ИНФРАКРАСНАЯ ОПТИКО-ЭЛЕКТРОННАЯ СКАНИРУЮЩАЯ СИСТЕМА
ПРЕДОТВРАЩЕНИЯ ПОЖАРОВ
Асатрян Рубен Симонович
Доктор технических наук, Ведущий научный сотрудник, Национальный институт метрологии
Республики Армения, г. Ереван Хачатрян Норайр Рубенович
Доктор технических наук, Начальник службы, Национальный институт метрологии Республики Армения, г. Ереван
Караян Гамлет Суренович
Доктор физико-математических наук, Проф. Факультета физики, Ереванского Гос. Университета, г. Ереван INFRARED OPTICAL-ELECTRONIC FIRE PREVENTION SCANNING SYSTEM
Asatryan Ruben, Doctor of technical siences, leading scientist of Armenian institute of metrology, Yerevan
Khachatryan Norayr, Doctor of technical siences, head of scientific department of Armenian institute of metrology, Yerevan
Karayan Hamlet, Doctor ofphys. Math. Sciences, prof. of department of Physics, Yerevan State University, Yerevan
АННОТАЦИЯ
Представлены результаты разработки и изготовления экспериментального образца автоматического оптико-электронног ИК (инфракрасного) комплекса для дистанционного обнаружения источников теплового излучения (в частности, очагов пожаров). Комплекс "СимАр-А " функционирует в режиме автоматического теплопеленгатора окружающей среды, помощью двух оптико-механических блоков (установленных на определенном базовом расстоянии) для обнаружения, определения расстояния и направления очагов пожаров на ранней стадии их развития. Система работает в режиме автоматическог теплопеленгатора, которая возможно применять при тепловом мониторинге об 'ектов и пространств на поверхности Земли и в атмосфере. При эксплуатации комплекса текущие метеорологические параметры воздуха (температура, относительная влажность и давление) измеряются синхронно. ABSTRACT
The result of our development and preparation of the experimental sample of automatic optical electronic IR complex for the distant detection of thermal radiation sources (seats offire) are presented. The complex "SimAr-A " operates in a mode of continuous scanning of the environment with two spaced optical-mechanical units (places on the basic distances) for detection and determination of the distance and directions of seats offire at an early stage of their development. The system works in a mode of automatic thermo-pelengator, which is possible to use in thermal monitoring of objects and spaces on the Earth surface and in atmosphere. At exploitation of a complex measurements of current meteorological parameters (temperature, relativity humidity and pressure) of air are carried out synchronously.
Ключевые слова: Система инфракрасного сканирования, предотвращение пожара, тепловые об 'екты, дистанционное обнаружение.
Keywords: I nfrared scanning system, Fire Prevention, Thermal Object, Distant detection.
1 Introduction
Monitoring of environment, research and control of ecological conditions involve huge attention of mankind, is especial in the present stage of development of the industry and power. Optical-electronic devices and systems intended for application in ecological researches and at occurrence of extreme situations, constantly are in the center of attention of scientists and engineers. Complexes, in particular, for early detection of the seats of fire arising at natural disasters are irreplaceable. Hence, development and creation of devices and systems for thermal monitoring an environment is the important problem.
The present paper is devoted to the description of the technique developed by us spectral radiometric measurements of point and extended thermal objects and specially made with this purpose of automatic scanning complex "SimAr-A". The complex is intended for automatic scanning of environmental space with the purpose detection of point and extended thermal sources (in particularly seats of fire) on distance up to 7-10km, under various climatic conditions in the atmosphere. The complex functions in a mode of continuous scanning environmental space with the help of two optical-mechanical sensors (established on the certain base distance from each other) for detection and definition of site of thermal objects, in particular the seats of fire at an early stage of their development. The equipment works as automatic thermo-pelengator and can be applied in thermal monitoring of objects and spaces on the surface of the ground and in an atmosphere. At operation of a complex synchronous measurements of the current meteorological parameters (temperature, pressure and rel. humidity of air) are carried out.
2 Short Description of Equipment
Structurally the complex consists of two optical-mechanical sensors (OMS) established on specially developed scanning platforms and the unit of electronic control joined with personal computer for automatic processing of measurement results of the thermal radiation from researched objects under specially developed program. The complex can be carried out in three various variants:
- Air basing (for example, on the helicopter);
- Mobile (on two automobiles of the microbus type);
- Stationary (established on the special platforms).
The optical scheme OMS is shown on fig. 1.
The Entrance mirror objective of Cassegrainian type in diameter 108mm and with focal length 200mm.
OMS provides the temperature resolution no less then 0.50C in a range of temperatures of researched thermal objects from 300 up to 10000C. Detection of a thermal source (under normal meteorological conditions in the atmosphere) the sizes 3x3m2 on distance about 7km.
