Научная статья на тему 'Influence of dispersion medium on processes of mechanochemical oxidation of iron'

Influence of dispersion medium on processes of mechanochemical oxidation of iron Текст научной статьи по специальности «Химические науки»

CC BY
74
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
IRON OXIDES / MECHANOCHEMICAL OXIDATION / IRON POWDER / CAST IRON POWDER / PHASE COMPOSITION

Аннотация научной статьи по химическим наукам, автор научной работы — Zhuchko Ekaterina S., Il'In Aleksandr A., Rumyantsev Ruslan N., Lapshin Maksim A., Grishin Il'Ya S.

The theoretical part of this paper is devoted to a review of the methods of iron oxides obtaining. In particular, features of methods of sedimentation from solutions, thermal decomposition of iron salts and mechanochemical synthesis are considered. In the experimental part of the paper the process of mechanochemical oxidation of coarse-dispersed iron and cast iron powders was studied using X-ray diffraction and synchronous thermal analysis, Mossbauer and IR-spectro-scopies and a complex of chemical methods. The possibility of obtaining iron oxides with various structures by the mechanical activation of iron powder of PZhR grade and cast iron powder of SCh 12-28 grade in a roller-ring vibrating mill in the environment of technical oxygen, vapour-oxygen mixture with the vapour:gas ratio of 0.45, water and oxalic acid solutions with concentrations from 5 to 30% is shown. Data on phase structure of the products received in stages of mechanical activation and heat treatment are given. Optimal parameters of technological processes, among of which the time of mechanical activation, temperature and duration of a heat treatment, are determined. Influence of composition of fluid and gas phases on the rate and coefficient of conversion of ferriferous powders into oxides is established. The comparative analysis of various options of technological process is carried out. On its basis it is established that the most efficient oxidizer of metal powders is the 25% oxalic acid. Using this oxidizer and changing in a temperature of heat treatment from 240 to 450 °C it is possible to obtain anionically modified iron oxides with the specific surface area from 70 to 120 m2/g that is 10 times more than that of iron oxides received by industrial technology based on the methods of sedimentation and thermal decomposition of salts.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Influence of dispersion medium on processes of mechanochemical oxidation of iron»

DOI: 10.6060/tcct.2017609.5678 УДК 66.094.3-92:66.097.3-039.672: 546.05:546.72

ВЛИЯНИЕ ДИСПЕРСИОННОЙ СРЕДЫ НА ПРОЦЕССЫ МЕХАНОХИМИЧЕСКОГО

ОКИСЛЕНИЯ ЖЕЛЕЗА

Е.С. Жучко, А.А. Ильин, Р.Н. Румянцев, М.А. Лапшин, И.С. Гришин, А.В. Волкова, А.П. Ильин

Екатерина Сергеевна Жучко

Факультет учета и бизнеса, Университет Эдинбурга, Старый колледж, Южный мост, Эдинбург, EH8

9YL, Шотландия

E-mail: [email protected]

Александр Александрович Ильин, Руслан Николаевич Румянцев *, Максим Александрович Лапшин, Илья Сергеевич Гришин, Анжелика Викторовна Волкова, Александр Павлович Ильин

Кафедра технологии неорганических веществ, НИИ Термодинамики и кинетики химических процессов, Ивановский государственный химико-технологический университет, Шереметевский пр. 7, Иваново, Российская Федерация, 153000

E-mail: [email protected], [email protected] *, [email protected], [email protected], [email protected], [email protected]

В теоретической части работы выполнен обзор способов получения оксидов железа, в частности, рассмотрены особенности методов осаждения из растворов, термического разложения солей железа и механохимического синтеза. В экспериментальной части работы с помощью методов рентгенофазового, рентгеноструктурного и синхронного термического анализа, мессбауэровской и ИК-спектроскопии, а также комплекса химических методов исследован процесс механохимического окисления крупнодисперсных порошков железа и чугуна. Показана возможность получения оксидов железа различного состава путем механической активации порошка железа марки ПЖР и чугуна марки СЧ 12-28 в ролико-кольцевой вибрационной мельнице в среде технического кислорода, паро-кислородной смеси с соотношением пар:газ=0,45, воды и растворов щавелевой кислоты концентрацией 5-30%. В работе приведены данные по фазовому составу получаемых продуктов на стадиях механической активации и термической обработки. Определены оптимальные параметры технологических процессов: время механической активации, температура и длительность термической обработки. Установлено влияние состава жидкой и газовой фаз на скорость и степень превращения железосодержащих порошков в оксиды. Проведен сравнительный анализ различных вариантов технологического процесса, на основе которого сделан вывод, что наиболее эффективным окислителем металлических порошков является 25%-ная щавелевая кислота. Использование этого окислителя позволяет, изменяя температуру термообработки от 240 до 450 °С, получать анионно-модифицированные оксиды железа с площадью поверхности от 70 до 120 м2/г, что на порядок выше, чем у оксидов, полученных по промышленной технологии, основанной на методах осаждения и термического разложения солей.

