Научная статья на тему 'Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК'

Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК Текст научной статьи по специальности «Клиническая медицина»

CC BY
1579
157
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НОВОРОЖДЕННЫЕ ДЕТИ / МИТОХОНДРИАЛЬНОЕ ЗАБОЛЕВАНИЕ / СИНДРОМ ИСТОЩЕНИЯ МТДНК 13-ГО ТИПА / ЭНЦЕФАЛОМИОПАТИЯ / ЛАКТАТ-АЦИДОЗ / НЕОНАТАЛЬНАЯ МАНИФЕСТАЦИЯ / ГЕН FBXL4 / NEWBORNS / MITOCHONDRIAL DISORDER / 13 TYPE MTDNA DEPLETION SYNDROME / ENCEPHALOMYOPATHY / LACTIC ACIDOSIS / NEONATAL MANIFESTATION / FBXL4 GENE

Аннотация научной статьи по клинической медицине, автор научной работы — Дегтярева А. В., Степанова Е. В., Иткис Ю. С., Дорофеева Е. И., Нароган М. В.

Представлено клиническое наблюдение ребенка с ранней неонатальной манифестацией редкого наследственного заболевания синдрома истощения митохондриальной ДНК (мтДНК) 13-го типа, подтвержденного лабораторно в России. Мутации в гене FBXL4 являются причиной нарушения репликации мтДНК и снижения активности комплексов дыхательной цепи митохондрий, следствием чего служит нарушение функционального состояния различных органов и систем, в первую очередь мышечной системы и головного мозга. Антенатально у ребенка был диагностирован гидронефроз справа, субэпендимальные кисты головного мозга, частичная кишечная непроходимость на фоне многоводия. Состояние резко ухудшилось к концу первых суток жизни. Отмечался клинический симптомокомплекс сепсиса, выраженный синдром угнетения, мышечной гипотонии, декомпенсированный метаболический лактат-ацидоз, повышение концентрации митохондриальных маркеров в плазме крови и моче, а также изменения в области базальных ганглиев головного мозга. Дифференциальный диагноз проводился с наследственными заболеваниями, протекающими по типу «сепсисподобного» симптомокомплекса с лактат-ацидозом: группа нарушений обмена аминокислот, органических кислот, дефектов ß-окисления жирных кислот, болезни дыхательной цепи митохондрий, гликогеновая болезнь. Синдром истощения мтДНК 13-го типа имеет неблагоприятный прогноз, однако точная диагностика имеет исключительно важное значение для медико-генетического консультирования и позволяет предотвратить повторное рождение больного ребенка в семье.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по клинической медицине , автор научной работы — Дегтярева А. В., Степанова Е. В., Иткис Ю. С., Дорофеева Е. И., Нароган М. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Clinical case of Mitochondrial DNA Depletion

The article reports clinical case of early neonatal manifestation of a rare genetic disease mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA), ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It’s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby’s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis, increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI) demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis: a group of metabolic disorders of amino acids, organic acids, ß-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing). Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

Текст научной работы на тему «Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК»

Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК

А.В. Дегтярева1,3, Е.В. Степанова1, Ю.С. Иткис2, Е.И. Дорофеева1, М.В. Нароган1,3, Л.В. Ушакова1, А.А. Пучкова1, В.Г. Быченко1, П.Г. Цыганкова2, Т.Д. Крылова2, И.О. Бычков2

1ФГБУ «Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава РФ, Москва;

2ФГБНУ «Медико-генетический научный центр», Москва;

3ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ, Москва, Россия

Clinical case of Mitochondrial DNA Depletion

A.V. Degtyareva1,3, E.V. Stepanova1, Yu.S. Itkis2, E.I. Dorofeeva1, M.V. Narogan1,3,

L.V. Ushakova1, A.A. Puchkova1, V.G. Bychenko1, P.G. Tsygankova2, T.D. Krylova2, I.O. Bychkov2

1«Research Center for Obstetrics, Gynecology and Perinatology» Ministry of Healthcare of the Russian Federation 2FSBI «Research Center for Medical Genetics»

3First Moscow state medical University I.M. Sechenov of Ministry of Healthcare

Представлено клиническое наблюдение ребенка с ранней неонатальной манифестацией редкого наследственного заболевания — синдрома истощения митохондриальной ДНК (мтДНК) 13-го типа, подтвержденного лабораторно в России. Мутации в гене FBXL4 являются причиной нарушения репликации мтДНК и снижения активности комплексов дыхательной цепи митохондрий, следствием чего служит нарушение функционального состояния различных органов и систем, в первую очередь мышечной системы и головного мозга. Антенатально у ребенка был диагностирован гидронефроз справа, субэпендимальные кисты головного мозга, частичная кишечная непроходимость на фоне многоводия. Состояние резко ухудшилось к концу первых суток жизни. Отмечался клинический симптомокомплекс сепсиса, выраженный синдром угнетения, мышечной гипотонии, декомпенсированный метаболический лактат-ацидоз, повышение концентрации митохондриальных маркеров в плазме крови и моче, а также изменения в области базальных ганглиев головного мозга. Дифференциальный диагноз проводился с наследственными заболеваниями, протекающими по типу «сепсисподобного» симптомокомплекса с лактат-ацидозом: группа нарушений обмена аминокислот, органических кислот, дефектов р-окисления жирных кислот, болезни дыхательной цепи митохондрий, гликогеновая болезнь. Синдром истощения мтДНК 13-го типа имеет неблагоприятный прогноз, однако точная диагностика имеет исключительно важное значение для медико-генетического консультирования и позволяет предотвратить повторное рождение больного ребенка в семье.

