.

Практически дифференцирование уравнений функций формы и вывод матрицы жесткости может быть выполнен вручную, но автором для этой цели был использован пакет Maple V Release 4 фирмы Waterloo Maple (Канада). Преимущества использования пакета символьной математики становятся очевидными, когда встает вопрос о выборе между моно- и полиэлементным типом конечно-элементной модели (КЭМ). Кроме того, в процессе работы было неоспоримо доказано, что удобства разработки КЭ по СОМ-технологии толкают к созданию новой комбинированной КЭМ. В действительности КЭМ удобнее составлять из одинаковых элементов, имеющих идентичные порядки матриц жесткости. И хотя грунт и геоткань должны быть представлены моделями сплошного тела и стержня соответственно, решено было разработать комбинированный КЭ. У такой КЭМ появляются задатки моноэлементной КЭМ, но она остается полиэлементной. В случае отсутствия ГС материала в возможных положениях в КЭ производится суммирование нулевой матрицы с общей матрицей жесткости КЭ и, следовательно, жесткость ГС не учитывается.

Следующее преимущество СОМ-технологии было выявлено при разработке интерфейса графического ввода/вывода. Так, оказалось нерационально хранить данные о свойствах грунта, заделках, внутренних и внешних усилиях, действующих на сооружение, в графической базе данных (ГБД) AutoCAD разрозненно. В самом деле, для отыскания необходимого параметра потребуется ввести отдельные циклы по нумерации степеней свободы для каждого элемента расчетной схемы, что увеличивает затраты времени при работе с системой. При использовании единого объекта (под объектом в программировании понимается совокупность данных и методов манипулирования этими данными) прочностные, фильтрационные свойства грунта, данные о четырех координатах

узлов, действующие усилия и наложенные закрепления хранятся совместно, что значительно поднимает производительность комплекса.

К недостаткам комплекса следует отнести его способность решать задачи лишь в плоской постановке. Возможность пространственного проекти-

рования геосооружений станет объектом приложения дальнейших усилий.

Более подробно о программном комплексе «КАППА2000» можно узнать, посетив сайт www.kappasoft.narod.ru или написав письмо по адресу ugntu(u>mail.ru.

НОВЫЙ ПОДХОД К ПРОБЛЕМЕ КОЛЛЕКТИВНОГО ВЫБОРА НА БАЗЕ УДОВЛЕТВОРЕНИЯ ВЗАИМНЫХ

ТРЕБОВАНИЙ СТОРОН

(Работа выполнена при поддержке РФФИ, проект № 01-01-00043 и РГНФ, проект № 01-02-20002 а/в)

О.Н. Андрейчикова

Индивидуальный выбор иногда определяется не только предпочтениями лица, принимающего решение (ЛПР), но и требованиями, которые предъявляются альтернативами к выбирающей стороне. Примерами могут служить задачи выбора спутника жизни, выбор производственных партнеров для предприятия, квартирный обмен, поиск применения новому химическому соединению или техническому устройству и т.д. Такие задачи будем называть задачами с двухсторонними требованиями. На практике задачи принятия решений (ЗПР) с двухсторонними требованиями часто сводят к традиционным задачам путем добавления критериев, характеризующих требования выбираемых альтернатив. Например, все технические системы предъявляют определенные требования к условиям их эксплуатации, которые в традиционных задачах учитываются с помощью критериев эксплуатационные свойства, устойчивость к механическим повреждениям и т.п. Высокие оценки по критериям такого типа соответствуют низким требованиям альтернатив к ЛПР и наоборот.

Весьма распространенным является подход, когда требования выбираемой стороны учитываются в форме ограничений, накладываемых на параметры задачи. Так, подбирая банк для обслуживания предприятия, требования банка к величине основных фондов предприятия учитываются в форме ограничения на рассматриваемые альтернативы. Если требования банка к размеру основных фондов не выполняются, то эта альтернатива отвергается.

Сведение двухсторонних задач к традиционным постановкам приводит к отсеиванию альтернатив, предъявляющих высокие требования к выбирающей стороне. Такой подход правомерен в случае предъявления невыполнимых требований. Однако если выбирающая сторона располагает ресурсами для совершенствования, то не следует от-

вергать альтернативы, к нему побуждающие. Например, при проектировании виброзащитных систем для транспортных средств пневматический гаситель колебаний часто отвергается из-за низкой устойчивости к механическим повреждениям, хотя он обладает высоким качеством виброзащиты, хорошей технологичностью, энергетическими и стоимостными характеристиками. Обеспечение защиты от возможных повреждений (например установка защитного кожуха) может сделать эту альтернативу оптимальной.

Для решения двухсторонних ЗПР предлагается новый подход, в котором объекты (выбирающие и выбираемые) описываются наборами свойств и требований. Удовлетворение требований оценивается с помощью вычисляемых мер сходства. Задача бинарного синтеза (подбор пары объектов, наилучшим образом удовлетворяющих требованиям друг друга) решается на основе выбранного принципа компромисса.

Распределение объектов двух различных множеств по парам, обладающее определенными свойствами, рассматривается в многокритериальной задаче о назначениях. Задачи, которые исследуются в данной работе, отличаются тем, что 1) результатом является не «лучшее распределение назначений (пар)», а выявление одной или нескольких лучших пар; 2) новый объект может формироваться из элементов двух и более множеств.

Пусть Л={Л1, А2, ..., Лп} и Б={Б1, В2, ..., Вт} -

множества объектов, из которых нужно синтезировать новый объект ЛБ. Каждый из объектов Ль 1=1, ..., п и В^ ]=1, ..., т описывается набором свойств РЛ1, Рщ и набором требований КЛ1, Кщ. Информация о свойствах и требованиях объектов может быть представлена дескрипторами, количественными оценками и нечеткими множествами. Для каждого из объектов множества Б объекты

i Надоели баннеры? Вы всегда можете отключить рекламу.