Ключевые слова: оксиды железа, механохимическое окисление, порошок железа, порошок чугуна, фазовый состав

INFLUENCE OF DISPERSION MEDIUM ON PROCESSES OF MECHANOCHEMICAL

OXIDATION OF IRON

E.S. Zhuchko, A.A. Il'in, R.N. Rumyantsev, M.A. Lapshin, I.S. Grishin, A.V. Volkova, A.P. Ilyin

Ekaterina S. Zhuchko

Accounting and Business Department, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, Scotland

E-mail: [email protected]

Aleksandr A. Il'in, Ruslan N. Rumyantsev *, Maksim A. Lapshin, Il'ya S. Grishin, Anzhelika V. Volkova, Aleksandr P. Ilyin

Department of Technology of Inorganic Substances, SRI of Thermodynamics and Kinetics of Chemical Processes of ISUCT, Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia

E-mail: [email protected], [email protected] *, [email protected], [email protected], [email protected], [email protected]

The theoretical part of this paper is devoted to a review of the methods of iron oxides obtaining. In particular, features of methods of sedimentation from solutions, thermal decomposition of iron salts and mechanochemical synthesis are considered. In the experimental part of the paper the process of mechanochemical oxidation of coarse-dispersed iron and cast iron powders was studied using X-ray diffraction and synchronous thermal analysis, Mossbauer and IR-spectro-scopies and a complex of chemical methods. The possibility of obtaining iron oxides with various structures by the mechanical activation of iron powder of PZhR grade and cast iron powder of SCh 12-28 grade in a roller-ring vibrating mill in the environment of technical oxygen, vapour-oxygen mixture with the vapour:gas ratio of 0.45, water and oxalic acid solutions with concentrations from 5 to 30% is shown. Data on phase structure of the products received in stages of mechanical activation and heat treatment are given. Optimal parameters of technological processes, among of which the time of mechanical activation, temperature and duration of a heat treatment, are determined. Influence of composition of fluid and gas phases on the rate and coefficient of conversion of ferriferous powders into oxides is established. The comparative analysis of various options of technological process is carried out. On its basis it is established that the most efficient oxidizer of metal powders is the 25% oxalic acid. Using this oxidizer and changing in a temperature of heat treatment from 240 to 450 °C it is possible to obtain anionically modified iron oxides with the specific surface area from 70 to 120 m2/g that is 10 times more than that of iron oxides received by industrial technology based on the methods of sedimentation and thermal decomposition of salts.

Key words: iron oxides, mechanochemical oxidation, iron powder, cast iron powder, phase composition

Для цитирования:

Жучко Е.С., Ильин А.А., Румянцев Р.Н., Лапшин М.А., Гришин И.С., Волкова А.В., Ильин А.П. Влияние дисперсионной среды на процессы механохимического окисления железа. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 9. С. 61-75 For citation:

Zhuchko E.S., Il'in A.A., Rumyantsev R.N., Lapshin M.A., Grishin I.S., Volkova А^., Ilyin А.Р. Influence of dispersion medium on processes of mechanochemical oxidation of iron. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 9. P. 61-75

INTRODUCTION

Presently iron oxides are one of the most widespread powder materials which are widely used by production of inorganic pigments and fillers, magnetic data carriers, catalysts and sorbents [1-7].

The most common methods of receiving disperse systems like hydroxides, oxyhydroxides and oxides of iron (Ill) are oxidation of compounds of iron (II) and hydrolysis of compounds of iron (III) [5-9].

Hydroxides, nitrates, carbonates, sulfates, al-coholates, oxalates and other iron compounds are used

as raw materials for receiving iron oxides by thermal decomposition [7, 10-15]. The method of magnetite obtaining by joint annealing of powder mixture of metal iron and hematite (a-Fe2O3) at a temperature of 740-840°C with further cooling in the closed volume and inert environment and crushing of the received mixture is described in the patent [16]. Authors of work [17] suggest to synthesize ferrous oxide with controlled fractal dimension of a surface. This method is based on thermal decomposition of a product of ferrous-ammonium oxalate dehydrofreezing. Microwave synthesis is one of the heat treatment methods. The possibility of y-Fe2O3 obtaining from ferrous nitrate both in the process of microwave influence and its combination with low-temperature processing is shown in the work [18].

Methods of sedimentation are based on liberation of iron compounds from water solutions of insoluble salts in the form of hydroxides, carbonates, hydrocarbonates with their further thermal decomposition [5, 8, 19-24]. The technology can be presented schematically as follows:

iron salt + precipitant ^ precipitate ^ precipitation ageing ^ flushing ^ drying ^ calcination

Sulfate or nitrate of iron are preferable raw materials for precipitation [19-22, 24-30]. Initial reagents for oxidic catalysts manufacturing should be available, well soluble in water and they must not contain harmful impurities. For example, iron chlorides and sulfates are avoided in catalysts production since chlorides and sulfates are poisons for the majority of catalysts. Presence of sodium is also undesirable as far as it may cause agglomeration of an end-product [25].

Ammonium, sodium and potassium hydroxides are usually used as precipitators. Ammonium and sodium carbonates are widely used as well. There are data on application for iron precipitation using gaseous ammonia which is bubbled through its salt solution [19-22, 24-31].