Ключевые слова: новорожденные дети, митохондриальное заболевание, синдром истощения мтДНК 13-го типа, энцефало-миопатия, лактат-ацидоз, неонатальнаяманифестация, генFBXL4.

Для цитирования: Дегтярева А.В., Степанова Е.В., Иткис Ю.С., Дорофеева Е.И., Нароган М.В., Ушакова Л.В., Пучкова А.А., Быченко В.Г., Цыганкова П.Г., Крылова Т.Д., Бычков И.О. Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК. Рос вестн перинатол и педиатр 2017; 62:(5): 55-62. DOI: 10.21508/1027-4065-2017-62-5-55-62

Abstract: The article reports clinical case of early neonatal manifestation of a rare genetic disease — mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA), ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It's a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby's condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis, increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI) demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis: a group of metabolic disorders of amino acids, organic acids, p-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing). Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

Key words: newborns, mitochondrial disorder, 13 type mtDNA depletion syndrome, encephalomyopathy, lactic acidosis, neonatal manifestation, FBXL4 gene.

For citation: Degtyareva A.V., Stepanova E.V., Itkis Yu.S., Dorofeeva E.I., Narogan M.V., Ushakova L.V., Puchkova A.A., Bychenko V.G., Tsygankova P.G., Krylova T.D., Bychkov I.O. Clinical case of FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion. Ros Vestn Perinatal i Pediatr 2017; 62:(5): 55-62 (in Russ). DOI: 10.21508/1027-4065-2017-62-5-55-62

Митохондрии представляют собой сложные орга-неллы, которые играют ключевую роль в гоме-остазе клетки [1]. Они являются основным источником синтеза внутриклеточной энергии в виде молекул АТФ, тесно вовлечены в процессы кальциевого и свободнорадикального обмена, а также участвуют в апоптозе. Ткани и органы, особенно зависимые от этих функций, первыми страдают при митохон-дриальных болезнях — больше всего это сказывается на мышечной ткани, нервной и эндокринной системах [2]. Большинство митохондриальных заболеваний имеют прогрессирующий характер, приводят к инвалидности и преждевременной смерти. Эти болезни относят к редким, с частотой распространенности 1—1,5: 5000—10 000 новорожденных [3, 4]. Митохондриальные заболевания могут развиться в любом возрасте. Около 30% случаев манифестируют в неонатальном периоде [5, 6].

Согласно генетической классификации, митохон-дриальные болезни разделяют на следующие группы: 1) заболевания, вызванные точковыми мутациями ми-тохондриальной ДНК (мтДНК) — синдромы MELAS, MERRF, LHON, NARP, имеющие материнское наследование; 2) заболевания, обусловленные единичными крупными перестройками мтДНК — синдромы Кирнса—Сейра, Пирсона; 3) болезни, связанные с мутациями в ядерных генах структурных белков

© Коллектив авторов, 2017

Адрес для корреспонденции: Дегтярева Анна Владимировна — д.м.н., зав. по клинической работе отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, проф. кафедры неонатологии Первого Московского государственного медицинского университета имени И.М. Сеченова, ORCID 0000-0003-0822-751X Степанова Екатерина Владимировна — ординатор Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова Дорофеева Елена Игоревна — к.м.н., зав. по клинической работе отделения хирургии новорожденных отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Нароган Марина Викторовна — д.м.н., вед. научн. сотр. отделения патологии новорожденных и недоношенных детей отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, проф. кафедры неонатологии Первого Московского государственного медицинского университета имени И.М. Сеченова Ушакова Любовь Витальевна — к.м.н., врач-невролог научно-консультативного педиатрического отделения отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Пучкова Анна Александровна — к.м.н., зав. по клинической работе научно-консультативного педиатрического отделения отдела неонатоло-гии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Быченко Владимир Геннадьевич — к.м.н., зав. отделением лучевой диагностики Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова 117997 Москва, ул. академика Опарина, д. 4

Иткис Юлия Сергеевна — научный сотрудник Медико-генетического научного центра

Крылова Татьяна Дмитриевна — врач-лабораторный генетик Медико-генетического научного центра

Бычков Игорь Олегович — аспирант Медико-генетического научного центра 115478 Москва, ул. Москворечье, д.1

дыхательной цепи митохондрий, — синдром Ли, младенческие энцефаломиопатии, наследующиеся ауто-сомно-рецессивно или Х-сцепленно; 4) болезни, связанные с мутациями в ядерных генах белков-переносчиков и сборщиков комплексов дыхательной цепи митохондрий, — синдром Ли, младенческие энцефа-ломиопатии, наследующиеся аутосомно-рецессивно или Х-сцепленно; 5) заболевания, связанные с мутациями в ядерных генах, ответственных за биогенез мтДНК, — синдромы истощения мтДНК с аутосом-но-рецессивным типом наследования.

Одним из биохимических маркеров митохондри-альных болезней является высокий уровень лактата в крови [3, 5, 7]. В комплекс первой линии обследований при подозрении на эту патологию входит определение содержания аминокислот, ацилкарнитинов и органических кислот в крови и моче [8, 9]. Недавно была показана высокая информативность определения концентрации фактора роста фибробластов-21 (FGF-21) и ростового фактора дифференцировки-15 (GDF-15) в плазме крови [10], однако эффективность этих биомаркеров для диагностики отдельных групп митохондриальных болезней по-прежнему исследуется различными группами ученых [9, 11, 12]. Окончательный диагноз митохондриального заболевания устанавливается на основании результата мо-лекулярно-генетического анализа.

