Научная статья на тему 'Исследование погрешности конечномерной аппроксимации задачи баланса электронов высокочастотного индукционного разряда'

Исследование погрешности конечномерной аппроксимации задачи баланса электронов высокочастотного индукционного разряда Текст научной статьи по специальности «Физика»

CC BY
43
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Исследование погрешности конечномерной аппроксимации задачи баланса электронов высокочастотного индукционного разряда»

Математическое моделирование в задачах геофизики и электрофизики 117

Полуограниченная задача для электрического поля сведена к ограниченной с помощью условия типа условия излучения [1].

Движение электронов рассмотрено с помощью квазилинейных уравнений [2], решение выписано в виде неявных функций.

Для введения оператора Лизеганга [3] область решения разбита на участки с подвижными границами, которые определяются условием необратимости неявного решения квазилинейного уравнения.

Список литературы

1. Майков А.Р., Поезд А.Д., Свешников А.Г., Якунин С.А. Разностные схемы для уравнений Максвелла в неограниченной области. // ЖВМиМФ. 1989. Т. 29. № 2. С. 239-250.

2. Гринберг Г.А. Избранные вопросы математической теории электрических магнитных явлений. М.-Л. 1948.

3. Ильин А.М., Марков Б.А. Нелинейное уравнение диффузии и кольца Лизеганга // Доклады РАН. 2011. Т. 440. № 2. С. 164-167.

Исследование погрешности конечномерной аппроксимации задачи баланса электронов высокочастотного индукционного разряда

Д. М. Коростелева1, С. И. Соловьев2, П. С. Соловьев2 1 Казанский государственный энергетический университет 2Казанский (Приволжский) федеральный университет Email: [email protected] DOI: 10.24411/9999-017A-2019-10241

Моделирование баланса заряженных частиц высокочастотного индукционного разряда пониженного давления сводится к нахождению минимального собственного значения, отвечающего положительной собственной функции, дифференциальной задачи на собственные значения второго порядка с коэффициентами, нелинейно зависящими от спектрального параметра. Задача аппроксимируется сеточной схемой метода конечных элементов с лагранжевыми конечными элементами произвольного порядка с численным интегрированием. Исследована сходимость и погрешность приближенных решений задачи.

Работа выполнена при финансовой поддержке РФФИ и Правительства Республики Татарстан в рамках научного проекта №18-41-160029. Работа поддержана Российским фондом фундаментальных исследований (коды проектов 18-41-160014, 19-08-01184).

Математическое моделирование взрыва сверхновой типа Ia на суперЭВМ

И. М. Куликов, И. Г. Черных, А. Ф. Сапетина, Д. А. Караваев, Е. А. Берендеев Институт вычислительной математики и математической геофизики СО РАН Email: [email protected] DOI: 10.24411/9999-017A-2019-10242

В докладе будут представлены результаты математического моделирования процесса взрыва сверхновой типа Ia на массивно-параллельных суперкомпьютерах с использованием технологии адаптивных вложенных сеток. Построена гидродинамическая модель белых карликов, замкнутая звездным уравнением состояния и дополненная уравнением Пуассона для гравитационного потенциала. В модели учтено ядерное горение углерода, для которого построено аналитическое решение. Для решения используется многоуровневая организация вычислений на основе вложенных сеток. На основе метода Годунова, схемы Русанова и кусочно-параболического метода на локальном шаблоне построен новый численный метод высокого порядка точности, адаптированный для организации вычислений на вложенных сетках. Параллельная реализация основана на идее распределенных вычислений, где на архитектуре с общей памятью происходит счет гидродинамической эволюции белых карликов (базовые вычисления), при достижении критических значений температуры и плотности происходит запуск новой задачи на архитектуре с распределенной памятью, в которой моделируется развитие гидродинамической турбулентности, приводящей к сверхзвуковому ядерному горению углерода (спутниковые вычисления). Проведено моделирование взрыва сверхновых типа Ia на основе сценариев слияния двух белых карликов и турбулиза-ции отдельного белого карлика. В основе обоих сценариев лежит достижение критических температур

i Надоели баннеры? Вы всегда можете отключить рекламу.