Authors of work [31] offered the method of iron oxides obtaining that is based on interaction of metal iron in the form of microspherical particles, scrap or cuttings with carbonic acids solutions up to formation of iron carboxylats and their thermal decomposition at 200-350 °C. The article [32] is devoted to the obtaining of iron oxide of high purity using techno-genic raw materials by the method of liquid extraction.

Iron compounds are also found in nature. For example mineral ferrichydrate [33-35] is a natural oxohy-droxide and its stoichiometric formula is Fe5HOs4H2O [33, 36]. The samples of a synthetic ferrichydrate are described in the literature [33, 34, 37, 38]. The size of

a two-way ferrichydrate is 1.6-2.0 nm, its specific surface area is 300-400 m2/g. Due to the nanodimension of ferrichydrate crystallites and their high specific surface area the special catalytic characteristics in comparison with well crystallized iron oxides such as hematite and getit (a-FeOOH) are expected. Unique properties of this compound open up the prospects of its use in catalysis. Instability of ferrichydrate limits its application [33, 34].

New, alternative methods of iron oxides obtaining are of great interest presently. One of them is mechanochemical synthesis (MCS). Mechanical treatment, as it is shown in the work [39], of Fe and Fe2O3 mixture in planetary-centrifugal mill leads to formation of a nanocrystal wustite with nonequilibrium structure Fe0,87O. Its further thermal decomposition in vacuum at 200 °C allows nanodimensional composite Fe/Fe3O4 to be received. In the article [40] the oxidation of powder of pentacarbonyl iron in water using planetary-centrifugal mill is considered.

MCS as a the method of obtaining oxidic materials allows to avoid pollution of a product to be synthesized, to reduce the number of power-intensive stages, to combine stages and to provide high economy of the technological process. Besides, the MCS makes it possible not to use solvents or use them in the minimum quantity that significantly simplifies ecological problems of chemical productions [41-45].

The purpose of the work is to research processes of mechanochemical synthesis of iron oxides from coarse dispersed powders of metal iron and cast iron in the roller-ring vibrating mill of average power tension using gaseous and liquid oxidizers. This requires researching of the physicochemical processes that occur when powder of metal iron is to be mecha-nochemical oxidized (MCO) and clarification of influence of the used oxidizer on the structure of obtained product.

MATERIALS AND METHODS

Coarse dispersed iron powders (IP) grade PZhR-3.450.26 with particle size up to 630 ^m and cast iron powders (CIP) grade SCh 12-28 with particle size up to 1250 ^m were used as the raw materials for obtaining iron oxides.

Mechanochemical oxidation using various ox-idizers was carried out in the roller-ring vibrating mill VM-4. Roller and ring made of chemically resistant steel grade ShH15 were used as the grinding bodies. Their total mass is 1194 g and the mass of the material to be activated is 100 g.

MCO of metal powders in the oxygen and va-pour-oxigen environment was carried out using special

facility (Fig. 1). The reactionary glass (8) of vibrating mill (7) is filled up with ferriferous powder. Oxygen or vapour-oxigen mixture made up by bubbling oxygen (1) through water (6) is fed through unions in reactor cover. Temperatures in the reactor and in the bubbler are registered with multifunctional temperature registrar and are brought to the personal computer display.

Fig. 1. Scheme of device for MCO of metal powders: 1 - balloon (O2); 2 - valve; 3 - heating element; 4 - rotameter; 5 - thermometer; 6 - bubbler; 7 - vibration mill; 8 - reactor; 9 - sample; 10 - fan;

11 - thermal jacket; 12 - multifunctional temperature meter; 13 - PC Рис. 1. Схема установки для МХО порошков металлов: 1 - баллон (O2); 2 - вентиль; 3 - нагревательный элемент; 4 - ротаметр; 5 - термометры; 6 - барботер;7 - вибромельница; 8 - реактор; 9 - образец; 10 - вентилятор; 11 - тепловая рубашка;

12 - многофункциональный регистратор температур; 13 - ПК

Gaseous oxygen with the flow of 15 ml/min, vapour-oxygen mixture with the vapour:gas ratio of 0.45, distilled water and oxalic acid solution with concentration of 5-30 mass % were used as oxidizing mediums.

The X-ray diffraction phase analysis (XRD) was carried out using diffractometer DRON-3M with Cu Ka - radiation (X = 0.15406 nm, the Ni-filter). XRD analyzes data were identified with the help of Mincryst database. Broadening of X-ray diffraction profile allows to define how the area of coherent dispersion (ACD) and value of mean square microdeformations changes. Thermogravimetric analysis of mechanical activation products was carried out using synchronous thermal analysis facility STA 449 F3 Jupiter in the atmosphere of Ar-O2 with heat rate of 5 °С-мин-1. The composition of the obtained oxides and content of metal iron were determined by the method of differentiating dissolution that based on selective dissolution of iron from oxides mixture [46] and by the method of Mossbauer spectroscopy [47] that was executed using the YaGRS-4M spectrometer that was working in the permanent accelerations mode with the use of y-radiation 57Co in Cr matrix at the room temperature.