В настоящее время не существует эффективных методов лечения митохондриальных болезней. Симптоматическая терапия основана на использовании метаболических препаратов, таких как коэнзим Q10, креатин моногидрат, рибофлавин, идебенон, кар-нитин, тиамин, дихлорацетат и др. Также следует уделять особое внимание питанию ребенка; рекомендован переход на низкобелковую диету с использованием в рационе большого количества жиров. Противопоказано использование препаратов валь-проевой кислоты и барбитуратов [3, 7].

Синдромы истощения мтДНК представляют собой клинически и генетически гетерогенную группу заболеваний, наследуемых по аутосомно-рецессив-ному типу и вызванных мутациями в генах, поддерживающих биогенез и целостность мтДНК [13, 14]. При таких нарушениях происходит снижение числа копий мтДНК в пораженных тканях без ее структурного повреждения. Клинически выделяют три формы заболеваний, связанных со снижением ко-пийности мтДНК: энцефаломиопатическую, ми-опатическую и гепатоцеребральную. Известно 20 генов, мутации которых ведут к синдромам истощения мтДНК: ABAT, AGK, C10ORF2 (TWINKLE), DGUOK, DNA2, FBXL4, MFN2, MGME1, MPV17, OPA1, POLG, POLG2, RNASEH1, RRM2B, SLC25A4, SUCLA2, SUCLG1, TFAM, TK2, TYMP [15]. В Российской Федерации в лаборатории наследственных болезней обмена веществ Медико-генетического научного центра были диагностированы у 36 пациентов

синдромы истощения мтДНК с мутациями в генах POLG и TWINKLE (энцефаломиопатическая и гепа-тоцеребральная формы), DGUOK и MPV17 (гепато-церебральная форма), что составило существенную долю от всех ранних форм митохондриальных заболеваний [16, 17].

Синдром истощения мтДНК 13-го типа (MIMhttp://omim.org/entry/615471 615471) вызван мутациями в гене FBXL4, локализованном в локу-се 6q16.1-q16.27 [18]. Впервые данное нарушение описано в 2013 г. P.E. Bonnen и X. Gai независимо друг от друга [18, 19]. В настоящее время в мире известно 26 клинических наблюдений [8, 20—22]. Ген FBXL4 кодирует белок (F-box and leucine-rich repeat 4 protein), являющийся одной из субъединиц убик-витинпротеинлигазного комплекса, который играет важную роль в процессе разрушения дефектных белков в клетке, в том числе в митохондриях [23]. Точная функция данного белка неизвестна, но на культурах клеток было показано, что в поврежденных митохондриях снижается синтез АТФ и нарушается репликация мтДНК, что приводит в конечном счете к снижению ее копий в тканях и нарушению работы дыхательной цепи митохондрий [24].

В большинстве случаев синдром истощения мтДНК 13-го типа манифестирует в раннем неона-тальном периоде, однако описаны наблюдения более поздней манифестации в возрасте до 24 мес [18—20]. Заболевание характеризуется энцефалопатией, гипотонией, лактат-ацидозом, грубой задержкой развития и изменениями в области базальных ганглиев при магнитно-резонансной томографии (МРТ) головного мозга. По данным M. Huemer и соавт. [20], у пациентов с мутациями в гене FBXL4 отмечаются такие фе-нотипические признаки, как узкое и длинное лицо, выступающий лоб, густые брови, узкие глазные щели, широкая переносица, седловидный нос.

Прогноз является крайне неблагоприятным, большинство детей умирают в первые 4 года жизни. Установление диагноза заболевания имеет большую значимость для медико-генетического консультирования и возможной пренатальной диагностики [9, 24].

Цель данной публикации — клиническое описание первого российского случая митохондриально-го заболевания, обусловленного мутациями в гене FBXL4, и определение основных критериев для диагностики синдромов истощения мтДНК в раннем детском возрасте.

Пациент и методы исследования

Девочка родилась и находилась под динамическим наблюдением в Научном центре акушерства, гинекологии и перинатологии им. В.И. Кулакова. Проводилось комплексное клинико-лабораторное и инструментальное обследование. Некоторые биохимические и молекулярно-генетические исследования осуществлены в лаборатории наследственных

болезней обмена веществ Медико-генетического научного центра. Органические кислоты в моче анализировались методом газовой хроматографии с масс-спектрометрической детекцией в виде три-метилсилиловых эфиров. Пробоподготовка проводилась по методу, предложенному M. Lefevere [25]. Анализ выполнялся на приборе 7890А/5975С (Agilent Technologies, США) с колонкой НР-5МS (30м*0,25мм*4мкм). Расчет полученных результатов осуществляли методом внутреннего стандарта. Концентрацию митохондриальных маркеров FGF-21 и GDF-15 в плазме крови измеряли с помощью наборов на основе метода иммуноферментного анализа фирмы Biovendor (Czech Republic).

