Научная статья на тему 'Исследование структурно-зависимых свойств водных растворов диметилформамида'

Исследование структурно-зависимых свойств водных растворов диметилформамида Текст научной статьи по специальности «Физика»

CC BY
20
5
Поделиться
Область наук
Ключевые слова
ВОДНЫЕ РАСТВОРЫ / ДЕНСИМЕТРИЯ / ВИСКОЗИМЕТРИЯ / РЕФРАКТОМЕТРИЯ / ИК-СПЕКТРОСКОПИЯ / ДИМЕТИЛФОРМАМИД

Аннотация научной статьи по физике, автор научной работы — Канунникова Ольга Михайловна, Маратканова Алена Николаевна, Шаков Анатолий Анатольевич, Марьин Максим Владимирович, Решетников Сергей Максимович

Исследованы концентрационные зависимости структурно-чувствительных свойств водных растворов диметилформамида (ДМФА). Показано, что в области разбавленных растворов (менее 30 мол.% ДМФА) молекулы ДМФА встраиваются в структуру воды без заметного разрушения. С увеличением концентрации ДМФА связанность структуры воды уменьшается и в концентрированных (80 мол.% ДМФА) растворах доля молекул воды, участвующих в образовании водородных связей составляет порядка 30 %. Повышение температуры способствует разрушению структуры водных растворов и жидкого ДМФА.

Похожие темы научных работ по физике , автор научной работы — Канунникова Ольга Михайловна, Маратканова Алена Николаевна, Шаков Анатолий Анатольевич, Марьин Максим Владимирович, Решетников Сергей Максимович,

STUDY OF STRUCTURE-SENSITIVE PROPERTIES OF DIMETHYLFORMAMIDE AQUEOUS SOLUTIONS

The concentration dependence of structure-sensitive properties of dimethylformamide aqueous solution were studied. At

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

Текст научной работы на тему «Исследование структурно-зависимых свойств водных растворов диметилформамида»

УДК 544.273.6

ИССЛЕДОВАНИЕ СТРУКТУРНО-ЗАВИСИМЫХ СВОЙСТВ ВОДНЫХ РАСТВОРОВ ДИМЕТИЛФОРМАМИДА

КАНУННИКОВА О.М., МАРАТКАНОВА АН., ШАКОВ А.А., *МАРЬИН М.В., *РЕШЕТНИКОВ СМ.

Физико-технический институт УрО РАН, 426000, г. Ижевск, ул. Кирова, 132 *Удмуртский государственный университет, 426034, г. Ижевск, ул. Университетская, 1

АННОТАЦИЯ. Исследованы концентрационные зависимости структурно-чувствительных свойств водных растворов диметилформамида (ДМФА). Показано, что в области разбавленных растворов (менее 30 мол.% ДМФА) молекулы ДМФА встраиваются в структуру воды без заметного разрушения. С увеличением концентрации ДМФА связанность структуры воды уменьшается и в концентрированных (80 мол.% ДМФА) растворах доля молекул воды, участвующих в образовании водородных связей составляет порядка 30 %. Повышение температуры способствует разрушению структуры водных растворов и жидкого ДМФА.

КЛЮЧЕВЫЕ СЛОВА: водные растворы, денсиметрия, вискозиметрия, рефрактометрия, ИК-спектроскопия, диметилформамид.

ВВЕДЕНИЕ

Данная работа является продолжением ранее начатых исследований водных растворов амидов [1]. Система диметилформамид-вода используется при моделировании межчастичных взаимодействий в водных растворах пептидных и белковых систем, имеющих фундаментальное значение для всех жизненных процессов.

В отличие от системы формамид-вода тепловые эффекты смешения диметилформамида (ДМФА) и воды отрицательны, что авторы [2] связывают с гидрофобным характером взаимодействия.

Экспериментальные исследования водных растворов диметилформамида показали, что введение ДМФА приводит к интенсивному разрушению структуры воды и образование водородных связей О-Н...О между карбонильным кислородом ДМФА и молекулами воды. По данным изотермической сжимаемости максимальная упорядоченность в системе ДМФА-вода наблюдается в области 12 мол.%, что позволяет предположить одновременное проявление гидрофильных (гидратация карбонильной и амидной группы) и гидрофобных (гидратация метильных групп) взаимодействий. Большинство исследователей приходят к выводу, что особенности многих физико-химических свойств в области 20-30 мол.% (вязкость, скорость звука, адиабатическая и изотермическая сжимаемость, скорость спин-решеточной релаксации, изотерма избыточного внутреннего давления) связаны с образованием устойчивых водно-амидных гидратов ДМФА'(Н2О)з, образующихся за счет водородных связей. В области концентраций ДМФА 50 мол.% физико-химические свойства (молярная теплоемкость, избыточная энергия Гиббса) имеют экстремумы, которые связывают с образованием устойчивого моногидрата ДМФА^НгО).

