ТЕХНОЛОГИЯ И АППАРАТЫ ПИЩЕВЫХ ПРОИЗВОДСТВ
УДК 66.021.3:577.352.4:577.356
И. А. Латыпов, М. К. Герасимов ИССЛЕДОВАНИЕ МЕХАНИЗМА САМОПРОИЗВОЛЬНЫХ ОСМОТИЧЕСКИХ ПРОЦЕССОВ МАССОПЕРЕНОСА В СИСТЕМАХ БИОЛОГИЧЕСКОГО ПРОИСХОЖДЕНИЯ
Рассмотрены основные факторы формирования механизма самопроизвольных осмотических процессов массопереноса в системах биологического происхождения, представлена физическая модель прямого осмоса.
Изучению механизма мембранных процессов посвящено множество исследований, обубликованно большое количество статей и монографий. Однако, как правило, опубликованные результаты исследований преимущественно направлены на изучение обратноосмотических процессов в системах с искусственными полупроницаемыми мембранами. В то же время исследованию самопроизвольных осмотических процессов массопереноса в системах естественного происхождения уделено значительно меньше внимания, а существующая база знаний об этих процессах крайне разрозненна и зачастую носит характер сведений фундаментальной науки. Именно поэтому обобщение, анализ и систематизация этой информации крайне важна как для общего понимания самопроизвольных осмотических процессов, происходящих в системах с естественными полупроницаемыми мембранами, так и для применения полученной совокупности сведений на практике.
Рассмотрим механизм самопроизвольного осмотического процесса массопереноса, так называемого явления прямого осмоса, в системах с естественными мембранами, выбрав в качестве объекта исследования дрожжевую клетку, локализованную в дрожжевой суспензии, при этом уделив особое внимание факторам, вносящим наибольший вклад в формирование процесса: формам связи влаги в системе и структуре полупроницаемой клеточной мембраны.
ИССЛЕДОВАНИЕ ФОРМ СВЯЗИ ВЛАГИ В ДРОЖЖЕВОЙ КЛЕТКЕ, ЛОКАЛИЗОВАННОЙ В ДРОЖЖЕВОЙ СУСПЕНЗИИ
Дрожжевая клетка, локализованная в дрожжевой суспензии, представляет собой систему, состоящую из двух фаз, разграниченных клеточной стенкой дрожжевой клетки -полупроницаемой мембраной.
Формы связи влаги в этой системе играют существенную роль в формировании механизма прямого осмоса и фактически обусловливают полупроницаемость клеточной мембраны.
Классификацию форм связи влаги подобной двухфазной системы, разделённой биологической мембраной, рассмотрим с точки зрения классификации форм связи влаги, предложенной П. А. Ребиндером [1], которая позволяет учитывать как природу образования различных форм связи, так и энергию связи их с материалами.
В соответствии с точкой зрения этой классификации влагу, локализованную внутри дрожжевой клетки, необходимо рассматривать как осмотически удерживаемую влагу, обу-
словленную избирательной диффузией воды из окружающей среды. Осмотически удерживаемая влага характеризуется энергией связи слабой интенсивности, по своим свойствам не отличается от обычной воды и обладает способностью свободно диффундировать через клеточные мембраны под воздействием разности концентраций внутри и вне клеток.
К категории внутриклеточной влаги можно отнести и влагу, иммобилизованную в капиллярах клеточной стенки дрожжевой клетки - капиллярную влагу, которая играет существенную роль в механизме перераспределения влаги и фактически обусловливает по-лупроницаемость биомембраны.
Так, из анализа научной литературы известно, что влага, локализованная в капиллярах диаметром более 10-7 м (влага макрокапилляров), не имеет связи с материалом и может свободно перемещаться в процессе диффузии.
В свою очередь влага, локализованная в капиллярах диаметром менее 10-7 м (влага микрокапилляров) и обусловленная адсорбционной связью полимолекулярного слоя вблизи стенок капилляра, и не является свободной. Такая влага не участвует в диффузионных процессах ввиду особых свойств характерных для связанной влаги.