ДНК выделяли из цельной крови наборами фирмы Isogene (Россия) по протоколу производителя. Секвенирование 62 ядерных митохондриальных генов проведено методом NGS (Next Generation Sequencing) на приборе Ion Torrent PGM™ System for Next-Generation Sequencing (Life Technologies, Thermo Fisher Scientific). Пробоподготовка образцов ДНК проводилась набором реагентов Ion AmpliSeq™ Library Kit 2.0 (дизайн пула праймеров по технологии Ampliseq) согласно протоколу производителя. Визуализация выравнивания секвенируемых фрагментов на референсную последовательность генома человека Human.hg19 проведена в программе IGV. Обнаруженные изменения аннотировались с помощью программы ANNOVAR. Предсказательная функциональная значимость не описанных ранее мутаций оценивалась по различным программам со свободным доступом (PolyPhen2, Mutation taster, SIFT). Выявленные варианты фильтровались по частоте встречаемости в популяциях по данным, представленным в открытых базах ExAc, 1000 genomes и др. Нуклеотидные замены, отличные от референсной последовательности, анализировались по базам данных по мутациям и полиморфизмам (HGMD, Ensemble, dbSNP). Верификацию выявленных в гене FBXL4 мутаций проводили методом прямого автоматического секвениро-вания на генетическом анализаторе ABI3500 (Thermo Fisher Scientific) с использованием BigDye Terminator v.1.1 (Thermo Fisher Scientific). Для полимеразной цепной реакции (ПЦР) использовали специфические олигонуклеотидные праймеры (последовательность доступна по запросу). Выравнивание и сравнение данных проведено в соответствии с транскриптом NM_012160.

Клиническое наблюдение

Ребенок родился в срок у соматически здоровой женщины с отягощенным акушерско-гинекологиче-ским и инфекционным анамнезом. Брак не родственный. В семье есть один здоровый ребенок. Беременность протекала с обострением сальпингоофорита в I триместре, пульпитом с повышением температуры до 38°С, завершилась самостоятельными родами.

Ребенок родился с массой тела 2555 г, длиной 49 см, оценкой по шкале Апгар 8/9 баллов. Антенатально был диагностирован гидронефроз справа, субэпенди-мальные кисты головного мозга и частичная кишечная непроходимость на фоне многоводия. Первые часы жизни имели характер «периода относительного благополучия», однако, учитывая антенатально выявленную патологию, ребенок был переведен в отделение хирургии, реанимации и интенсивной терапии новорожденных для обследования.

К концу первых суток жизни состояние резко ухудшилось, наблюдался выраженный синдром угнетения, мышечная гипотония, ухудшение гемодинамики, дыхательные нарушения, потребовавшие проведения искусственной вентиляции легких. По кислотно-основному состоянию и газовому составу крови отмечался декомпенсированный метаболический лактат-ацидоз (pH 7,12; pCO2 12,6 мм рт.ст; pO2 71,9 мм рт.ст., BE —24,2 ммоль/л; лактат 19,0 ммоль/л). Исходя из данных анамнеза нельзя было исключить наличие инфекционного процесса, и ребенку была назначена антибактериальная и иммуномоделирую-щая терапия. В клиническом анализе крови отмечался лейкоцитоз со сдвигом формулы влево, снижение содержания гемоглобина, уровень тромбоцитов был в пределах нормативных значений (табл. 1).

При этом маркеры системной воспалительной реакции (С-реактивный белок и прокальцитонин) были отрицательными (0,24 мг/л и 10 нг/мл соответственно) и в ходе обследования не были выявлены очаги инфекции. С целью исключения врожденной пневмонии было проведено рентгенологическое исследование, по результатам которого не было обнаружено специфических изменений. На основании результатов люмбальной пункции был исключен менингит. Клинический анализ мочи тоже не выявил

Таблица 1. Показатели клинического анализа крови пациентки Table 1. The parameters of the clinical blood test of the patient

воспалительных изменений. Кроме того, были получены отрицательные результаты микробиологических посевов крови и мочи, соскоба из зева и серологического исследования на TORCH-инфекции.

В неврологическом статусе отмечался синдром выраженного угнетения, менингеальной симптоматики не было, наблюдалось непостоянное расходящееся косоглазие, выраженная диффузная мышечная гипотония. В терапию был подключен метаболический препарат меглюминат натрия сукцинат (Реам-берин) и стимулятор синтеза ацетилхолина и фосфа-тидилхолина — холина альфоссцерат (Холитилин). На фоне проводимого посиндромного лечения отмечалась положительная динамика, к 8-м суткам жизни ребенок был снят с респираторной терапии. По результатам клинического анализа крови воспалительные изменения купировались, маркеры воспаления С-реактивный белок и прокальцитонин оставались в пределах нормы. Однако у ребенка сохранялись признаки выраженной мышечной гипотонии, синдрома угнетения ЦНС и лактат-ацидоз (9,5 ммоль/л). Важно отметить, что уровень лактата ни разу не снижался до нормальных значений и носил волнообразный характер в течение всего периода пребывания в стационаре (рис. 1).