На основании исследований методом протонной спин-решеточной релаксации сделан вывод, что растворы в области высоких концентраций ДМФА состоят преимущественно из гетероассоциатов, образованных двумя молекулами ДМФА и одной молекулы воды, а самоассоциаты воды отсутствуют. Жидкий диметилформамид является слабоассоциированной жидкостью [3-5].

Большое внимание уделено исследованию структуры водных растворов диметилформамида методами компьютерного моделирования [6-11]. Установлено, что разрушение сетки Н-сетки воды молекулами ДМФА окончательно заканчивается при 30 мол.% ДМФА.

Результаты моделирования концентрационных зависимостей избыточных энергий Гиббса и энтальпии смешения системы ДМФА-вода в рамках модели водородно-связанных ассоциатов свидетельствует об образовании устойчивых гетероассоциатов составов ДМФА(Н2О)з и ДМФА(Н2О)2. Сравнение полученных энергий связей гетероассоциатов с энергией водородной связи в воде свидетельствует о том, что взаимодействия ДМФА-вода преобладают над взаимодействиями между компонентами во всей области составов.

В литературе практически не обсуждается температурная зависимость структурно-зависимых свойств водных растворов ДМФА. В работе [12] на основании анализа температурной зависимости вязкости и электропроводности сделан вывод о том, что при низких температурах (до 50 °С) энергия активации электропроводности системы вода-ДМФА ниже, чем у воды, что указывает на разрушение упорядоченности структуры воды. В интервале температур (50^85) °С энергия активации электропроводности растворов возрастает и имеет величины больше, чем у воды. Эти данные дали основание авторам работы [12] предположить, что с повышением температуры структурированность водных растворов ДМФА растет.

Таким образом, обобщение информации, изложенной выше, свидетельствует о том, что структура водных растворов ДМФА при температурах, близких к комнатной описана достаточно подробно, в то время как изменения структуры водных растворов диметилформамида с изменением температуры практически не исследованы.

Целью данной работы явилось исследование концентрационной и температурной зависимости ряда структурно-зависимых свойств водных растворов диметилформамида.

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектами исследования являлись вода, жидкий диметилформамид, водные растворы диметилформамида. В работе использовали диметилформамид марки «хч» и свежеперегнанную дистиллированную воду.

Температурные зависимости плотности и вязкости растворов получены с использованием водяных термостатов при температурах 20 °С, 40 °С, 60 °С (±0,5°).

Плотность определяли пикнометрическим методом. Объем стеклянного пикнометра 0,9 мл. Используя экспериментально полученные величины плотности, рассчитывали термические коэффициенты объемного расширения [7].

Измерения вязкости растворов проводили с помощью капиллярных вискозиметров ВПЖ-2. На основании измеренных времен истечения рассчитаны кинематическая, динамическая и относительная вязкости, коэффициенты диффузии и характеристики вязкого течения (энергия Гиббса, энтальпия, энтропия вязкого течения) [8].

Используя экспериментальные величины плотности и динамической вязкости, рассчитаны коэффициенты диффузии [9].

Рефрактометрические измерения проводили при 20 °С на рефрактометре ИРФ-454 Б2М ( <).

Поверхностное натяжение определяли методом счета капель. Расчеты основаны на прямой пропорциональности веса капли, отрывающейся от пипетки, поверхностному натяжению жидкости и радиусу пипетки. Использовали пипетку объемом 5 мл.

Инфракрасные спектры пропускания получены на спектрометре Varian Excalibur 3100 FT-IR с использованием приставки многократного нарушенного полного внутреннего отражения (МНПВО). Спектры нормированы на интенсивность пропускания фона.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены зависимости плотности водных растворов ДМФА при температурах 20 °С, 40 °С и 60 °С.