The X-ray photoelectronic spectroscopy was chosen as the researching method of samples surface that was executed using ES-2403 facility with 5-chan-nel energy analyzer PHOIBOS-IOO. The samples specific surface area was determined by the BET method using Sorbi MS device. The laser analysis of particle distribution by the sizes was carried out on the Analysette 22 Laser-Partikel-Sizer device that is the universal instrument for establishing particle dispersion of solids in liquid, gas (suspension, aerosol) or emulsion. The particle distribution of coarse dispersed powders was determined by the sieve method. IR spectra of powder materials were received using facility called Avatar 360 FT - IR ESP with wave number range of 400-4000 cm-1. Powder to be analyzed was used in the form of tablets with potassium bromide. The element analysis was carried out with FlashEA 1112 CHNS-O Analyzer device. The amount of the brought energy in the course of the MA was calculated by the technique stated in work [48].

RESULTS AND THEIR DISCUSSION

1. Mechanochemical oxidation of IP and CIP by oxygen

Laser and sieve analyzes (Tab. 1) shown that cast iron predominantly consists of coarse particles with the size up to 1250 ^m and the share of particles with the size less than 50 ^m makes up about 0.1%.

Table 1

Dispersed composition of CIP

Fraction content, %

Activation <50 ^m 50- 71- 100- 140- 250- 315- 630-

time, min 71 100 140 250 315 630 1250

^m ^m ^m ^m ^m ^m ^m

0 0.1 0.2 0.1 0.2 0.9 0.5 19 79

15 4.3 10.1 16.4 21.6 46.6 0.6 0.4 0

30 22.1 23.9 14.6 19.7 19.6 0.1 0 0

45 1.5 4.3 13.2 50.9 30.1 0 0 0

As a result of the MA within 30 min the share of particles with the size less than 50 mm increases up to 22.1%. When increasing the time of mechanical treatment up to 45 min the aggregation processes are dominating and the share of particles with the size less than 50 ^m decreases to 1.5%. It shows that MA processes are dissimilar i.e. not only processes of amor-phicity are take place but also there is an aggregation of fine particles in large agglomerates.

Element analysis data (Tab. 2) shows that the content of sulfur in cast iron is minimal and does not exceed 0.004%. The carbon and silicon which are con-

tained in cast iron do not impair the qualities of the future catalyst but they can improve its molding capacity. The manganese which is contained in cast iron can exert positive impact on catalytic properties [20, 49].

Table 2

Data of elemental analysis of CIP Таблица 2. Данные элементного анализа ПЧ

shows influence of energy density on the process of oxidation of metal iron phase.

Element content, %

C H S O

3.903 0.017 0.003 0.596

By results of the laser and sieve analysis it is established that IP consists of coarse particles with the size up to 630 ^m. The share of particles less than 50 ^m makes 0.25% (Tab. 3).

Table 3

AG°298 of reaction of iron oxides formation

№ of reaction Reaction AGG298, MJ/mole

1 Fe + 1/2O2 = FeO -0.244

2 3Fe + 2O2 = FesO4 -1015.0

3 4Fe + 3O2 = 2Fe2Os -741.65

4 4Fe2Os + Fe = 3FesO4 -0.2355

E, kJ/g

100-

It is known that iron forms three steady oxides: wustite FeO, hematite a-Fe2O3 and magnetite Fe3O4, that is depend on production conditions, precursor and temperature. Values of Gibbs energy for reactions of formation of different iron oxides are given in Tab. 3. It is shown that formation of Fe3O4 is thermodynami-cally the most probable. Thus any of these oxides can be formed but the first two are able to turn into the third. Besides during the reaction Fe2O3 will be formed on a surface and will interact with metal iron, the surface of grinding bodies and reactor walls.

As a result of the MA of metal iron powder in the environment of oxygen excess within 60 min in vibrating mill gradual reduction of phase reflexes of metal iron and formation of the X-ray amorphous product are observed. Heat treatment of the product at 450 °C leads to formation of magnetite - Fe3O4 that is confirmed also by results of IR-spectroscopy. Intensive absorption bands in the area of 450-500 cm-1 which are characteristic for metal oxides are observed.

According to chemical and X-ray phase analyses conversion coefficient of iron was evaluated. It is established that the content of metal iron phase in the course of activation of CIP decreases and makes 10% during 60 min of MA and 7% in the oxidation process of IP (Fig. 2, curve 1,2). During MCO temperature in the reactor increased up to 61°C due to the fact that reaction of iron oxidation is exothermic. Friction and blowing of grinding bodies on the reactor walls also raise the temperature (Fig. 2, curve 3). The curve 4

Fig. 2. Changing in temperature and content of Fe0 in the course of MA of CIP and IP in oxygen: 1-IP, 2-CIP, 3 - temperature line,

4 - Fe0 content in IP after 60 min. of МА Рис. 2. Изменение температуры и содержания Fe0 в процессе МА ПЧ и ПЖ в кислороде: 1-ПЖ, 2 - ПЧ, 3 - линия температуры, 4 - содержание Fe0 ПЖ после 60 мин МА

Calculation of parameters of fine crystal structure shows that the sizes of CSR monotonously decrease both in case of oxidation of CIP and IP (Tab. 4). However, the sizes of CIP crystallites at bigger dispersion of initial powders have the smaller size than IP. After 5 minutes of the MA the size of CIP and IP makes 24.1 and 28.2 nm respectively. Obviously, it is connected with the fact that cast iron is more brittle material and under the influence of intensive mechanical treatment it collapses faster than iron. Also there is a growth of microdeformations of iron phase that is caused by increase of density of chaotically distributed dislocations and increase of lattice parameters connected with implementation of oxygen in it (Tab. 4).