Расхождение между клиническими признаками сепсиса с выраженным декомпенсированным лак-тат-ацидозом, отрицательными маркерами системной воспалительной реакции и ответом на лечение явилось поводом заподозрить метаболическое нарушение. В спектр дифференциальной диагностики были включены заболевания, протекающие в нео-натальном периоде по типу «сепсисподобного» сим-птомокомплекса с лактат-ацидозом: группа нарушений обмена аминокислот, органических кислот, дефектов р-окисления жирных кислот, болезни ды-

Показатели 2-е сутки жизни Референсные значения (1-7-е сутки жизни) 8-е сутки жизни Референсные значения ( > 7 сут жизни)

Эритроциты, -1012/л 4,03 5,5-7,0 4,42 4,5-5,5

Гемоглобин, г/л 137 160-190 136 180-240

Гематокрит 40,9 0,41-0,56 38,1 0,41-0,56

Тромбоциты, -199/л 236 218-419 213 218-419

Лейкоциты, -109/л 49,11 5,0-30,0 11,72 8,5-14,0

Нейтрофилы, -109/л 27. 514 6- 20 4. 342 1,5 - 7,0

Нейтрофильный индекс 0,44 < 0,25 0,16 < 0,25

Палочкоядерные, % 16 5-12 6 1-5

Сегментоядерные, % 56 50-70 47 35-55

Эозинофилы, % 0 1-4 3 1-4

Моноциты, % 9 4-10 18 6-14

Лимфоциты, % 10 16-32 32 30-50

хательной цепи митохондрий и гли-когеновая болезнь I типа (болезнь Гирке) [9, 24]. Ребенку проводилась проба с кормлением, в основе лежит определение концентрации глюкозы и лактата в крови после голодной паузы и через 20—30 мин после кормления [3, 7]. По результатам данного исследования уровень глюкозы крови натощак был снижен, а уровень лактата повышен, после кормления отмечалось увеличение уровня глюкозы и выраженное нарастание лак-татемии (табл. 2).

В группу первой линии обследования были включены тесты, определяющие спектр аминокислот и ацилкарнитинов в крови и органических кислот в моче, а также плазменных митохон-дриальных биомаркеров FGF-21 и GDF-15. В крови было обнаружено повышенное содержание аланина, лейцина и орнитина (табл. 3). Спектр ацилкарнити-нов в крови был в пределах нормы, что позволило исключить заболевания из группы дефектов ß-окис-ления жирных кислот [3]. При исследовании мочи обнаружено повышение уровня лактата, фумаровой кислоты, 3-гидроксибутирата, пирувата, сукцината и 4-гидроксифенилпирувата (см. табл. 3). Данные изменения могут свидетельствовать о митохондриаль-

Таблица 2. Результаты проведения пробы с кормлением Table 2. Results of a sample with feeding

Рис. 1. Динамика концентрации лактата крови (в ммоль/л). Fig. 1. Dynamics of blood lactate concentration.

ном нарушении и фумаровой ацидурии [8, 26].

Проводилось молекулярно-генетическое исследование нуклеотидной последовательности гена FH, мутации которого обусловливают развитие фумаровой ацидурии [26]. Отклонений от нормы не обнаружено.

Концентрация митохондриальных маркеров FGF-21 и GDF-15 в плазме крови была повышена и составила 720 пг/мл (норма 0—330 пг/мл) и 15715 пг/мл (норма 0—2000 пг/мл) соответственно.

В возрасте 8 сут жизни ребенку проводилась МРТ головного мозга, по результатам которой было обнаружено симметричное поражение подкорковых ядер в виде кистозных изменений, что является высоко-

Показатель До еды Через 20-30 мин после еды

pH 7,36 7,34

BE, ммоль/л - 6,2 - 7,7

Глюкоза, ммоль/л 2,1 2,7

Лактат, ммоль/л 5,8 9.2

p CO2, мм рт.ст. 33,4 29,2

Таблица 3. Уровень аминокислот в крови и органических кислот в моче у пациентки Table 3. The level of patient's amino acids in the blood and organic acids in the urine

Показатель Нижняя граница нормы Верхняя граница нормы Значение у пациентки

Аминокислоты в крови, нмоль/л

Аланин 85 750 1139,327

Лейцин 35 300 405,533

Орнитин 29 400 409,205

Органические кислоты в моче, моль на моль креатинина

Лактат 0,00 25,00 82,9

Фумаровая кислота 0,00 2,00 274,2

3-гидроксибутират 0,00 3,00 18,2

Пируват 0,00 12,00 13,7

Сукцинат 0,50 16,00 103,4

4-гидроксифенилпируват 0,00 2,00 39,5

патогномоничным признаком митохондри-альных болезней. Также были выявлены последствия кровоизлияния в боковые желудочки мозга (рис. 2).

Учитывая клинико-лабораторный сим -птомокомплекс, заподозрили митохондри-альное заболевание из группы младенческих энцефаломиопатий. Методом таргетного секвенирования ребенку был проведен анализ кодирующей последовательности 62 ядерных генов, мутации в которых приводят к развитию митохондриальной патологии. В гене FBXL4 были выявлены две компаунд-гетерозиготные мутации c.A1694G:p. D565G (в 8-м экзоне) и c.627_633del:p.V209fs (в 4-м экзоне). Мутация c.A1694G:p.D565G

Рис. 2. МРТ головного мозга ребенка в возрасте 8 сут жизни. A — Т2 взвешенное изображение в аксиальной плоскости. Белыми стрелками показаны кисты по контурам боковых желудочков, являющиеся характерным признаком митохондриальных заболеваний. Красными стрелками находится в высококонсервативной области показаны продукты биодеградации гемоглобина в просвете желудочковой LRR (Leucine-Rich Repeat) домена и была системы (последствия внутрижелудочкового кровоизлияния).

