Научная статья на тему 'Использование современных установок для вымораживания восковых веществ'

Использование современных установок для вымораживания восковых веществ Текст научной статьи по специальности «Прочие сельскохозяйственные науки»

CC BY
385
46
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КРИОГЕННОЕ ВЫМОРАЖИВАНИЕ / РАСТИТЕЛЬНОЕ МАСЛО / ВОСКОВЫЕ ВЕЩЕСТВА

Аннотация научной статьи по прочим сельскохозяйственным наукам, автор научной работы — Ященко С.М., Пойманов В.В., Константинов В.Е.

Выявлены основные направления использования вымороженного растительного масла, приведен анализ рынков сбыта. Проанализированы тенденции развития криогенного вымораживания. Обоснована актуальность разработки энергосберегающих криогенных аппаратов. Комплексный подход к созданию конкурентоспособных отечественных технологий и оборудования для криогенного вымораживания растительных масел заключается в использовании эффективных инновационных методов охлаждения, интенсификации процесса, уменьшении удельных энергозатрат и, как следствие, снижении себестоимости продукции при достижении высоких качественных показателей. Приведены преимущества использования паров инертного газа как альтернативного направления существующему оборудованию для вымораживания воскоподобных веществ с использованием рассольного или водяного охлаждения. Проведены исследования процесса криогенного вымораживания с использованием паров азота. Научно подтверждено, что барботирование слоя масла парами азота, способствует увеличению холодопроизводительности за счет теплового потенциала и значительно снижает время обработки. Предложены варианты использования криогенного хладоносителя в вымораживающих установках. Определены оптимальные термические, геометрические и гидродинамические режимы работы. Указаны пути повышения энергетической эффективности криогенных аппаратов с использованием криогенного хладоносителя. Полученные результаты позволят производить инженерные расчеты и проектирование прогрессивных вымораживающих установок с различными технологическими режимами. Определены условия охлаждения пищевых жидкостей путём барботирования с возможностью учёта физико-химических особенностей охлаждаемого продукта. Разработан криогенный аппарат непрерывного действия для вымораживания растительных масел повышенной эффективности со способом автоматического управления. Подтверждена экономическая эффективность очистки растительных масел от примесей в непрерывнодействующем криогенном аппарате за счет уменьшения количества оборудования на аналогичные процессы при получении конечного продукта с высокой степенью очистки.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The use of modern facilities for freezing wax substances

The basic directions of use, frozen vegetable oil, an analysis of markets. Analyzed trends in the development of cryogenic freezing. The urgency of developing energy efficient cryogenic devices. Integrated approach to the development of competitive domestic technologies and equipment for cryogenic freezing of vegetable oils is to use effective and innovative cooling techniques, process intensification, reduction of specific energy consumption and, consequently, reducing the cost of production in achieving high quality performance. The advantages of using an inert gas vapor as an alternative direction for existing equipment freezing wax-like substances using brine or water cooling. The investigations of cryogenic freezing using nitrogen vapor. Scientifically confirmed that oil bubbling nitrogen vapor layer, helps to increase the cooling capacity due to the thermal capacity and significantly reduces the processing time. Variants of using cryogenic coolant in the chiller plant. The optimal thermal, geometric and hydrodynamic modes. The ways to improve energy efficiency cryogenic apparatus using cryogenic coolant. The results will produce engineering calculations and design of freezing progressive installations with different technological modes. The conditions for cooling food liquids by bubbling with possibility of integration of physical and chemical characteristics of the cooled product. Cryogenic unit designed for continuous freezing of vegetable oils increased efficiency to the process of automatic control. Confirmed the economic efficiency of cleaning oils from impurities in continuous cryogenic apparatus by reducing the amount of equipment on similar processes in the preparation of the final product with a high degree of purification.