According to the equilibrium phase diagram of the Fe-O [50] system solubility of oxygen in a-Fe does not exceed 0.1 at. %. At the same time, solubility of oxygen in the deformed iron more than 10 times exceeds its solubility in casted form [50]. Increase of the oxygen content is followed by some increase in lattice parameters of a-Fe (Tab. 4). Thus if small (0.3 at. %) amounts of the dissolved oxygen lead to reduction of lattice parameter then on the contrary increasing of its content leads to the growth of lattice parameter [51].

It is known that brittle destruction of metal materials by the intergranular mechanism is connected with a segregation of impurity on high-angle boundaries of grains which can be considered as internal adsorption [53]. Apparently the mechanism of oxygen influence is the same. At increase of its concentration in

x„,, min

MA

iron there is a transition from intragranular to intergranular break [51-53]. Thus, presence of a significant amount of oxygen facilitates process of destruction of conglomerates by the intergranular mechanism at the MA. The increase in the general oxygen content in iron connected mainly with its segregation on high-angle boundaries of grains that is followed by approximately

proportional growth of its concentration in a crystal lattice as is expressed in growth of its parameters. That is at forced capture of oxygen in the course of the MA supersaturation of its segregation on the formed highangle boundary and corresponding emergence of a thermodynamic incentive for impurity diffusion deep into the crystal lattice is possible [54,55].

Table 4

Change in structural parameters of iron in the course of the MCO of CIP and IP in oxygen

MA time, min CIP IP

Dcircle, nm Value of microdefor-mations % Lattice parameters (а, Â) Dcircle, nm Value of microdefor-mations % Lattice parameters (а, Â)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

5 24±1 0.27±0.02 2.8бб±0.003 28±1 0.24±0.02 2.8бб±0.003

15 21±1 0.28±0.02 2.872±0.003 28±1 0.25±0.02 2.881±0.003

30 20±1 0.29±0.02 2.883±0.003 25±1 0.2б±0.02 2.884±0.003

45 19±1 0.31±0.02 2.88б±0.003 24±1 0.27±0.02 2.889±0.003

60 18±1 0.33±0.02 2.887±0.003 23±1 0.28±0.02 2.900±0.003

г гл g-Fe O Fe O 2 3

23%

-4 0 4 8 12 0 100 200 300 speed, mm/s H kOe

Fig. 3. Mossbauer spectra of products of MCO of IP by oxygen (a) and heat treated at 450°С within 6 h at 450 °С (b) Рис. 3. Мессбауэровские спектры продуктов МХО ПЖ кислородом (а) и подвергнутых термообработке при 450 °С в течение

6 ч при 450 °С (b)

By the method of X-ray diffraction it is impossible to divide phases of magnetite Fe3Û4 and a ma-ghemite y-Fe2Û3 as both phases have structure of spinel and close lattice parameters (8.35 and 8.39 Â for y-Fe2Û3 and Fe3Û4 respectively), chemical analysis also does not give definite structure of the formed phases of oxides. Only the method of Mossbauer spectroscopy that is well proved for research of iron oxides composition allows to identify phases of y-Fe2O3 and Fe3O4 [55-57].

The Fig. 3 a, b shows Mossbauer spectra and corresponding distribution functions of ultrafine magnetic fields of initial and subjected to heat treatment at 450 °C IP. The spectrum of heat-treated sample is simpler and contains Fe3Û4 and a-Fe2Û3 oxides that is match literature data [55-58] judging by parameters which are given in Tab. 5. Except these two components in Mossbauer spectra there is one more component with wide distribution of ultrafine magnetic field. This component contains 19% of Fe atoms which can

be attributed to the oxide phase with non-periodic atomic structure [40].

Mossbauer spectrum of the sample exposed to MCA before calcination is more complex and it has five components (Tab. 5). 7% Of Fe atoms are in the phase of a-Fe and the doublet according to the characteristics corresponds to FeO [55-57]. The phase of Fe3O4 is defined unequivocally. Also as well as in previous case there is component with wide distribution of ultrafine magnetic field (50-450 kE) in which there is about 26% of Fe atoms. It is possible to assume that this phase represents the set of clusters of not stoichiometric iron oxides. The last fifth components have parameters close to y-Fe2O3.

Calcination of samples at a temperature of 450 °C within 6 h leads to full oxidation of iron metal powder in case of use of IP as raw materials. When annealing the samples prepared from CIP under the same conditions metal iron remains in composition of the product. Characteristics of the oxides received by the MCO of IP and CIP in the environment of technical oxygen are given in Tab. 6.