Б — томограмма выполнена в режиме Flair в аксиальной плоскости. Белыми стрелками показаны кисты в паравентрикулярных областях и в проекции подкорковых ядер, что характерно для митохондриальных заболеваний. Fig. 2. MRI of the child's brain at the age of 8 days of life. A — Т2 weighted image in the axial plane. White arrows show cysts along the contours of the lateral ventricles, which are a characteristic feature of mitochondrial diseases. Red arrows show the products of biodegradation of hemoglobin in the lumen of the ventricular system (consequences of intraventricular hemorrhage). B — the tomogram is performed in the Flair in the axial plane. White arrows show cysts in paraventricular regions and in the projection of the subcortical nuclei, which is characteristic of mitochondrial diseases.

ранее описана в литературе [19]. Вторая мутация обнаружена впервые у нашей пациентки, и ее патогенность не вызывает сомнений, поскольку она приводит к сдвигу рамки считывания и образованию преждевременного стоп-кодона.

В возрасте 42 дней ребенок был выписан домой в состоянии средней степени тяжести. В катамнезе сохранялись признаки угнетения ЦНС, выраженная мышечная гипотония, тенденция к птозу, деком-пенсированный метаболический лактат-ацидоз, задержка психомоторного развития, дисфагия, монотонная плоская весовая кривая, частые рецидивирующие респираторные инфекции, что в дальнейшем привело к развитию полиорганной недостаточности и летальному исходу в возрасте 11 мес жизни.

Обсуждение

В нашем наблюдении антенатально были диагностированы гидронефроз справа, субэпендималь-ные кисты головного мозга и частичная кишечная непроходимость на фоне многоводия. Данная картина при проведении пренатальной ультразвуковой диагностики описана при мутациях в гене FBXL4 [6]. Приблизительно в 10% случаев многоводие возникает на фоне врожденных заболеваний [27], в том числе и наследственных заболеваний обмена веществ [28]. В наблюдении M. Van Rij и соавт. у пациента также было диагностировано выраженное мно-говодие в 30 нед внутриутробного развития и было обнаружено органическое поражение структуры головного мозга в виде гипоплазии мозжечка, субэ-пендимальных кист и расширения большой цистерны головного мозга [8]. О пренатальном выявлении субэпендимальных кист головного мозга сообщено и в наблюдении T. Baroy и соавт. [22]. При митохон-дриальных заболеваниях также описаны случаи пре-натальной диагностики гидронефроза [5, 8].

Состояние ребенка резко ухудшилось к концу 1-х суток жизни после периода «светлого промежутка», отмечался выраженный синдром угнетения, мышечная гипотония, дыхательные нарушения (потребовавшие проведения искусственной вентиляции легких), ухудшение гемодинамики, декомпенсиро-ванный метаболический лактат-ацидоз. Неонаталь-ная манифестация синдрома истощения мтДНК в более чем 80% случаев описана в виде выраженного синдрома угнетения, мышечной гипотонии, энцефалопатии, дисфагии с эпизодами срыгивания в сочетании с повышенным уровнем лактата и метаболическим ацидозом, возникающими после периода «светлого промежутка» [20, 28]. Патогенетически повышение уровня лактата связано с тем, что при функциональном нарушении дыхательной цепи изменяется окислительно-восстановительный баланс в цитоплазме, что приводит к нарушению функционирования цикла Кребса из-за избытка НАДН по отношению к НАД+. Этот процесс приводит к увеличению концентрации лактата, повышению молярного соотношения лактат/пируват и концентрации кетоновых тел в крови [5, 9]. Согласно данным литературы, уровень лактата у детей с синдромом истощения мтДНК 13-го типа составляет от 6,3 до 21 ммоль/л. Отмечается повышение уровня лак-тата в цереброспинальной жидкости [20]. Нормальное молярное соотношение лактат/пируват состав-

ляет <20, тогда как, по данным M. Van Rij и соавт., у детей с мутациями в гене FBXL4 этот показатель составил 71 [8]. У нашей пациентки уровень пирува-та не исследовался.

В нашем наблюдении гиперлактатемия являлась ведущей лабораторной характеристикой заболевания, однако этот признак не является высокоспецифичным. Причинами повышения концентрации лак-тата в крови также могут служить перинатальная асфиксия, врожденные пороки сердца, сепсис, заболевания печени и почек, дефекты р-окисления жирных кислот, органические ацидурии, нарушение метаболизма биотина, углеводного обмена и др., что представляет большие трудности для ранней диагностики патологии [9, 24, 28].

При обследовании пациента наблюдалось несоответствие между клиническими признаками инфекционного процесса с декомпенсированным лактат-ацидозом и отрицательными маркерами системной воспалительной реакции в сочетании с отсутствием очагов инфекции и бактериемии. На фоне посин-дромной терапии отмечалось некоторое улучшение состояния ребенка, но при этом сохранялись неврологические нарушения и выраженный лактат-ацидоз, что позволило заподозрить метаболическое заболевание. При исследовании спектра аминокислот была выявлена повышенная концентрация аланина, лейцина и орнитина, что часто обнаруживают при лактат-ацидозе. Уровень лактата в моче, а также метаболитов цикла Кребса (фумаровой кислоты, пирувата, сукци-ната) был значительно повышен, что также характерно для ряда митохондриальных заболеваний. Схожие изменения органических кислот в моче были описаны M.C. Van Rij и соавт. в клиническом наблюдении ре-

бенка с синдромом истощения мтДНК 13-го типа [8].