Текст научной работы на тему «Использование современных установок для вымораживания восковых веществ»

УДК 664.8.037.5

Доцент С.М. Ященко, доцент В.В. Пойманов, аспирант В.Е. Константинов

(Воронеж. гос. ун-т. инж. технол.) кафедра машин и аппаратов пищевых производств. тел. (473) 255-38-96 E-mail: serge3y@mail.ru

Associate Professor S.M. Iashchenko,

associate Professor V.V. Poimanov, graduate V.E. Konstantinov

(Voronezh state university of engineering technologies) Department of machines and apparatuses of food production. tel (473) 255-38-96 E-mail: serge3y@mail.ru

Использование современных установок для вымораживания восковых веществ

The use of modern facilities for freezing wax substances

Реферат. Выявлены основные направления использования вымороженного растительного масла, приведен анализ рынков сбыта. Проанализированы тенденции развития криогенного вымораживания. Обоснована актуальность разработки энергосберегающих криогенных аппаратов. Комплексный подход к созданию конкурентоспособных отечественных технологий и оборудования для криогенного вымораживания растительных масел заключается в использовании эффективных инновационных методов охлаждения, интенсификации процесса, уменьшении удельных энергозатрат и, как следствие, снижении себестоимости продукции при достижении высоких качественных показателей. Приведены преимущества использования паров инертного газа как альтернативного направления существующему оборудованию для вымораживания воскоподобных веществ с использованием рассольного или водяного охлаждения. Проведены исследования процесса криогенного вымораживания с использованием паров азота. Научно подтверждено, что барботирование слоя масла парами азота, способствует увеличению холодопроизводительности за счет теплового потенциала и значительно снижает время обработки. Предложены варианты использования криогенного хладоносителя в вымораживающих установках. Определены оптимальные термические, геометрические и гидродинамические режимы работы. Указаны пути повышения энергетической эффективности криогенных аппаратов с использованием криогенного хладоносителя. Полученные результаты позволят производить инженерные расчеты и проектирование прогрессивных вымораживающих установок с различными технологическими режимами. Определены условия охлаждения пищевых жидкостей путём барботирования с возможностью учёта физико-химических особенностей охлаждаемого продукта. Разработан криогенный аппарат непрерывного действия для вымораживания растительных масел повышенной эффективности со способом автоматического управления. Подтверждена экономическая эффективность очистки растительных масел от примесей в непрерывнодействующем криогенном аппарате за счет уменьшения количества оборудования на аналогичные процессы при получении конечного продукта с высокой степенью очистки.

Summary. The basic directions of use, frozen vegetable oil, an analysis of markets. Analyzed trends in the development of cryogenic freezing. The urgency of developing energy efficient cryogenic devices. Integrated approach to the development of competitive domestic technologies and equipment for cryogenic freezing of vegetable oils is to use effective and innovative cooling techniques, process intensification, reduction of specific energy consumption and, consequently, reducing the cost of production in achieving high quality performance. The advantages of using an inert gas vapor as an alternative direction for existing equipment freezing wax-like substances using brine or water cooling. The investigations of cryogenic freezing using nitrogen vapor. Scientifically confirmed that oil bubbling nitrogen vapor layer, helps to increase the cooling capacity due to the thermal capacity and significantly reduces the processing time. Variants of using cryogenic coolant in the chiller plant. The optimal thermal, geometric and hy-drodynamic modes. The ways to improve energy efficiency cryogenic apparatus using cryogenic coolant. The results will produce engineering calculations and design of freezing progressive installations with different technological modes. The conditions for cooling food liquids by bubbling with possibility of integration of physical and chemical characteristics of the cooled product. Cryogenic unit designed for continuous freezing of vegetable oils increased efficiency to the process of automatic control. Confirmed the economic efficiency of cleaning oils from impurities in continuous cryogenic apparatus by reducing the amount of equipment on similar processes in the preparation of the final product with a high degree of purification.