Как правило, адсорбционно-связанная влага, иммобилизованная на поверхности биомембраны в виде поверхностного мономолекулярного слоя адсорбированной воды (гидратной оболочки), также не участвует в процессах перераспределения влаги ввиду высоких значений энергии связи молекул воды с поверхностью биомембраны. Последующие слои адсорбционно-связанной жидкости (полимолекулярная адсорбция) удерживаются менее прочно и могут вовлекаться в диффузионные процессы.
Химически связанная влага не играет существенной роли в формировании механизма перераспределения влаги, поскольку количество её незначительно, а связи ионной и молекулярной природы очень прочны.
Таким образом, в формировании механизма прямого осмоса - перераспределения влаги через биомембрану дрожжевой клетки - участвуют осмотически удерживаемая влага, влага макрокапилляров, а также свободная избыточная внеклеточная влага, локализованная в межклеточном пространстве дрожжевой биомассы (рис. 1).
Рис. 1 - Формы связи влаги в дрожжевой клетке, локализованной в дрожжевой суспензии: 0 - химически связанная влага; 1 - осмотически удерживаемая влага (свободная внутриклеточная влага); 2 - свободная влага капилляров (влага макрокапилляров); 3 - связанная влага капилляров (влага микрокапилляров); 4 - адсорбционно-связанная влага; 5 - свободная внеклеточная влага (избыточная межклеточная влага)
ИССЛЕДОВАНИЕ СТРУКТУРЫ БИОЛОГИЧЕСКОЙ МЕМБРАНЫ
Структура полупроницаемой клеточной мембраны дрожжевой клетки, представляющей собой капиллярно-пористое тело, играет ключевую роль в формировании механизма прямого осмоса - осмотически обусловленного самопроизвольного процесса перераспределения влаги из внутриклеточной среды дрожжевой клетки в межклеточное пространство при внесении в дрожжевую суспензию осмоиндуцирующего компонента (как правило, электролита).
Так, существенную роль в формировании механизма перераспределения играет система пор (капилляров) клеточной стенки биологической мембраны, которая является полупроницаемой, то есть низкоселективной для молекул воды и высокоселективной для гидратированных ионов осмоиндуцирующего компонента.
Исходя из представлений о строении растворов и результатов экспериментов [2], можно утверждать, что на селективность и проницаемость мембран влияет гидратирующая способность ионов.
Явление гидратации заключается в том, что ионы, растворного вещества окружены растворителем и движутся с некоторой его частью, вступающей с ним во взаимодействие. При этом может наблюдаться как первичная, так и вторичная гидратация. Первичная гидратация заключается в прочном связывании ионов молекулы воды, вплоть до образования донорно-акцепторных связей. Вторичная - представляет собой электростатическое взаимодействие молекул воды с первично гидратированными ионами.
Молекулы воды, расположенные в непосредственной близости от ионов растворённых веществ, образуют гидратную оболочку, число молекул в которой характеризует координационное число гидратации.
Электростатическое взаимодействие не является единственной причиной гидратации - последняя может быть обусловлена и химическими силами.
Учитывая сказанное выше и основываясь на современных представлениях о связанной жидкости, процесс селективной проницаемости мембраны дрожжевой клетки по отношению к водным растворам электролитов можно представить следующим образом.
На поверхности и внутри пор (капилляров) клеточной мембраны дрожжевой клетки, локализованной в дрожжевой суспензии, возникает слой связанной воды. Вода на границе раздела фаз мембрана-раствор по своим свойствам отличается от воды в свободном состоянии. Например, связанная вода в значительной мере теряет растворяющую способность, поэтому наличие связанной воды в порах клеточной мембраны дрожжевой клетки одна из основных причин непроходимости для тех молекул растворённых веществ, для которых связанная вода практически не является растворителем. Если диаметр б пор мембраны б<2^+бги. (где бги. - диаметр гидратированного иона), то через такую мембрану будет проходить только или преимущественно вода, что и обуславливает селективность (полупроницаемость) клеточной мембраны дрожжевой клетки.
Однако если для искусственных мембран, диаметр пор которых не превышает диаметра гидратированного иона, характерна 100 % селективность, то селективность биологических мембран никогда не достигает 100 %, так как реальные мембраны имеют поры различного диаметра (рис. 2), в том числе и крупные, превышающие величину 2^+бги, а связанная вода хоть и в очень малых количествах все же обладает растворяющей способностью.