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

У нашей пациентки концентрация FGF-21 в плазме превышала верхнюю границу нормы в 2 раза, а концентрация GDF-15 — более чем в 7 раз. Эти данные соответствуют недавним публикациям о том, что GDF-15 является более чувствительным маркером митохондриальной патологии. При гепато-церебральных формах синдрома истощения мтДНК уровень обоих маркеров повышается в среднем в 15 раз выше границы нормы [10, 27, 29]. В возрасте 8 сут жизни ребенку проводилась МРТ головного мозга, на которой были обнаружены высокоспецифичные признаки энцефаломиопатической формы митохон-дриального заболевания: симметричные поражения подкорковых ядер в виде кистозных изменений [30].

Таким образом, в настоящей работе представлено наблюдение пациентки с неонатальной манифестацией митохондриального заболевания — синдромом истощения мтДНК 13-го типа, обусловленным мутациями в гене FBXL4. Первые признаки заболевания были неспецифичными и имели характер сепсиспо-добного симптомокомплекса, появившегося после периода светлого промежутка в состоянии ребенка. Отмечался выраженный синдром угнетения, мышечной гипотонии, а также стойкий лактат-ацидоз, повышение уровня митохондриальных биомаркеров FGF-21 и GDF-15 в плазме крови и симметричные поражения в подкорковых структурах на МРТ головного мозга. В настоящее время не существует патогенетического лечения синдрома истощения мтДНК, но выявление генотипа пациента дает основание для проведения пренатальной диагностики, которая поможет предотвратить повторное рождение больного ребенка в семье.

ЛИТЕРАТУРА (REFERENCES)

1. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482-1488.

2. Pfeffer G., Majamaa K., Turnbull D.M., Thorburn D., Chin-nery P.F. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012; 4: 1-42. DOI: 10.1002/14651858. CD004426.pub3

3. Maypek E. Inborn Errors of Metabolism — Early Detection, Key Symptoms and Therapeutic Options. Bremen. UNI-MED, 2008; 128.

4. Schaefer A.M., Taylor R.W., Turnbull D.M., Chin-nery P.F. The epidemiology of mitochondrial disorders—past, present and future. Biochim Biophys Acta 2004; 1659: 115—120.

5. Honzik T, Tesarova M., Magner M., Mayr J., Jesina Р. et al. Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis 2012; 35: 749—759. DOI 10.1007/s10545-011-9440-3

6. Gibson K., Halliday J.L., Kirby D.M., Yaplito-Lee J., Thorburn D.R., Boneh A. Mitochondrial oxidative phosphoryla-tion disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 2015; 122: 1003—1008. DOI: 10.1542/peds.2007-3502

7. Debray F.G., Lambert M., Mitchell G.A. Disorders of mito-

chondrial function. Curr Opin Pediatr 2008; 20: 471-482. DOI: 10.1097/M0P.0b013e328306ebb6

8. Van Rij M.C., Jansen F.A.R., Hellebrekers D.M.E.I., Onken-hout W, Smeets H.J.M., Hendrickx A.T. et al. Polyhydramnios and cerebellar atrophy: a prenatal presentation of mitochondrial encephalomyopathy caused by mutations in the FBXL4 gene. Clin Case Rep 2016; 4 (4): 425-428. DOI: 10.1002/ccr3.511

9. Koene S., Smeitink J. Mitochondrial medicine. A clinical guideline. First edition. Netherlands. Khondrion, Nijmegen, 2011; 135.

10. Крылова Т.Д., Прошлякова Т.Ю., Байдакова Г.В., Ит-кис Ю.С., Куркина М.В., Захарова Е.Ю. Биомаркеры в диагностике и мониторинге лечения болезней клеточных органелл. Медицинская генетика 2016; 15 (7): 3-10. [Krylova T.D., Proshlyakova T.Yu., Baydako-va G.V., Itkis Yu.S., Kurkina M.V., Zakharova E.Yu. Bio-markers in diagnosis and treatment monitoring for the cell organelles diseases. Meditsinskaya genetika 2016; 15 (7): 3-10. (in Russ)]

11. Liang C., Ahmad K, Sue C.M. The broadening spectrum of mitochondrial disease: Shifts in the diagnostic paradigm. Biochim Biophys Acta 2014; 1840 (4): 1360-1367. DOI: 10.1016/j.bbagen.2013.10.040

12. Davis R., Liang C., Edema-Hildebrand F., Riley C., Need-ham M. Fibroblast growth factor 21 is a sensitive bio-marker of mitochondrial disease. Neurology. Amer Acad Neurol 2013; 81: 1819-1826. DOI: 10.1212/01. wnl.0000436068.43384.ef

13. Pagliarini D.J., Calvo S.E., Chang B, Sheth S.A., Vafai S.B., Ong S.E. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008; 134 (1): 112-123. DOI: 10.1016/j.cell.2008.06.016

14. Даниленко Н.Г., Цыганкова П.Г., Сивицкая Л.Н., Левдан-ский О.Д., Давыденко О.Г. Синдромы митохондриальной деплеции в неврологической практике: клинические особенности и ДНК-диагностика. Неврология и нейрохирургия (Восточная Европа) 2013; 19 (3): 97-111. [Danilenko N.G., Tsigankova P.G., Sivickaya L.N., Lev-dansky O.D., Davidenko O.G. Syndromes of mitochondrial deplation in neurological practice: clinical features and DNA diagnostics. Nevrologiya i nejrokhirurgiya (Eastern Europe) 2013; 19 (3): 97-111. (in Russ)]