Ключевые слова: криогенное вымораживание, растительное масло, восковые вещества

Keywords: Myogenic freezing, vegetable oil, waxy substance

© Ященко С.М., Пойманов В.В., Константинов В.Е., 2014

Актуальность получения высококачественных продуктов существовала всегда. При производстве растительного масла немаловажную роль играет его конечный вид. На современных маслоперерабатывающих предприятиях для очистки масла используют рафинацию, но в большинстве случаев добиться абсолютной чистоты продукта не удается. Так при хранении в результате отстаивания или в условиях низких температур масло начинает мутнеть. Избавляются от этого путем выведения из рафинированного или дезодорированного масла восковых и высокоплавких веществ вымораживанием -винтеризацией с получением салатного масла, т.е. более очищенного и готового в реализацию как вымороженное товарное масло [1]. Рафинированные растительные масла используются для непосредственного употребления в пищу; производства маргарина, служат сырьём для производства комбинированного масла, а также используются и в других отраслях пищевой промышленности.

Тенденция потребительского рынка к использованию высококачественных ингредиентов диктует компаниям необходимость поиска новых технологий в производстве растительных масел, и, в этом аспекте, криогенное вымораживание отвечает всем требованиям (сохранение цвета, вкуса, витаминов и перекисного числа в исходном сырье, возможность длительного срока хранения при соответствующей упаковке).

Использование криогенных газов в современных условиях производства незначительно из-за недостаточной изученности их действия и доступности. Использование такой продукции могут позволить себе только крупные производители. Отпугивает производителей и относительно высокая цена хладагента, а также большие потери продукции на брак.

Затраты на производство 1 кг продукта с использованием жидкого азота составляет 4-5 % цены готового продукта. Цена жидкого азота значительно колеблется в зависимости от региона и технологии производства. С учётом этого наиболее перспективным будет использование жидкого азота, добываемого из природных высокоазотных газов. Себестоимость такого сжиженного азота, по сравнению с получаемым в промышленности при разделении воздуха, почти на порядок ниже.

Жидкий азот, в отличие от фреонов является озонобезопасным, что также подчеркивает целесообразность его применения.

Учитывая непрерывный рост цен на всё, что связано с производством холода машинным способом, можно с уверенностью сказать, что оборудование и технологии экологически безопасного криогенного замораживания пищевых продуктов имеют хорошие перспективы.

Комплексный подход к созданию конкурентоспособных отечественных технологий и оборудования для криогенного вымораживания заключается в использовании эффективных средств отвода теплоты от продукта, имеющего различную структуру, интенсификации процесса, уменьшении удельных энергозатрат и, как следствие, снижении себестоимости продукции при достижении высоких качественных показателей [2].

Техническая идея внедряемых конструкторских разработок состоит также в повышении степени автоматизации оборудования совмещения кристаллизации и экспозиции в одном аппарате, что позволит снизить время на простои, увеличить рентабельность продукции.

На данный момент существуют следующие способы отделения восковых веществ:

- каскадная фильтрация;

- центрифугирование и сепарация;

- классическая технология выведения восковых веществ с экспозицией и кристаллизацией;

- с помощью синтетических поверхностно-активных веществ (ПАВ), высокоплавких глице-ридов, кристаллических модификаторов;

- винтеризация в мисцелле;

- низкотемпературное фракционирование;

- отделение восков в электрических полях;

- наложения акустического поля;

- криогенное вымораживание при барботировании инертного газа через слой продукта [3].

Совершенствование технологии и разработка оборудования должны базироваться на теоретических исследованиях закономерностей основных процессов, протекающих в аппаратах [4].

На большинстве предприятий используют морально и физически устаревшее оборудование, применяемое с середины прошлого века.

Одним из них является устройство для получения воска из масел (рисунок 1), в котором после охлаждения масла и образования исходной суспензии происходит её разделение в центрифуге, в результате которого очищенное масло отводится, а воск накапливается до необходимого количества.