Межклеточная среда Фаза 1
Внутриклеточная среда Фаза 2
Рис. 2 - Схема механизма полупроницаемости биологических мембран
Таким образом, ключевую роль в формировании механизма прямого осмоса играет структура биологической мембраны дрожжевой клетки, полупроницаемость которой обусловлена:
1) наличием связанной воды в порах мембраны;
2) образованием в межклеточной фазе гидратированных ионов - крупных конгломератов ионов растворённого вещества с молекулами воды.
ИССЛЕДОВАНИЕ МЕХАНИЗМА ПРЯМОГО ОСМОСА
Дрожжевая клетка, локализованная в дрожжевой суспензии, представляет собой систему, состоящую из двух фаз, разграниченных клеточной стенкой дрожжевой клетки -полупроницаемой мембраной.
При погружении в дрожжевую суспензию осмоиндуцирующего компонента, например хлорида натрия, происходит распад соли на множество микроскопических кристаллов.
Микрокристаллы, несущие в структуре своей кристаллической решётки как положительно заряженные ионы натрия, так и отрицательно заряженные ионы хлора, начинают испытывать силы ион-дипольного взаимодействия со стороны молекул воды. В процессе такого взаимодействия к положительно заряженным ионам натрия молекулы воды притягиваются своими отрицательными полюсами, а к отрицательно заряженным ионам хлора -положительными. Однако если ионы притягивают к себе молекулы воды, то и молекулы воды притягивают к себе ионы. В то же время притянутые молекулы воды испытывают толчки со стороны непритянутых молекул воды, находящихся в тепловом движении. Этих толчков, а также тепловых колебаний самих ионов оказывается достаточным для того, чтобы преодолеть силы, удерживающие ионы натрия или хлора в структуре кристаллической решётки монокристалла, и перевести их в раствор.
Вслед за первым слоем ионов в раствор переходит следующий слой и таким образом идет постепенное растворение микрокристалла. Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов, которые в значительной степени затрудняют обратную ассоциацию ионов с микрокристаллом. Таким образом, с физической точки зрения процесс растворения соли в дрожжевой суспензии фактически представляет со-
бой процесс гидратации ионов осмоиндуцирующего компонента, сопровождающийся последующей его диссоциацией и образованием в растворе (межклеточной среде дрожжевой суспензии) множества ионов, окружённых гидратными оболочками (гидратированных ионов).
Поскольку биомембрана дрожжевой клетки является полунепроницаемой, компоненты рассматриваемой системы не являются изолированными друг от друга, поэтому при растворении соли в дрожжевой суспензии (погружении осмоиндуцирующего компонента в межклеточную среду дрожжевой суспензии) силы ион-дипольного взаимодействия между микрокристаллами и молекулами воды испытывают не только молекулы воды, находящиеся в межклеточном пространстве (фаза 1), но и молекулы воды, локализованные во внутриклеточном пространстве дрожжевой клетки (фаза 2). Следовательно, можно предположить, что хаотичное тепловое движение молекул в результате взаимодействия молекул воды и ионов осмоиндуцирующего компонента, происходит во всей системе в направлении более высокой концентрации монокристаллов (более высокого химического потенциала), то есть наблюдается перераспределение влаги из внутриклеточной среды (фаза 1) в межклеточную среду (фаза 2).
Так как компоненты двухфазной системы не изолированы друг от друга, опираясь на вышеизложенные умозаключения, а также учитывая стремление любой системы к равновесию, было бы логичным предположить, что движение молекул воды в системе должно происходить и в обратном направлении, то есть из межклеточной среды во внутриклеточную. Однако подобного явления не наблюдается в силу особых свойств структуры клеточной мембраны и определённой специфики форм связи влаги в дрожжевой клетке, рассмотренных выше.