Table 5

Phase composition of products of MCO of IP in oxygen

before and after calcination Таблица 5. Фазовый состав продуктов МХО ПЖ в

Phase Share of Fe atoms in phase (in %) H average (kE) Isomer Quadrupole

Before MCO

a-Fe 7 333 0.0 -

FeO 22 24 0.9 0.8

FesO4 21 453 and 485 0.68 and 0.32 -

y-Fe2O3 23 501 0.38 -

clusters of not stoichiometric composition 26 - - -

After calcination in air at 450 "С

FesO4 34 455 and 489 0.6 and 0.3 -

a-Fe2O3 47 518 0.36 -0.1

clusters of not stoichiometric composition 19 300 0 0

Characteristics of oxides obtained by the MCO of IP and CIP in oxygen

Table 6

Indicators Oxidation of CIP Oxidation of IP

After MCA and drying at 100 °С After calcination at 450 °С within 6/12 h After MCA and drying at 100 °С After calcination at 450 °С within 6 h

Conversion coefficient of Femet in oxides, % 90±1.5 95±1.5 93±1.5 100±1.5

Residual content of Femet phase, % 10 5/0 7 0

Phase composition Fe, FeO, Fe3O4, y-Fe2O3, FeO1-X Fe3O4, FeO1-X, a-Fe2O3, Fe Fe, FeO, Fe3O4, y-Fe2O3, FeO1-X a-Fe2O3, Fe3O4, FeO1-X

SSA, m2/g 12.0 - 10.0 -

2. Mechanochemical oxidation of IP and CIP by vapour-oxygen mixture

Earlier it was mentioned that process of MHO of ferriferous powders is followed both by crushing and secondary aggregation. Accordingly, for intensification of MCA and prevention of aggregation the vapour-oxygen mixture is offered.

It is established that application in the course of the MCA the vapour-oxygen mixture as the environment under the same conditions allows to increase conversion coefficient of metal iron powder and besides optimal vapour:gas ratio is 0.45. Increase in oxidation degree is connected with the fact that the water which is adsorbed on the surface of metal iron on the one hand complicates processes of their aggregation and with another actively participates in the oxidation process. The particle size of metal iron and composition of vapour-

oxygen mixture significantly influence the oxidation process as the conducted researches show. Data on conversion coefficient of iron to oxides (Fig. 4, curves 1-2) demonstrate that at the first stage of oxidation (5-15 min) sharp recession of curves of metal iron content is observed both in the case of using IP and CIP as the raw materials.

Further increase in time of the MA leads to delay of oxidation processes. Obviously, it is connected with the fact that the minimum particle size of the iron phase is reached and aggregation processes which complicate oxidation begin to prevail. Besides, the formed reaction products interfere with diffusion of an oxidizer to the iron surface. Calculation of lattice parameters of iron showed that, as well as in the previous case, there is implementation of oxygen in crystal structure (Fig. 4, curves 3-4).

Fig. 4. Changing in iron lattice parameter and Fe0 content in the course of MA of CIP and IP in vapour-oxygen mixture (vapour/gas=0.45) 1,3-IP, 2,4-CIP Рис. 4. Изменение параметра решетки железа и содержания Fe0 в процессе МА ПЧ и ПЖ в парокислородной смеси (пар/газ=0,45) 1,3-ПЖ, 2,4-ПЧ

3. Mechanochemical oxidation of IP and CIP by water

The analysis of diffractograms of coarse dispersed IP and CIP activated in water within 5, 15, 45 and 60 min shows that before heat treatment at all samples there are widened reflexes of a-Fe and magnetite Fe3O4. By method of the differentiating dissolution it is shown that CIP in the presence of water in roller-ring vibrating mill within 60 min of MA is oxidized by 77.6% and IP is oxidized by 88%. Mossbauer spectra of samples with the corresponding distribution functions of ultrafine magnetic fields P(H) of initial (Fig. 5a) and annealed (Fig. 5b) products of the MCO of cast iron in water are shown in Fig. 5.

The type of functions is almost identical to both spectra. Peaks position unambiguously indicates the presence in samples of pure iron (333 kE), solid component (Fe as a doping element) with 1 atom of impurity

Fig. 5. Mossbauer spectra of products of MCO of CIP by water

(a) and heat treated at 450 °С within 6 h (b) Рис. 5. Мессбауэровские спектры продуктов МХО ПЧ водой (а) и подвергнутых термообработке при 450 °С в течение 6 ч (b)

in the immediate environment of iron atom (~307 kE), iron oxide with fields on nuclei ~ 484 kE for "a" sample and 507 kE for "b" sample. In the first sample (Fig. 5a) (with discrete processing) the component form "rest" is close to a doublet that demonstrates presence of iron clusters at a paramagnetic state and by the structure those clusters are close to hydroxides. In this phase there is 4% of iron atoms. After calcination the quantity of Fe3O4 makes 68%, and about 10% of Fe2O3 (Tab. 7) appear. Considering the quantity determination error of the phase one may say that the oxygen which is in structure of hydroxide clusters passed into Fe2O3.

