Научная статья на тему 'INVERSE PROBLEM FOR SUBDIFFUSION EQUATION'

INVERSE PROBLEM FOR SUBDIFFUSION EQUATION Текст научной статьи по специальности «Естественные и точные науки»

3
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «INVERSE PROBLEM FOR SUBDIFFUSION EQUATION»

Uchinchi renessansyosh olimlari: zamonaviy vazifalar,

innovatsiya va istiqbol Young Scientists of the Third Renaissance: Current

Cha'Les.hnnoeon.and^en

INVERSE PROBLEM FOR SUBDIFFUSION EQUATION

M. D. Shakarova

PhD student Institute of Mathematics named after V.I. Romanovskiy. Uzbekistan.

shakarova2104 @gmail .com

Let p e (0,1]. We study the inverse problem of finding functions {u( x, t), f (x)} that satisfy the following problem

Dfu (x, t ) -Au (x, t ) = f (x) g (t ), x eQ, t e (0,T ],

u( xt ) |SQ= 0, u( x,0) = ç( x),

(1)

i

Ju(x,t)dt = ^(x), x eQ.

Here f(x), g(t) and cp(x) are continuous functions in the domain Q<=l ;V and Dp stands for the Caputo fractional derivative.

In order to prove the existence of solutions of forward and inverse problems, it is necessary to study the convergence of the following series:

I hk |2, r> N,

k=i 2

(2)

where hk are the Fourier coefficients of function h(x).

The theorem of V.A. Il'in states that, if function h (x ) satisfies the conditions

I ?k

[ N

h(x)eW^2J\Q) and h(x),A/?(j),....,AMJ/?(x)e^(Q),

(3)

then the number series (2) converges. Here [ a ] denotes the integer part of the number a .

Similarly, if in (2) we replace r by r+2, then the convergence conditions will have the form:

H(x)gW22 (n) and /7(x),A/7(x),....,AL4J h{x)^Wl2{Q). (4) Lemma 1. Let p e (0,1], g(t) e C[0, t] and g(t) ^ 0, t e [0, t]. Then there is constant C0 > 0, depending on T, such that for all k:

C

I Pk ,p(T )!> C°,

(5)

May_15,_2024_

0

262

Uchinchi renessans yosh olimlari: zamonaviy vazifalar,

innovatsiya va istiqbol Young Scientists of the Third Renaissance: Current

where

Pk,

i

,(T ) = j (T - ^)pEpp+l (-Ak (T - nY) g (n)dn.

Lemma 2. Let p e (0,1], g(t) e C1[0, T] and g(0) * 0. Then there exist numbers m0 > 0 and k0 such that, for all T < m0 and k > k0, the estimate (5) hold. Here constant C0 depend on m0 and k0.

Theorem 1. Let pe (0,1], g(t) e C[0,t] and g(t) * 0, t e [0, t] . Moreover let function p(x) satisfy condition (3) and x) satisfy condition (4). Then there exists a unique solution of the inverse problem (1):

1

f ( x) = I

k=i Pk,P(T)

¥k -VkTEP2(-AkTP) vk(x)

/( x t ) = I

k=i

<PEp(-AktP) +

bk pp(t )

Pk pp(T )

¥k -PkTEp,i(-AkTPp

vk( x),

where

t

bkpp (t) = j (t - n)P-1Eppp (-A (t -n)P )g(n)dn.

Theorem 2. Let p g (0,1], g (t ) g C1[0, T ], g (0) * 0 and T is sufficiently small. Moreover, function p(x) satisfy condition (3) and y/(x) satisfy condition (4).

If set B0 p is empty, i.e. pKp(T) * 0, for all k, then there exists a unique

solution of the inverse problem (1).

If set B0p is not empty, i.e. pkp(T) = 0, then for the existence of a solution

to the inverse problem, it is necessary and sufficient that the following conditions

¥k = TEp,2(-\Tppk, k g b0,p be satisfied. In this case, the solution to the problem (1) exists, but is not unique:

1

f ( x) = I

k^B0pk ,p(T )

¥k -PkTEp,2(-AkTp) Vk(X) + I fkVk(x)

keB,

0,p

œ

u^t) = I[PkEp,i(-Akt p) + bkp )fk K (x)

k=1

where fk, k g B0 are arbitrary real numbers.

REFERENCES

0

0

263

May 15, 2024

Uchinchi renessansyosh olimlari: zamonaviy vazifalar,

innovatsiya va istiqbol Young Scientists of the Third Renaissance: Current _Challenges, Innovations and Prospects

1. V.A. Il'in. On the solvability of mixed problems for hyperbolic and parabolic equations // Russian Math. Surveys. {\bf 15}:2, 97-154 (1960).

264

May 15, 2024

i Надоели баннеры? Вы всегда можете отключить рекламу.