Рисунок 1. Устройство для получения воска из масел: 1 - кристаллизатор; 2 - центрифуга; 3 - нагреватель; 4 - воздуховод; 5 - вентилятор; 6 - патрубок подвода масла; 7 - патрубок отвода суспензии; 8 - цилиндрический полый стержень; 9 - полый бочкообразный ротор; 10 - отверстие для вывода масла; 11 - патрубок подвода суспензии; 12 - патрубок вывода воска; 13 - патрубок вывода масла

К недостаткам метода относятся периодичность работы установки, зависящая от накопления достаточного количества воскового осадка, а соответственно невозможность вписать это устройство в поточное производство; невысокая степень очистки масла; большие потери продукта и энергии при переработке. В связи с этими проблемами способ не нашел должного применения в промышленности.

Существует способ вымораживания вос-ков из масел с использованием процесса сепарации, который осуществляется в установке с тремя кристаллизаторами (рисунок 2).

Рисунок 2. Установка для вымораживания восков из масел: 1, 2, 3 - основной и дополнительные корпуса - кристаллизаторы; 4 - змеевик; 5 - полый стержень мешалки; 6 - шкив регулятора скорости; 7 - патрубок отвода хладагента; 8 - грундбукса; 9 - патрубок подвода хладагента; 10 - патрубок подвода масла; 11 - подогреватель; 12 - патрубок отвода продукта; 13 - 15 - сепараторы; 16 - 18 - насосы; 19 - 21 - трубопроводы отвода винтеризированного масла; 22 - 24 - трубопроводы отвода отстоя масла; 25 - трубопровод; 26 - сборник осадка воска; 27 - 29 - байпасные трубопроводы

Главными недостатками являются сложность и дороговизна оборудования технологической схемы, загруженность большим числом машин и аппаратов, вызывающая повышение материалоёмкости установки, трудность при выполнении и монтаже схемы автоматизации этого устройства, большой расход энергии и невысокая эффективность очистки, приводящие к тому, что способ практически не используется в процессе очистки масел и получения воска.

В большинстве способов очистки масла процессы кристаллизации и экспозиции восковых веществ проводят в аппаратах смесительного типа.

Самым распространённым из них является лопастной смеситель (рисунок 3), предназначенный для смешивания масел и жиров с фосфорной кислой или водой, а также для тепло-массобменных процессов с жидким продуктом при перемешивании.

Рисунок 3. Смеситель лопастной: 1 - металлический корпус; 2 - лопасти; 3 и 4 - малые и большие диски; 5 - разъёмная эллиптическая крышка; 6 - штуцер для подвода масла; 7 - сальник; 8 - клиноремённая передача; 9 - вал; 10 - патрубок отвода масла; 11охлаждающая рубашка; 12 и 13 -патрубки подвода и отвода хладагента

Для процесса экспозиции широко используется смеситель ножевой (рисунок 4), в котором также возможно проводить смешивание жира с водой при промывке с помощью двадцати плоских горизонтальных взаимноперпендикулярных стальных ножей 2 ромбической формы.

На основании теоретических и экспериментальных исследований был разработан непрерывнодействующий криогенный аппарат (рисунок 5) [5].

Рисунок 4. Смеситель ножевой: 1 - герметический стальной колпак; 2 - ножи; 3 - вал; 4 - основание; 5 - станина; 6 - клиноремённая передача; 7 - электродвигатель; 8 - кожух; 9 - графитовое кольцо; 10 -патрубок отвода продукта

Рисунок 5. Непрерывнодействующий криогенный аппарат: 1 - корпус аппарата; 2 - теплоизоляция; 3 - перфорированный полый вал; 4 - трубчатая мешалка; 5 - патрубок подвода продукта; 6 - патрубок отвода паров хладагента; 7 - вентилятор; 8 - барабанный вакуум-фильтр; 9 - трубки отвода очищенного продукта; 10 - лоток для отвода примесей; 11 - приёмный желоб; 12 - отводящий шнек; 13 - патрубок отвода примесей

В отличие от известных аналогов, аппарат позволяет сократить продолжительность процесса на 70-75 % и полностью автоматизировать процесс [6].