According to researches of the chemical composition of a surface of CIP sample activated in water within 60 min carried out by the method of X-ray pho-toelectronic spectroscopy (Fig. 6) it is established that iron on a surface is in the a-FeOOH form that corresponds to binding energy of 711.5 eV and is consistent with the reference data [58]. As it appears from models

Table 7

Phase composition of products of MCO of CIP in water before and after calcination

Таблица 7. Фазовый состав продуктов МХО ПЧ в воде до и после прокаливания

Phase Share of Fe atoms (in %) Average magnetic field on nucleus, H (kE) Isomeric shift, d (mm/s) Quadrupole splitting, A (mm/s)

After MCA

a-Fe 27 333 0.0 -

Fe3Ü4 62 451 and 486 0.66 and 0.30 -

solid solution 7 307 0.03 0.05

other 4 - - -

After calcination at 450°С

a-Fe 15 333 0.0 -

Fe3Ü4 68 456 and 489 0.66 and 0.33 -

solid solution 7 311 0.03 0.05

a -Fe2O3 10 517 0.37 0.10

oxygen has not less than 3 components (Fig. 6). The states which are characterized by O1s peaks with binding energy of 530.06 and 530.9 eV belong to O2- and OH- included in FeOOH. The oxygen form with binding energy of 532.46 eV can be rather reliably carried to the water [59] connected on a surface.

Lattice parameters of a-Fe were calculated (a = 0.287 nm) on the basis of the X-ray diffraction analysis that is consistent with the literature data. The value of parameter a does not change with increasing MA duration. Based on this it is possible to draw a conclusion that unlike results of work [60] in this case there is no implementation of significant amounts of oxygen atoms and hydrogen in the iron lattice. The data obtained are consistent with the work [40]. Calculation of fine crystal structure parameters of iron showed that in the course of the MA there is a decrease in the sizes of coherent dispersion areas for the samples prepared from CIP from 28 nm after 5 min. to 24 nm after 60 min and increase in size of microdeformations from 0.22 to 0.27% for the same time of the MA. For the samples prepared from IP the size of crystallites after 60 min of the MA makes 24 nm, and the size of microdeformations makes 0.32%. The sizes of magnetite crystallites at a final stage of the MA make 22 and 19 nm for the samples prepared from cast iron and iron, respectively.

545 540 535 530 525 520

Binding Energy (cV)

Fig. 6. X-ray photoelectronic O1s spectrum of products of MCO of CIP by water. Binding energies, eV: 1 - FeOOH-O - 530.06, 2 - O - 532.46, 3 - FeOOH-OH - 530.90 Рис. 6. Рентгенофотоэлектронный O1s спектр продуктов МХО ПЧ водой. Энергии связи, эВ: 1 - FeOOH-O - 530,06, 2 -O - 532,46, 3. FeOOH-OH - 530,90

The analysis of X-ray ray diffraction data shows that calcination of the samples prepared from cast iron at a temperature of 450 °C within 6 h leads to formation of the Fe2O3 phase and crystallization of magnetite and iron phases. During heat treatment of the samples prepared from IP total disappearance of reflexes of the metal iron phase and crystallization of the magnetite and hematite phases is observed. Oxidation

of the samples prepared from cast iron demands more rigid conditions that is caused by presence of doping elements in it which slow down oxidation process. For full oxidation of cast iron it is necessary to increase time of heat treatment at 450 °C up to 14 h.

Calcination process is followed both by loss of weight, and its increase (Fig. 7). It is shown that the mass of the calcined sample decreases in the temperature range of 20-150 °C by 1.2% that is caused by removal of the adsorbed moisture and CO2 adsorbed from air and further temperature increase leads to increase of mass of samples. When calcinating from 450 to 1000 °C the mass of a sample increases by 24% that it is caused by oxidation of Fe2+ ions which are located in magnetite, its transition to hematite and also by oxidation of metal iron. Calcination process is followed by one endothermic and one exothermic effects.

t, min

Fig. 7. Thermogram of products of MCO of CIP by water Рис. 7. Термограмма продуктов МХО ПЧ водой

The effect I lying in the temperature range of 20-150 °C is caused by removal of the moisture adsorbed from the environment. In the temperature range of 500-1000 °C the exothermic effect II is observed that is connected with final oxidation of iron compounds. The analysis of gaseous products of decomposition by the method of IR spectroscopy shows that in the gas phase at the temperatures of 20-250 °C there is water and carbon dioxide, at the temperatures of 250310 °C there is predominantly CO2 which quantity sharply decreases with a further growth of temperature.

Thus it was found out that at initial stages of the MA of ferriferous powders in water there is a crushing with formation of an amorphous phase and accumulation of defects in the iron structure, along with it parallel processes of formation on a surface of iron hydroxides particles proceed according to the reaction: HA

Fe + 2H20 —*■ FeOOH + 1.5H2 (1)

and the formation of magnetite phase MA

3Fe + 4H20 -> Fe304 + 8H2, (2)

that is confirmed by the data of X-ray photoelectronic and Mossbauer spectroscopy. Heat treatment of samples leads to dehydration of hydroxides and final oxidation of metal iron phase with formation of hematite a-Fe2O3.

2FeOOH -j. a-Fe203 + H20 (3)

t

2Fe + 1.502 —► a-Fe203, (4)

The characteristics of obtained oxides are given in Tab. 8.