The Electronic Control Unit (UEC) structurally of desktop execution. All bodies of indication and management are located on the forward panel. In laboratory conditions UEC is established on a table, and field conditions it is mounted in auto laboratories with the help of shock-absorbers. Appearances OMS and UEC complex "SimAr-A" are shown on fig. 2.
Shortly the principle of work "SimAr-A" of radiometer consists in the following: In OMS the stream of radiation from researched object gathers with help optical system (see fig. 1)
and is focused on a sensitive platform of a photodetector. Further the preamplifier strengthens an electric signal and transfers to UEC. In UEC electronic circuits strengthen, demodulate and filter a signal from an output of photodetector, in result on an output there is a signal which amplitude is a measure absolute IR radiation of object. Knowing size collected radiat-
ing power (with the help of the data which have been preliminary carried out of the device power graduation [1,1035]), spectral filtering properties of system and a degree of amplification, the output signal can precisely transform to absolute measurement of IR Radiation characteristics of object.
Removabe flat mirror
Seeon dary mirror
Basic cavity
ft
n
Field diaphragm
Disk with interferation photofilters
I I
Projecting objective 1
Sensitive surface of photosensor
Radiation from the object
Primary mirror__v___u
\ D С 0 О С
Projecting objective 2
Liqud nitrogen
Visir
Viewing tube
Figure 1: The optical scheme of OMS "SimAr-A" complex.
i
• i
—;
i I
4
(B)
Figure 2: OMS-(A) & UEC-(B) of "SimAr-A" Complex.
3 Measurement Methodology of IR Radiation from Extended and Point Thermal Sources
Before carrying out of natural measurements with the help of complex "SimAr-A" power graduation of IR radiometer is carried out. The purpose of graduation is measurement of the response of the device on a known standard source-is usual a black body with known temperature. In work [1, p. 1035] the technique of power graduation for before developed by us similar IR Spectral Radiometer is in detail analyzed and for spectral graduation characteristics of the device k(X) (in the region of lengths of waves from 2.5 up to 5.5|im) the following relation is received:
5 (1)
K (Я) =
ß{r(Я, T) • r (Я, l) - r(Я, T0) + r(Я, Ta )[1 - r(Я, l)]}
(1)
S(X)-amplitude of output signal; p-factor of amplification of the electronic system; r(X,T)-Planck function at the temperature calibration black body T (in our case T=2600C) and on length of a wave X; x(X,l)-atmospheres transparency on a way; l-between the calibration source and device; T0-tem-perature of the internal basic black body (T=24.20C); Ta-tem-perature of air during experiment (power graduation). Values of the graduation characteristics k(X) enter the name in constant memory of processing system of the equipment for further use at automatic processing results of measurements in natural conditions.
In dependence k(X) from X the powerful strip of absorption of atmospheric carbonic gas with the center on length of wave 4.28|im [1, p. 1035, 2, p.318] is distinctly visible.
Researched objects, a stream of radiation from which completely are filled with a field of vision of the device, are at these measurements extended. In this case at researches the spectral density of power brightness of object W(X,T) is measured in terms of w/cm2ster. |im. According to (1) output signal of radiometer S(X) it is possible to express by the following relation:
S(X) = K (X) • ¡{W (X, T) • z(X, l) - r(X, T) + r(X,Ta )[1 - z(X, l)]} (2)
For spectral density of power brightness of researched object it is possible to write:
W(A T)= S(X) / K(X) • 3 + r(X, Tp) - r(X, Ta )[1 - T(X, l)]
( , ) Z(X,l)]} (3)
The transparency of atmosphere t(X,1) or is simultaneously measured, or according to synchronous measurements meteoparameters (temperature, pressure and rel. humidity of air) pays off with the help literature data [3, p.464,4, p.360].
Radiation from point sources completely field of vision of the device is usual does not fill. If the area of the radiation surface of object A is known, it is possible to measure its spectral density of power brightness according to the above-stated technique, i. e.
12
Wp (X, T ) = W (X, T )•« —
A
(4)
Where <a-a solid angle of a field of vision of radiometer (equal 3mrad.); W(X,T)-the full measured spectral density
brightness on (3); l-distance from researched object up to the device.
At measurements of point objects represents also interest spectral contrast of a source of radiation when radiation of a background is comparable to radiation of object. In this case it is necessary to allocate a signal of a background SB(À) from a signal "source + background S(À). And we shall receive spectral radiating contrast of a source:
AS (À) -œ-12
W (l) =
K(Я) -т(Л, l) • A
(5)
/ (Я):
Where A S(2)=S(2)-SB(2) If the area of radiating surfaces of the researched object A is unknown, it is possible to determine contrast spectral force light of a source (in terms of w/cm2ster.|im):
,= W (2). =
' ' K(2) -r(2, l) ,6)
The described measurement methodology of IR radiation fluxes from point and extended thermal objects underlies reception and automatic processing of the measuring data with the help of complex "SimAr-A".