15. El-Hattab A.W., Craigen W.J., Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta 2017; 1863 (6): 1539-1555. DOI: 10.1016/j.bbadis.2017.02.017

16. Дегтярева А.В., Захарова Е.Ю., Цыганкова П.Г., Чеглецо-ва Е.В., Готье С.В., Цырюльникова О.М. Недостаточность митохондриальной деоксигуанозинкиназы. Вестник Российского государственного медицинского университета 2009; 1: 27-30. [Degtyareva A.V., Zakharova E.Yu., Tsygankova P.G., Chegletsova E.V., Gotye S.V., Tsyrulniko-va O.M. Mitochondrial deoxyguanosine kinase deficiency. Vestnik Rossijskogo gosudarstvennogo meditsinskogo univer-siteta 2009; 1: 27-30. (in Russ)]

17. Михайлова С.В., Захарова Е.Ю., Цыганкова П.Г., Абруко-ва А.В. Клинический полиморфизм митохондриальных энцефаломиопатий, обусловленных мутациями гена полимеразы гамма. Рос вестн пед и перинатол 2012; 57: 4(2): 54-61. [Mikhailova S.V., Zakharova E.Yu., Tsygankova P.G., Abrukova A.V., Politova E.A. Clinical polymorphism of mitochondrial encephalomyopathies caused by polymerase gamma gene mutations. Ros \festn Perinatol i Pediatr 2012; 57: 4(2): 54-61. (in Russ)]

18. Bonnen P.E., Yarham J.W., Besse A., Wu P., Faqeih E.A., Al-Asmari A.M. et al. Mutations in FBXL4 cause mitochon-drial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet 2013; 93: 471-481. DOI: 10.1016/j.ajhg.2013.07.017

19. Gai X., Ghezzi D., Johnson M.A., Biagosch C.A., Shamseld-in H.E., Haack T.B. et al. Mutations in FBXL4, encoding

Поступила 20.05.17

Конфликт интересов:

Авторы данной статьи подтвердили отсутствие конфликта интересов, финансовой или какой-либо иной

поддержки, о которых необходимо сообщить.

a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet 2013; 93: 482—495. DOI: 10.1016/j.ajhg.2013.07.016

20. Huemer M., Karall D., Schossig A., Abdenur J.E. Clinical, morphological, biochemical, imaging and outcome parameters in 21 individuals with mitochondrial maintenance defect related to FBXL4 mutations. J Inherit Metab Dis 2015; 38 (5): 905-914. DOI:10.1007/s10545-015-9836-6

21. Antoun G., McBride S., Vanstone J., Naas T., Michaud J., Red-path S. Detailed Biochemical and Bioenergetic Characterization of FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion. JIMD Reports 2016; 27: 1-9. DOI: 10.1007/8904_2015_491

22. Baroy T., Pedurupillay C., Bliksrud Y, Rasmussen M., Holmgren A., VigelandM.D. et al. A novel mutation in FBXL4 in a Norwegian child with encephalomyopathic mitochondrial DNA depletion syndrome 13. Eur J Med Genet 2016; 59; 342-346. DOI: 10.1016/j.ejmg.2016.05.005

23. Winston J. T., Koepp D. M., Zhu C., Elledge S. J., Harper J. W. et al. A family of mammalian F-box proteins. Curr Biol 1999; 9: 1180-1182

24. Nirupam N., Nangia S., Kumar A., Saili A. An unusual case ofhyperlactataemia in a neonate. Intern J STD & AIDS 2012; 24 (12): 986-988. DOI: 10.1177/0956462413487326

25. Lefevere M.F., Verhaeghe B.J., Declerck D.H., Van Bocxlaer J.F., De Leenheer A.P., De Sagher R.M. Metabolic Profiling of Urinary Organic Acids by Single and Multicolumn Capillary Gas Chromatography. J Chromatogr Sci 1989; 27 (1): 23-29.

26. Mroch A.R., Laudenschlager M., Flanagan J.D. Detection of a novel FH whole gene deletion in the propositus leading to subsequent prenatal diagnosis in a sibship with fumarase deficiency. Am J Med Genet Part A 2012; 158A: 155-158. DOI: 10.1002/ajmg.a.34344

27. Dashe J., McIntire R.D., Ramus R., Santos-Ramos, Twick-ler D.M. Hydramnios: anomaly prevalence and sonographic detection. Obstet Gynecol 2002; 100: 134-139.

28. Raju G.P., Li H.C., Bali D., Chen Y.T., Urion D.K., Lidov H.G. et al. A case of congenital glycogen storage disease type IV with a novel GBE1 mutation. J Child Neurol 2008; 23: 349352. DOI: 10.1177/0883073807309248

29. Montero R., Yubero D., Villarroya J., Henares D., Jou C., Rodriguez M.A., Ramos F. et al. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondri-al Dysfunction. PLoS ONE 2016; 11 (2): e0148709.

30. Dimmock D.P., Lawlor M.W. Presentation and Diagnostic Evaluation of Mitochondrial Disease. Pediatr Clin North Am 2017; 64 (1): 161-171. DOI: 10.1016/j.pcl.2016.08.011.

Received on 2017.05.20

Conflict of interest: The authors of this article confirmed the absence conflict of interests, financial or any other support which should be reported.

i Надоели баннеры? Вы всегда можете отключить рекламу.