INVESTIGATION OF IQ-SPECTRA IN THE RECYCLING OF SECONDARY POLYVINYL CHLORIDE
1Beknazarov E.M., 2Dustov A.Y.,3Khudoykulov A.Sh., 4Karshiyev M.T., 5Makhmayorov J.B.
1,2Associate Professor of the University of Economics and Pedagogy 3,4,5PhD, University of Economics and Pedagogy https://doi.org/10.5281/zenodo.14015780
Abstract. The article presents the results of research on the IQ-spectra of secondary polyvinyl chloride waste. In order to plasticize secondary polyvinyl chloride waste, a 1:1 mixture of soap stock and dioctyl phthalate was used as a plasticizer.
Keywords: polyvinyl chloride, IQ-spectrum, soapstock, dioctylphthalate, aromatic ring, asymmetric, symmetric, polymer macromolecule.
INTRODUCTION
In the research conducted on the investigation of the IQ-spectra of secondary polyvinyl chloride (PVC) waste, in order to plasticize secondary polyvinyl chloride waste, a 1:1 mixture of waste soapstock from the local oil industry and dioctyl phthalate was used as a plasticizer.
Below are the results of the research conducted on the study of IQ-spectra of secondary PVC waste.
In doing so, we first obtained the IQ-spectra of secondary polyvinyl chloride and the IQ-spectra of soapstock. After that, we mixed the soap stock in different proportions of the secondary sample and obtained the IQ-spectra of the resulting samples.
Experiment 1. First, the infrared spectrum of the secondary PVC sample for research was studied in the spectrophotometer "Spekord-75UR" at a wavelength of 500-4000 cm-1.
Figure 1. IQ-spectrum of secondary polyvinyl chloride.
The results are presented in Table 1 below.
Table 1
Characteristic frequencies related to important groups in the IQ-spectrum of secondary
polyvinyl chloride
The nature of vibration Frequency, cm-1 Intensity
л, „as VCH2 2914,44 strong
VCH2S 2846,93 strong
ÔsCH2 1462,04 average
Ôch 1435,04 average
Yc-с 873,75 average
Yc-cl 719,45 average
First, the IR-spectrum of secondary PVC was obtained for conducting research and comparison. This Table 1 gives the values of asymmetric and symmetric valence vibrations specific to CH2, CH, C-C, C-Cl groups in secondary PVC.
Experiment 2. Then the infrared spectrum of the soapstock sample in Figure 2 was obtained:
100— соапсток 1
A \ Г
1 1 4k1 m И й \
—1 \ t i 1 I
У S 1
70.__ 1 I ä I I a
AC Л/ Yss г-41*
1 1 1 1 DO 35 1 1 1 II II ■ 1 1 1 DO 3QOO 2:5 ■ 111 JO 24 DO 17 1 1 1 1 50 1 1 a 500 1 1 1 1 1 » 1 125Ö IO 1 1 1 1 1 1 1 ЭО 750
■crm-1
Figure 2. IQ-spectrum of soapstock
Table 2
Characteristic frequencies of soapstock belonging to important groups in the IQ-spectrum
The nature of vibration Frequency, cm-1 Intensity
Voh (connected) 3371,57 strong, average
л, „as VCH2 2922,16 Strong
Vch2s 2852,72 strong, average
Vc=c 1645,28 average, weak
Vc=c (double bond in an aromatic ring) 1548,84 average, weak
5сн (aromatic) 1463,97 average, weak
бон 1406,11 Average
Vco as (-c-0-н) 1085,99 average, weak
Vco s (-c-0-н) 1053,13 average, weak
бсн (alkene) 993,34 Weak
In experiment 2, the IQ-spectrum of soapstock was obtained. This Table 2 shows the asymmetric and symmetric valence characteristic of CH2, CH (aromatic), CH (alkene), C=C, CO, C=C (double bond in aromatic ring), OH (bonded) groups and other groups in soapstock values of fluctuations are given.
Experiment 3. Infrared spectra of samples of soapstock with secondary PVC in 1:0.1, 1:0.3 and 1:0.5 mass units were obtained in the following figures 3.4.3, 3.4.4, 3.4.5:
Figure 3. PVC+soapstock (0.1 m.b.) IQ-spectrum
Figure 4. PVC+soapstock (0.3 m.b.) IQ-spectrum
тщ V4. nF IX+GO.5 1 — 1
K.T Э5— N \ ......1...................