Предварительно были получены экспериментальные характеристики параметров азота, приведенные на рисунке 6.

Напряжение ^ В

120 100 80 60 40

, 20

1- 0

-145 -122

Температура

, С

0 -196

Скорость у,м/с

По результатам исследований процесса вымораживания растительного масла в непре-рывнодействующем криогенном аппарате при барботировании слоя продукта парами азота были получены оптимальные параметры криогенного вымораживания для всех исследуемых видов масла: скорость барботирования 2,2 м/с, температура паров азота 128 К [7, 8, 9].

Изменение температуры в фиксированных точках слоя приведено на рисунке 7.

Рисунок 7. Динамика охлаждения в различных фиксированных точках слоя

Уравнение температуропроводности с учётом влияния гидродинамического и геометрического факторов имеет вид:

(1)

е = А Яеи

й

Рисунок 6. Экспериментальные параметры азота

где А- коэффициент, зависящий от кинетики охлаждения; И- высота слоя продукта, м; й-внутренний диаметр перфорированного полого вала для барботирования паров азота, м.

Проведенные исследования качественных показателей растительных масел в промышленных условиях при криогенном способе вымораживании свидетельствует о преимуществах предлагаемого способа по сравнению с существующими, где используются традиционные хладоносители [10, 11, 12].

Результаты технико-экономиеского расчёта подтвердили целесообразность внедрения способа криогенного вымораживания в аппарате непрерывного действия и его рентабельность. Применение данной технологии очень перспективно в масложировой промышленности.

ЛИТЕРАТУРА

1 Ященко С.М. Особенности криогенного замораживания пищевых продуктов // Вестник ВГТА. 2002. № 7. С. 141.

2 Антипов С.Т., Ященко С.М., Овсянников В.Ю. Повышение эффективности очистки растительных масел от восковых веществ // Техника машиностроения. 2001. № 1. С. 108-109.

3 Пат. № 2180681, RU, С 11 В 3/00. Способ вымораживания восковых веществ из растительных масел / Антипов С.Т., Шахов С.В., Ященко С.М., Овсянников В.Ю. № 2000118946/13; За-явл. 22.03.2001; Опубл. 27.09.2002, Бюл. № 27.

4 Антипов С.Т., Рязанов А.Н., Овсянников В.Ю., Ященко С.М. Вымораживающие установки для концентрирования и очистки жидких пищевых продуктов // Производство и реализация мороженого и быстрозамороженных продуктов. 2001. № 5. С. 36-37.

5 Пат. № 2190010, RU, С 11 В 3/00. Способ вымораживания восковых веществ из растительных масел и установка для его осуществления / Антипов С.Т., Ященко С.М., Овсянников В. Ю. № 2001107743/13; Заявл. 07.06.1999; Опубл. 20.09.2000, Бюл. № 26.

6 Антипов С.Т., Ященко С.М., Овсянников В.Ю. Автоматическое управление криогенного аппарата для вымораживания растительных масел // Масложировая промышленность. 2001. №3. С. 36-38.

7 Антипов С.Т., Ященко С.М., Овсянников В.Ю. Исследование криогенного вымораживания восковых веществ из растительных масел // Хранение и переработка сельхозсырья. 2000. №10. С.19-20.

8 Антипов С.Т., Ященко С.М., Овсянников В.Ю. Термический анализ криогенного вымораживания растительных масел // Масложиро-вая промышленность. 2001. №4. С. 28-30.

9 Антипов С.Т., Ященко С.М., Овсянников В.Ю. Описание процесса вымораживания воска из растительного масла в криогенном аппарате // Вестник международной академии холода. 2000. № 4. С. 39-40.

10 Ященко С.М. Анализ зависимости степени извлечения восковых веществ от температуры // Вестник международной академии холода. 2013. №4. С. 31-33.