0,91 -I-■-1-■-1-■-1-■-1-■-1

0 20 40 60 80 100

н мол.% ДМФА

Здесь и далее: ■-20 °С; ♦ - 40 °С; А-60°С

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

Рис. 1. Концентрационные зависимости плотности водных растворов ДМФА

Парциальные молярные объемы ДМФА и воды и термические коэффициенты объемного расширения, вычисленные из данных денсиметрии, приведены на рис. 2 и рис. 3.

Как известно, величина отрицательной гидратации пропорциональна собственному объему молекул растворенного вещества. Благодаря небольшому объему молекул ДМФА и наличию гидрофильных групп, способствующих встраиванию молекул в сетку Н-связей, в области разбавленных растворов наблюдается слабое увеличение плотности растворов по сравнению с плотностью чистой воды (в области 10 мол.% ДМФА). Повышение температуры благодаря тепловому движению затрудняет встраивание молекул ДМФА, поэтому на кривых концентрационной плотности, полученных при 40 °С и 60 °С пологий участок в области низких концентраций ДМФА отсутствует (рис. 2).

60 80 100 К, мол.% ДМФА

Рис. 2. Концентрационная зависимость парциального молярного объема ДМФА

60 80 100 н мол.% ДМФА

Рис. 3. Концентрационная зависимость парциального молярного объема воды

Гидрофобные взаимодействия между молекулами способствуют их взаимной ассоциации, которая приводит к уменьшению объема, занимаемого молекулами ДМФА (рис. 2).

В работе [9] на основании компьютерного моделирования было показано, что с увеличением концентрации ДМФА стабилизируются компактные, а не более протяженные открытые структуры. Это и является причиной уменьшения парциального молярного объема ДМФА в области концентраций < 20 мол.%. При этом парциальный молярный объем воды практически не изменяется (рис. 3). По мере роста концентрации неэлектролита в смеси происходит последовательное разрушение сетки Н-связей. При этом наблюдается некоторое уменьшение парциального молярного объема воды, минимальное значение которого определено в области 40 мол.% ДМФА. Возможно, появление минимума связано с гидрофобными взаимодействиями и ассоциацией молекул ДМФА и воды.

Эти же изменения структуры проявляются и в изменении термического коэффициента объемного расширения - в области разбавленных растворов его величина растет с ростом концентрации ДМФА, а в области средних и высоких концентраций остается примерно постоянной (рис. 4).

I

о

0 20 40 60 80 100

н мол.% ДМФА

Рис.4. Концентрационная зависимость термических коэффициентов объемного расширения водных растворов

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

Термический коэффициент объемного расширения жидкого диметилформамида и его водных растворов растет с увеличением температуры, что свидетельствует о разрушении структуры, т.е. вывод, сделанный в работе на основании измерений вязкости и электропроводности [12] о структурированности этих растворов с повышением, не подтверждается.

Концентрационная зависимость относительной вязкости проходит через максимум в области 35-40 мол.% ДМФА (рис. 5). Положительное значение угла наклона графика зависимости относительной вязкости в области низких концентраций говорит о преобладании эффекта Эйнштейна и ориентационной компоненты вязкости. Рост относительной вязкости и энергии активации вязкого течения (рис. 6) в этой области может быть объяснен формированием компактных структур (рис. 7) на фоне частичного сохранения Н-сетки воды, что затрудняет перестройку структуры раствора во время течения.

В области более высоких концентраций ДМФА наблюдается отрицательное значение угла наклона графика зависимости относительной вязкости, что говорит о разрушении структуры растворителя.

Структура растворов определяется слабоассоциированной структурой ДМФА, при этом сетка водородных связей воды разрушена, поэтому наблюдается уменьшение вязкости и энергии активации вязкого течения (рис. 4, 5). Увеличение концентрации ДМФА практически не влияет на структурированность растворов.

