Известия ТРТУ
Специальный выпуск
ния в топологических генераторах СОЗУ. Основные функции данного ПО: ввод правил проектирования, ввод шаблонов активных и коммутационных областей логических элементов, параметризация МОП-транзисторов, формирование топологии, сохранение полученной топологии в файле. Анализ результатов работы данного программного обеспечения показал эффективность применения предложенной методики синтеза библиотеки элементов.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Баринов В.В. Сверхбольшие интегральные микросхемы оперативных запоминающих устройств. М.: Радио и связь, 1991.
УДК 621.3.049.771.14.
Е.А. Рынднн
ИНТЕГРАЛЬНЫЙ транзистор на основе эффекта размерного
КВАНТОВАНИЯ ЭНЕРГИИ
В узких потенциальных ямах определенные изменения параметров могут приводить не только к смещению энергетических уровней, но и к их исчезновению. Данный эффект описывается следующей моделью, связывающей число разрешенных энергетических уровней ^ в квантовой яме (КЯ) с ее параметрами (рис.1) [1]:
Ий-
2Ж
к
2+1 +--агс8т
П
Юг Ш1
1 2
'-Ии+ Ь
(1)
где W - ширина КЯ; т - масса электрона; h - постоянная Планка; и1г и2 - высоты барьеров. При этом, согласно (1), вне зависимости от W при и1 = и2 в потенциальной яме будет не менее одного разрешенного состояния.
Fig.1. Квантовая яма
Fig.2. Число уровней в квантовой яме
Fig.3. Зонная диаграмма квантового транзистора
Результаты расчета числа уровней в потенциальной яме с и1 = 1,0 эВ приведены на рис. 2. На основе рассмотренного эффекта разработаны квантовые транзисторы (КТ), характеризующиеся низкой энергией переключения, высокими быстродействием и технологичностью. На рис. 3 приведена зонная диаграмма КТ данного типа. Напряжение на затворе изменяет разность параметров (и1 - и2) потенциальной ямы в области канала. При этом в зависимости от равновесного про-
_Секция конструирования электронной аппаратуры
филя зонной диаграммы возможна реализация нормально открытого, нормально закрытого КТ, с характеристиками М- и Х-типа.
Рассмотренные транзисторы, обладая различными характеристиками, имеют незначительные конструктивно-технологические особенности, что определяет их технологическую совместимость на кристалле и позволит разрабатывать элементы с использованием всех имеющихся вариантов КТ.
Работа выполнена при финансовой поддержке Министерства образования РФ (гранты PD02-2.7-65, Т02-02.2-810, проект 208.02.01.005).
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 1. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники. Новосибирск: Изд-во НГТУ, 2000. 332с.
УДК 621.3.049.77.001.2
Б.Г. Коноплев, И.Е. Лысенко 2Б-МИКРОЗЕРКАЛО С ЭЛЕКТРОСТАТИЧЕСКОЙ АКТИВАЦИЕЙ
Интегральные микрозеркала с электростатической активацией широко применяются в робототехнических системах и системах анализа и обработки изображений [1]. Существующие микрозеркала обладают рядом недостатков: отсутствие функциональной возможности отклонения структуры микрозеркала относительно двух осей и использование полезной площади кристалла под размещение креплений структурных слоев микрозеркала [1,2].
На рисунке приведено разработанное интегральное микрозеркало с электростатической активацией. Для отклонения структуры микрозеркала используются четыре электростатических актюатора, образованных отклоняющими электродами 1-4 и структурой микрозеркала 5. Как видно из рисунка, поворотный узел 6 интегрального микрозеркала располагается под структурой микрозеркала, что позволяет сократить занимаемую микрозеркалом площадь на кристалле.
Для контроля положения струк-
туры микрозеркала используются четыре емкостных преобразователя перемещений 7.
Разработанное микрозеркало изготовляется по технологии поверхностной микрообработки.
Отклонение структуры микрозеркала характеризуется углами поворота ее относительно осей Х и У, которые определяются уровнями напряжений, подаваемых на отклоняющие электроды относительно структуры микрозеркала.
Работа выполнена при финансовой поддержке Министерства образования РФ (проект 208.04.01.009 научно-технической подпрограммы «Электроника» программы «Научные исследования высшей школы по приоритетным направлениям науки и техники»).