In the end we shall note, that complex "SimAr-A" except for the ecological control environmental space, with the purpose of detection and prevention of occurrence of fires, can used also in scientific researches of physical properties point and extended IR sources, for monitoring an environment at extreme situations and natural disasters.
4 Conclusion
In IR Radiometer System for decrease of overall dimensions and rise of sensitivity, usually, using entry objectives of a type Cassegrainian [5, p. 272, 6, p. 174] as is executed in our operation. But the matching developed by us Spectral Radiometer "SimAr-A" with closely existing analog [7] shows at least two clear advantages of the instrument, described in the
present paper. With the purpose of the greatest elimination of chromatic aberration in the optical "SimAr-A" system two pairs projections mirror of objectives are applied, and in second, for the extension of instrumentation functionality's on ring disks of a mode of light filters (on region from 3 to 5, and 8 to 14 |im) are placed half-ring variable cline light filters [8] for spectral measurements of spectrum.
On the developed by us Universal Infrared Spectral Radiometer "SimAr-A" received Patent AM No1678 A2, 28.11.2005.
References
1. Asatryan R.S., et. al., Universal Infrared Spectral Radiometer, Internationl Journal of IR and MM Waves 24, pp. 1035-1046, 2003.
2. Zuev V.E., Atmosphere Transparency for Visible and Infrared Beams, Radio Publ. Moscow, 1966, pp. 318, (In Russian).
3. Krus P., MacGloulin L., MacKvistan P., Fundamentals of Infrared Techniques, MO SSSR, M., 1964, pp. 464, (in Russian).
4. Pavlov A.V., Optical\Electronic Instruments Energy Publ., Moscow, 1974, pp. 360, (in Russian).
5. Kozelkin V.V., Fundamentals of Infrared Engineering, Mashinostroenie Publ., Moscow, 1974,pp. 272 (In Russian).
6. Abrahamyan Yu.A. et. al., Threshold Characteristics of Photo-Sensors, IR Radiometers and Main Materials of a Modern Photo Electronics, Publ. Yerevan State University, Yerevan, 2004, pp. 174 (in Russian).
7. Dual Cannel Radiometer, U.S. Patent-3476914.
8. Branch Standard, Filters Optical Ring Varable for Region of a Spectrum 1.8-5.6 |im, OST3-5683-84, 1984, (In Russian).
ПОВЫШЕНИЕ НАДЁЖНОСТИ АГРЕГАТОВ АВТОМОБИЛЕЙ ПУТЁМ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ МАНЖЕТНЫХ УПЛОТНЕНИЙ
Асцатуров Юрий Георгиевич
Канд. техн. наук, доцент кафедры «Техническая эксплуатация автомобилей» ИСОиП (филиала) ДГТУ, г. Шахты
Лопаткин Антон Владимирович Магистрант кафедры «Техническая эксплуатация автомобилей» ИСОиП (филиала) ДГТУ, г. Шахты
Семенов Владимир Владимирович Ханжонков Юрий Борисович
Канд. техн. наук, доцент кафедры «Радиоэлектронные и электротехнические системы и комплексы»
ИСОиП (филиала) ДГТУ, г. Шахты
Техническое состояние автомобиля определяет его надёжность. Повышение надёжности агрегатов автомобилей может быть достигнуто установкой качественных деталей. Эффективность и долговечность работы агрегатов автомобилей, имеющих вращающиеся детали, во многом зависит от надежности работы пары трения «манжетное уплотнение-вал», т.е. от характеристик поверхностного слоя детали, режима работы, типа и качества применяемых уплотнений, а также условий эксплуатации автомобилей.
Манжетные уплотнения препятствуют утечке масла из картера двигателей и коробок переключения передач автомобилей при работе, а также мешают проникновению пыли, грязи и влаги из внешней среды. Срок службы агрегатов автомобилей напрямую зависит от
надёжности уплотнений, а их внезапный отказ влечет за собой трудоёмкий дорогостоящий ремонт и простои автомобилей. Целесообразность работы над повышением надёжности манжетных уплотнений достаточно очевидна и требует применения специальных стендов для испытания уплотнений, устанавливаемых в агрегатах автомобилей [1].
С целью непрерывного мониторинга и определения времени от начала испытания манжетного уплотнения до нарушения его герметичности, авторами было предложено устройство для исследования манжетных уплотнений [2].
На рисунке 1 представлена конструкция устройства для исследования манжетных уплотнений.