0 Ю с ыГл Ji
r JL
3i 1Л CO S \
75 — 70— / I1
[ \ J, à Г-- =
t* 1 CM b. -ТГ
tx>
55 — 5Q— \
m ш rv
4C 1 1 1 1 É 1 1 1 J 1 1 1 1 1 i 1 1 1 00 3500 3000 2500 2C □O 17 50 15ГО I I I . 1 . I I I 1 50 lOOO 7S 1 1 Q
cm-1
Figure 5. PVC+soapstock (0.5 m.p.) IQ-spectrum
Table 3
Characteristic frequencies related to important groups in IQ spectra of secondary PVC+soapstock (0.1, 0.3 and 0.5 m.p.)
The nature of vibration Frequency, cm-1 Intensity
PVX VcH2as 2918,30 Strong
PVX VcH2s 2848,86 Strong
Soapstock Vc=c 1741,72 Weak
Soapstock Vc=c (double bond in an 1558,48 Weak
aromatic ring)
PVX 5s0H2 1462,04 Average
PVX бон 1444,68 Average
Soapstok бон 1423,47 Average
Soapstock Vcoas (-c-о-н) for the group 1109,07 Weak
Soapstock Vcos (-c-о-н) for the group 1053,13 Weak
Soapstock 5™ (alkene) 923,90 Weak
PVX Yc-с 873,75 Weak
PVX Yc-ci 719,45 average, weak
Soapstock 5=сн 698,23 average, weak
The values of asymmetric and symmetric valence vibrations specific to the CH2 group in PVC (nCH2as ) are 2914.44 cm-1 to 2918.30 cm-1 when soapstock is mixed with secondary PVC in ratios of 1:0.1, 1:0.3, and 1:0.5. ga, and it can be seen that the symmetric vibrations (nCH2s ) have shifted slightly from 1846.93 cm-1 to 2848.86 cm-1. Similarly, the specific valence vibration of the C=C double bond in soapstock (nC=C) ranges from 1645.28 cm-1 to 1741.72 cm-1 and the
valence vibration of the aromatic ring specific double bond nC=C (aromatic double bond in the ring) shifts bathochromically from 1548.84 cm-1 to 1558.48 cm-1.
CONCLUSION
Based on the above experimental results, it can be concluded that the main reason for the improvement of the physical and mechanical properties of polymer macromolecules during the processing of plasticized (1:0.3 m.p.) secondary PVC composite mixtures is that the soapstock and DOF molecules are complete with polymer macromolecules. Mixture and the formation of dipoledipole, electrostatic, hydrogen bond and physical effects can be seen from the changes in the peaks in the above spectra. Secondary PVC mixture with soapstock and DOF 1:0.3 m.b. obtained is an optimal working recipe, which can be used for the production and use of various plasticized polymer composite products for technical purposes.
REFERENCES
1. С. Ш. Лутфуллаев, Э. М. Бекназаров. Исследование физико-химических и механических свойств полимеров из промышленных отходов при их вторичной переработке. Universum: технические науки. 2021. 12-4 (93). 80-83.
2. Э. М. Бекназаров, С. Ш. Лутфуллаев, Ф. М. Сайдалов. Исследование ик-спектры при переработке вторичных полимеров. Universum: технические науки. 2021. 5-4 (86). 2429.
3. Э.М.Бекназаров, С.Ш.Лутфуллаев. Пластифицирланган полимер материаллари. Инновационное развитие нефтегазовой отрасли, современная энергетика и их актуальные проблем. Материалы международной конференции. 26 май, 2020 г. Ташкент, Узбекистан. стр.330-332.
4. Э.М.Бекназаров. Этеленхлоргидрин ва монохлорсирка кислотасининг этил эфирини баъзи учламчи аминлар билан реакцияларини урганиш. Научный Фокус. 2024. 1 (11), 319-324.
5. Э.М.Бекназаров. Натрий карбоксиметилцеллюлозадан рудани бойтишда фойдаланиш. Научный Фокус. 2024. 1 (11), 308-318.
6. Э.М.Бекназаров. Изучение механических свойств при переработке вторичных полимеров. Научный Фокус. 2024. 1 (10), 11-16.
7. ЭМ Бекназаров, СШ Лутфуллаев, ФМ Сайдалов. Иккиламчи полимерларни кайта ишлашда уларнинг технологик хоссаларини тадкик килиш. Инновацион технологиялар. 2021. 3(43). 38-41.
8. Жураев З.Ю. Бекназаров Э.М., Лутфуллаев С.Ш., Сайдалов Ф.М. Иккиламчи полимер чикиндиларининг структур-кимёвий ва физик-механик хоссалари хдкида. Фан ва технологиялар тараккиёти илмий-техникавий журнал.2021.4. 88-93-б.