О 20 40 60 80 100

N. мол.% ДМФА

Рис. 5. Концентрационная зависимость относительной вязкости водных растворов ДМФА

7 я-1-1-1-1-1

0 20 40 60 80 100

Ы, мол.% ДМФА

Рис. 6. Концентрационная зависимость энергии активации вязкого течения водных растворов ДМФА

60

И, мол.% ДМФА

Рис.7. Концентрационная зависимость коэффициентов диффузии ДМФА в водных растворах

Концентрационная зависимость избыточной рефракции также имеет максимум (рис. 8, 9) в области 40 мол.% ДМФА. Экстремумы на концентрационной зависимости избыточной рефракции свидетельствуют об образовании молекулярных агрегатов в растворе. В данном случае, максимум, по-видимому, связан с образованием гетероассоциатов ДМФАпН2О, обнаруженных ранее методом компьютерного моделирования [10]. При этом, судя по форме изотермы поверхностного натяжения поверхностный слой сформирован не гетероассоциатами, а молекулами одного сорта. Изменение наклона кривой, свидетельствующее о двумерном фазовом переходе наблюдается в области 10 мол.% ДМФА. Вероятно, в поверхностном слое разбавленных растворов доминируют молекулы воды, а в области средних и высоких концентраций - ДМФА.

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

Рис. 8. Концентрационная зависимость показателя преломления водных растворов ДМФА

Рис. 9. Концентрационная зависимость избыточной рефракции водных растворов ДМФА

Ранее в работе [13] методом ИК-спектроскопии исследованы концентрированные растворы (60-98 мол.%) диметилформамида. Основное внимание уделено анализу положения и интенсивностей полос в области 3550 см-1 (уОН колебания ОН-связей) и в области 2860 см-1 (колебания уСН СН-связей). В области концентрированных растворов (90-98 мол.% ДМФА) линии, соответствующие этим колебаниям, мало изменяются. В этой области, по мнению авторов, увеличивается (по сравнению с менее концентрированными растворами) число молекул воды, ассоциированных с карбонильными группами ДМФА. При уменьшении концентрации ДМФА (менее 90 мол.%) уСН смещаются в область больших частот, а уОН - в область низких. Структура растворов в этой области обусловлена стереометрией молекул воды, расположенных вблизи метильной группы ДМФА. В области концентраций 60-80 мол.% в ИК спектре появляются новые структурные особенности. Структура растворов в этой области обусловлена преимущественно молекулами воды, связанными с карбонильной группой ДМФА и входящими в состав деформированных тетраэдрических структур.

Следует отметить, что несмотря на подробный анализ изменения положения и интенсивности компонентов ИК-спектров, выделенных с помощью математической обработки экспериментально полученных полос, Авторы [13] не смогли дать четкого описания структуры водных растворов ДМФА в исследуемом концентрационном интервале.

В область валентных колебаний ОН-групп дают вклад полосы ОН-групп, не участвующих в образовании водородных связей (3400^3800) см-1 и ОН-групп, участвующих в формировании этих связей (3000^3400) см-1 (рис. 10,11).

Волновое число,

Рис.10. ИК-спектры водных растворов ДМФА

4500 4000 3500 3000 2500 2000 1500 1000

Волновое число, см1

Рис. 11. Разностные ИК-спектры водных растворов ДМФА

Количественной мерой изменения доли слабо и сильносвязанной воды может быть отношение суммарных интенсивностей полосы поглощения в диапазоне (3000^3400) см-1 к суммарной интенсивности полосы в диапазоне (3400^3800) см-1 (таблица). Видно, что в области разбавленных растворов (3^10 мол.% ДМФА) доля воды, образующей водородные связи остается практически постоянной. Далее, увеличение концентрации неэлектролита приводит к снижению доли связанной воды. Причем даже в области концентрированных растворов (80 мол.%) доля связанной воды остается достаточно высокой - всего в 3 раза меньше, чем в разбавленных растворах ив 2 раза меньше, чем доля несвязанной воды. Этот результат качественно согласуется с результатом работы [13], в которой доля воды в связанном состоянии в концентрированных растворах диметилформамида оценивалась порядка 50 %.

Таблица

Отношение суммарных интенсивностей полосы поглощения в диапазоне (3000^3400) см-1 и (3400^3800) см-1 для водных растворов диметилформамида

Концентрация ДМФА, мол.% S(^3000-3400 ) S(^3400-3800 ) Доля молекул воды, связанных водородными связями, %

3,0 1,67 62,5

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

3,8 1,66 62,4

5,2 1,67 62,5

7,0 1,63 62,0

10,0 1,69 62,8

20,0 1,63 62,0

25,0 1,57 61,1

30,0 1,48 59,7

35,0 1,39 58,2

48,0 1,09 52,2

60,0 0,87 46,5

80,0 0,51 33,8

Отрицательное отклонение поверхностного натяжения от изотермы идеального раствора характерно для систем с преимущественным взаимодействием молекул одного сорта, т.е. в растворах ДМФА предпочтительно формирование в поверхностном слое растворов ассоциатов ДМФА-ДМФА и Н2О-Н2О, чем НСОNH2-Н2О. На концентрационной зависимости не наблюдается максимумов в области средних концентраций ДМФА,

характерных для других структурно-зависимых свойств (рис.12).