Гидратированные ионы, образовавшиеся в процессе ион-дипольного взаимодействия ионов осмоиндуцирующего компонента и молекул воды, являются достаточно крупными структурными образованиями и уже не могут покинуть межклеточное пространство (фазу 1). Таким образом, мы можем наблюдать ситуацию, когда число молекул воды, движущихся из фазы 1 в фазу 2, в значительной степени превалирует над числом молекул воды, движущихся в обратном направлении в силу того, что часть молекул воды, локализованных в межклеточном пространстве, не могут покинуть её в составе образовавшегося конгломерата иона осмоиндуцирующего компонента и воды (гидратированного иона).
При этом величина объёмного потока из фазы 2 в фазу 1 в значительной степени превалирует над величиной объемного потока в обратном направлении и в силу различной подвижности молекул воды и гидратированных ионов осмоиндуцирующего компонента [3], то есть фактически мы наблюдаем эффект перераспределения части внутриклеточной влаги в межклеточное пространство (рис. 3)
Подобный переход влаги через полупроницаемую мембрану дрожжевой клетки в межклеточное пространство будет продолжаться до тех пор пока:
а) в межклеточном пространстве дрожжевой суспензии будут присутствовать частицы способные оказывать влияние на процесс перераспределения, то есть вплоть до полной диссоциации осмоиндуцирующего компонента и образования максимально возможного числа гидратированных ионов (в случае низкой концентрации вносимого осмоиндуцирующего компонента);
б) присутствующие в системе молекулы воды будут обладать достаточной для ион-дипольного взаимодействия энергией и степенью свободы (в случае высокой концентрации вносимого осмоиндуцирующего компонента);
в) величина химического потенциала в межклеточной фазе в результате перераспределения влаги не достигнет минимально возможного показателя (в случае полного перераспределения влаги из внутриклеточного пространства в межклеточное).
Рис. 3 - Схема перераспределения внутриклеточной влаги в межклеточное пространство через полупроницаемую мембрану дрожжевой клетки при погружении в дрожжевую суспензию осмоиндуцирующего компонента
Следствием подобного перераспределения влаги является постепенное возникновение градиента давления - осмотического давления, приводящего к физической деформации клеточной стенки дрожжевой клетки и её сжатию - плазмолизу (рис. 4).
Рис. 4 - Изменение формы и размера дрожжевой клетки при погружении в дрожжевую суспензию осмоиндуцирующего компонента
Погружение осмоиндуцирующего компонента непосредственно в дрожжевую суспензию позволяет создать условия для индуцирования в системе максимально возможного числа частиц способных оказывать влияние на процесс перераспределения, а следователь-
но, обеспечить максимальную эффективность осмотического процесса. В тоже время погружение дрожжевой суспензии в готовый раствор осмоиндуцирующего компонента даёт минимальный осмотический эффект ввиду отсутствия в готовом растворе частиц способных оказывать влияние на процесс перераспределения, то есть если в первом случае процесс перераспределения влаги в биологической системе формируется за счёт совокупного эффекта концентрационного электроосмоса и капиллярного осмоса, то во втором - исключительно за счёт эффекта концентрационного электроосмоса.
Рассмотренная капиллярно-фильтрационная модель перераспределения влаги через полупроницаемую мембрану фактически отображает физическую модель явления прямого осмоса и позволяет достаточно детально представить процессы, происходящие как внутри, так и вне дрожжевой клетки в процессе перераспределения, а также объяснить природу самого явления.
Представленная физическая модель прямого осмоса с достаточно высокой адекватностью репрезентируема в математическую модель и позволяет достичь высокой степени эффективности регулирования осмотических процессов массопереноса в биологических системах в промышленных масштабах.
Литература
1. Муштаев, В.И. Сушка дисперсных материалов / В.И. Муштаев, В.М. Ульянов - М.: Химия, 1988. - 351 с.
2. Дытнерский, Ю.И. Обратный осмос и ультрафильтрация / Ю. И. Дытнерский - М.: Химия, 1978.- 352 с
3. Чураев, Н.В. Физикохимия процессов массопереноса в пористых телах / Н.В. Чураев - М.: Химия, 1990. - 271 с.
© И. А. Латыпов - асп. каф. оборудования пищевых производств КГТУ; М. К. Герасимов - д-р техн. наук, проф. той же кафедры.