11 Пат. № 2395768, RU, F 26 В 5/06, F 26 В 9/06. Вакуум-сублимационная сушилка / Антипов С.Т., Пойманов В.В., Воробьев Д.В. № 2009129715/06; Заявл. 03.08.2009; Опубл. 27.07.2010, Бюлл. № 21.

12 Ященко С.М., Назаров С.А., Овсянников В.Ю. Анализ системы технологических процессов при криогенном вымораживании растительных масел // Масложировая промышленность. 2013. №4. С. 28-31.

REFERENCES

1 Iashchenko S.M. Features cryogenic food freezing. Vestnik VGTA. [Bulletin of VSTA], 2002, no. 7, pp. 141. (In Russ.).

2 Antipov S.T., Iashchenko S.M., Ovsianni-kov V.Iu. Improving the efficiency of purification of vegetable oils from the wax substances. Tekhnika mashinostroeniia. [Technology engineering], 2001, no. 1, pp. 108-109. (In Russ.).

3 Antipov S.T., Shakhov S.V., Iashchenko S.M., Ovsiannikov V.Iu. Sposob vymorazhivaniia voskovykh veshchestv iz rastitel'nykh masel [A method of freezing wax substances from vegetable oils]. Patent RF, no. 2180681, 2001. (In Russ.).

4 Antipov S.T., Riazanov A.N., Ovsianni-kov V.Iu., Ihaschenko S.M. Chiller plant for concentration and purification of liquid foods. Proizvodstvo i realizatsiia morozhenogo i bystrozamorozhennykh produktov. [Production and sales of ice cream and frozen foods], 2001, no. 5, pp. 36-37. (In Russ.).

5 Antipov S.T., Iashchenko S.M., Ovsianni-kov V.Iu. Sposob vymorazhivaniia voskovykh veshchestv iz rastitel'nykh masel i ustanovka dlia ego osushchestvleniia [A method of freezing wax substances from vegetable oils and installation for its implementation]. Patent RF, no. 2190010, 2000. (In Russ.).

6 Antipov S.T., Iashchenk S.M., Ovsianni-kov V.Iu. Automatic control apparatus for cryogenic freezing of vegetable oils. Maslozhirovaia promyshlennost'. [Oil Industry], 2001, no. 3, pp. 36-38. (In Russ.).

7 Antipov S.T., Iashchenko S.M., Ovsianni-kov V.Iu. Investigation of cryogenic freezing wax substances of vegetable oils. Khranenie i pererabotka sel'khozsyr'ia. [Storage and processing of agricultural], 2000, no. 10, pp. 19-20. (In Russ.).

8 Antipov S.T., Iashchenko S.M., Ovsianni-kov V.Iu. Thermal analysis of cryogenic freezing of vegetable oils. Maslozhirovaia promyshlennost'. [Oil Industry], 2001, no. 4, pp. 28-30. (In Russ.).

9 Antipov S.T., Iashchenko S.M., Ovsianni-kov V.Iu. Describes the process of freezing the wax from vegetable oil in a cryogenic apparatus. Vestnik mezhdunarodnoi akademii kholoda. [Bulletin of the International academy of refrigeration], 2000, no. 4, pp. 39-40. (In Russ.).

10 Iashchenko S.M. Analysis of the dependence of the degree of extraction of wax substances temperature. Vestnik mezhdunarodnoi akademii kholoda. [Bulletin of the International academy of refrigeration], 2013, no. 4, pp. 31-33. (In Russ.).

11 Antipov S.T., Poimanov V.V., Voro-biov D.V. Vakuum-sublimatsionnaia sushilka [Freeze-dryer]. Patent RF, no. 2395768, 2010. (In Russ.).

12 Iashchenko S.M., Nazarov S.A. Ovsian-nikov V.Iu. Analysis of technological processes for cryogenic freeze oils Maslozhirovaia promyshlennost'. [Oil Industry], 2013, no. 4, pp. 28-31. (In Russ.).

i Надоели баннеры? Вы всегда можете отключить рекламу.