1

Й 70-Ь

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

60504030 -|-1-1-1-1-1-1-1-1-"-1

0 20 40 60 80 100

Н мол.% ДМФА

Рис. 12. Концентрационная зависимость поверхностного натяжения водных растворов ДМФА

при комнатной температуре

ЗАКЛЮЧЕНИЕ

Проведено исследование структурно-чувствительных свойств жидкого диметилформамида и его водных растворов. Впервые измерены: температурные зависимости вязкости и плотности, показатели преломления, избыточная рефракция и поверхностное натяжение растворов. Впервые исследованы ИК-спектры разбавленных водных растворов диметилформамида. Используя данные вискозиметрии, впервые рассчитана свободная энергия вязкого течения.

В области разбавленных растворов (до 10 мол.% ДМФА) не наблюдается разрушение сетки водородных связей воды. Из соотношения интенсивности полос в ИК-спектрах ОН-групп, связанных водородными связями, и ОН-групп, не участвующих в их образовании, остается примерно постоянным доля связанной водородными связями воды оценивается порядка 63 %.

Уменьшение молярного объема ДМФА в этой области концентраций подтверждает ранее сделанный вывод о встраивании молекул ДМФА в структуру воды.

Увеличение величины избыточной рефракции в области <40 мол.% ДМФА подтверждает вывод о возможности образования гетероассоциатов ДМФАпН2О в этой области. Повышение температуры приводит к затруднению встраивания молекул ДМФА в структуру воды, разрушению слабосвязанных гетероассоциатов и в результате - росту плотности разбавленных растворов и понижению максимума на концентрационной зависимости вязкости с ростом температуры.

Повышение концентрации ДМФА приводит к разрушению связанной структуры воды, в результате чего уменьшается интенсивность полос ОН-групп, связанных водородными связями, увеличивается термический коэффициент объемного расширения.

Два процесса - встраивание молекул ДМФА в структуру воды и частичное сохранение связанной структуры воды - приводят к увеличению вязкости и энергии активации вязкого течения.

В области средних концентраций ДМФА (35 - 50 мол.% ) наблюдаются максимумы вязкости и молекулярной рефракции. Доля связанных молекул воды по результатам ИК-исследований составляет (58 - 50) %. Дальнейшее увеличение концентрации ДМФА приводит к уменьшению доли связанных молекул воды (до 46 % в растворе с 60 мол.% ДМФА). Разрушение связанной структуры воды и слабая ассоциация молекул ДМФА являются причиной понижения вязкости, энергии активации вязкого течения.

Увеличение концентрации ДМФА от 40 мол.% до 100 мол.% ДМФА наблюдаются незначительные изменения структуры растворов: практически не изменяются величины термических коэффициентов объемного расширения и энергии активации вязкого течения.

Однако выводу о полном разрушении структуры воды, сделанном на основании компьютерного моделирования в [9], противоречат результаты исследований методом ИК-спектроскопии: в ИК-спектрах сохраняется полоса ОН-групп, участвующих в формировании водородных связей. В растворе с содержанием ДМФА 80 мол.% доля связанной воды оценивается порядка 30 %.

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

Впервые показано, что повышение температуры приводит к разрушению структуры жидкого диметилформамида и его водных растворов: термический коэффициент объемного расширения с увеличением температуры растет.

СПИСОК ЛИТЕРАТУРЫ

1. Канунникова О.М., Маратканова А.Н., Шаков А.А. и др. Исследование структурно-зависимых свойств водных растворов диметилформамида // Химическая физика и мезоскопия. 2010. Т.12, №1. С.93-101.

2. Батов Д.В., Батов Д.Д. Сольватация амидов муравьиной и уксусной кислот в смеси вода-глицерин. Аддитивность термохимических характеристик растворов // Журнал структурной химии. 2005. Т.46, №2. С.293-302.

3. Сухно И.В., Бузько В.Ю., Панюшкин В.Т. Физико-химические характеристики гетероассоциатов в системе N^-диметилформамид-вода // ЖФХ. 2008. Т.82, №5.С.832-837.

4. Kopparapu Subarangaiah, Neriyanuri Manohara Murthy, Saraswatula Venkata Subrahmany. Ultrasonic investigation on the structure of aqueous solutions of N,N-dimethylphormamide and dimethyl sulfoxide // Bull. Chem. Soc. Jpn. 1981. V.54, № 7. P.2200-2204.

5. Hitoshi Ohtaki, Sumiko Iton, Toshio Yamaguchi et al. Structure of liquid N,N-dimethylformamide studied by means of X-ray diffraction // Bull. Chem. Soc. Jpn. 1983. V.56, № 11. P.3406-3409.

6. Бушуев Ю.Г. Структурные свойства жидкостей с различными типами межмолекулярных взаимодействий по данным компьютерного моделирования : дис.... докт. хим. наук. Иваново. 2001. 345 с.

7. Бушуев Ю.Г., Зайчиков А.М. Структурные свойства жидкого N^-диметилформамида // Известия Академии наук. Сер. химическая. 1998. №1. С.21- 27.

8. Бушуев Ю.Г., Дубинкина Т.А., Королев В.П. Структурные особенности сольватации частиц в N^-диметилформамиде // Известия Академии наук. Сер. химическая. 2000. №4. С.584 - 506.

9. Бушуев Ю.Г., Королев В.П. Структурные свойства разбавленных водных растворов диметилформамида и ацетона по данным компьютерного моделирования // Известия Академии наук. Сер. химическая. 1998. № 4. С.592 - 599.

10. Зайчиков А.М. Структурно-термодинамические параметры и межмолекулярные взаимодействия в водных растворах вторичных амидов // Журнал структурной химии. 2007. Т.48, №1. С.95-104.

11. Железняк Н.И., Бушуев Ю.Г. Концентрационные структурные изменения в бинарных водных смесях по данным растворимости аргона и результатам компьютерного моделирования // Химия и хим. технология. 2002. Т.45, вып.5. С.25-30.

12. Арутюнян Р.С., Григорян В.В., Егоян Р.В. и др. Электропроводность и вязкость водных растворов диметилформамида и формамида // Армянский химический журнал. 1988. Т.41, №6. С.323-327.

13. Zheng Xu, Haoran Li, Congmin Wang et.al. The methyl C-H blueshift in N,N-dimethylformamide-water mixtures probed by two-dimentional Fourier-transform infrared spectroscopy // J. Chem. Phys. 2006. V.126. P. 244502-1-244502-10.

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

STUDY OF STRUCTURE-SENSITIVE PROPERTIES OF DIMETHYLFORMAMIDE AQUEOUS SOLUTIONS

KANUNNIKOVA O.M., MARATKANOVA A.N., SHAKOV A.A., *MARYIN M.V., *RESHETNIKOV S.M.

Physical-Technical Institute, Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia *Udmurt State University, Izhevsk, Russia

SUMMARY. The concentration dependence of structure-sensitive properties of dimethylformamide aqueous solution were studied. At <30 mol.% of dimethylformamide molecules insert into water structure. In the range above 40 mol.% dimethylformamide breaks water H-net. Aqueous solution and liquid dimethylformamide structuring decreases when rising temperature.

KEYWORDS: aqueous solution, densimetry, viscosimetry, refractometry, IR-spectrocsopy, dimethylformamide.

Канунникова Ольга Михайловна, доктор физико-математических наук, старший научный сотрудник лаборатории ультрадисперсных систем ФТИ УрО РАН, тел. (3412)21-26-55, e-mail: uds@pti.udm.ru

Маратканова Алена Николаевна, кандидат физико-математических наук, научный сотрудник лаборатории ультрадисперсных систем ФТИ УрО РАН

Шаков Анатолий Анатольевич, кандидат физико-математических наук, старший научный сотрудник лаборатории механоактивации органических систем ФТИ УрО РАН, тел. (3412) 21-69-66, e-mail: uds@pti.udm.ru

Марьин Максим Владимирович, студент 5 курса химического факультета УдГУ

Решетников Сергей Максимович, доктор химических наук, профессор кафедры физической и органической химии УдГУ, руководитель научно-образовательного центра «Физика, химия и технология наноматериалов»