Table 8

Characteristics of oxides obtained by the MCO of IP and CIP by water

Indicators Oxidation of CIP Oxidation of IP

After MCA and drying After calcination at 450 °С within 6/12 h After MCA and drying After calcination at 450 °С within 6/14 h

Conversion coefficient of Femet in oxides, % 73 85/100 88 93/100

Residual content of Femet phase, % 27 15/0 12 7/0

Phase composition Fe, Fe3O4, FeOOH, solid solution Fe-doping element Fe, a-Fe2O3, Fe3O4, solid solution Fe-doping element Fe, Fe3O4, FeOOH, Fe, a-Fe2O3, Fe3O4,

SSA, m2/g 34 - 30 -

It should be noted that the specific surface area of the received oxides makes 30-34 m2/g that by 2-3 times exceeds the surface of the oxides received by traditional methods of sedimentation and thermal decomposition of salts. The oxides received using this method can successfully be used for preparation of highly active iron oxide catalysts.

4. Mechanochemical oxidation of IP and CIP by oxalic acid solutions

Analysis of samples roentgenograms received after the MA of iron with oxalic acid solutions within 30 min. shows that when using solutions of acids with concentration of 5, 10, 15 and 20% the full oxidation of the metal iron phase does not occur both in the case of using IP and CIP. Increase in acid concentration up to 25% leads to total disappearance of characteristic re

flexes of the iron phase. As a result of interpretation of X-ray diffraction analysis data in the composition of samples iron oxalate FeC2O4-2H2O is found. After analysis of IR spectra it should be concluded that the state of C2O4-groups in the compound is close to that of the chelate oxalate groups (bidentate-connected). In particular, the IR spectrum of not calcined sample shows the absorption band with frequency of 1633 cm-1 related to stretching vibrations of double bonds C=O. Besides on IR spectra the absorption bands with frequencies range of 1360-1317 cm-1 characterize valent antisymmetric and symmetric vibrations of single bonds C-O. Quite intensive bands in the area of 1009-821 cm-1 can be attributed to deformation vibrations of C2O4-group. Absorption bands in the range of 531-492 cm-1 are connected preferential with vibrations of Fe-O(C2O4). Particle size of reaction products does not exceed 18 ^m (Fig. 8a).

I I

15

С

20

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

25

30

35

b

1

15

-P-

20

25

30

35

a

20

25

30

35

15

d, mm

initial sample, b - sample heat treated in air at 240 °С, c - sample heat treated in air at 400 °С, dAverage particle size, ^m, X - Particle fraction, % Рис. 8. Результаты лазерного анализа ПЖ: а - исходный образец, b - образец прокаленный в среде воздуха при 240 °С, c -зец прокаленный в среде воздуха при 400 °С, d - средний размер частиц, мкм, Х - доля частиц, %

Рис. 8. Results of IP laser analysis: а -

Calcination of samples on air at the temperature of240 °C within 1 h leads to formation of oxide y-Fe2O3 with a particle size less than 15 цт (Fig. 8b). csr By method of the X-ray diffraction analysis it is established that the increase in calcination temperature that the CSR size of the formed oxides changes in the range from 12 to 27 nm in the temperature range of 240-450 °C, the specific surface area at the same time decreases from 120 to 70 m2/g and the maximum size of secondary particles increases from 15 to 28 ^m (Fig. 8c). Along with it recrystallization of y-Fe2O3 to a-Fe2O3 occurs.

IR spectra of the calcined samples rather strongly change and indicate formation of the anioni-cally modified oxides. On spectra of the samples calcined at the temperature of 450 °C the characteristic absorption band with the frequency of 1633 cm-1 characterizing valent vibrations of carbonate-ions is observed. Besides, there is an absorption band with the frequency of 3438 cm-1 characterizing existence of OH-groups.

The characteristics of obtained oxides are given in Tab. 9.

Thus, comparative analysis of different methods of iron oxides obtaining is presented in Tab. 10. The analysis of the received results shows that use of oxygen and vapour-oxygen mixture as the oxidizing atmosphere considerably complicates technological process and allows to receive iron oxides with the surface area of 10-14 m2/g. However, heat treatment at the temperature of 450°C is necessary for minimization of impurity content in metal iron. Application of water as the dispersion medium leads to increase in quantity of metal iron phase in samples up to 12-27%. Using the aqueous solution of 25% oxalic acid in the course of Fe2O3 synthesis allows to carry out the thermolysis in the temperature range from 240 to 450 °C and to obtain both y-Fe2O3 and a-Fe2O3 with the specific surface area from 70 to 120 m2/g which is an order of magnitude greater than that of oxides obtained by the method of thermal decomposition of ferric chloride.

Table 9

Characteristics of oxides obtained by the MCO of IP and CIP by 25% solution of oxalic acid

Indicators Oxidation of CIP Oxidation of IP

After MCA and drying After calcination After MCA and drying After calcination

Conversion coefficient of Femet in oxides, % 100 100 100 100

Residual content of Femet phase, % 0 0 0 0

SSA y-Fe2O3, (Ttr = 240 °C) a-Fe2O3, (Ttr = 450 °C) - 120 70 - 123 77

Table 10

Composition and characteristics of iron oxides Таблица 10. Состав и характеристика оксидов железа

Oxidation medium Raw materials

CIP IP

MCO time, min Femet content, % Temperature of heat treatment, °С SSA, m2/g MCO time, min Femet content, % Temperature of heat treatment, °С SSA, m2/g

Oxygen 60 10.0 450 12.0 60 7.0 450 10.0

Vapour-oxygen mixture 60 7.3 450 14.0 60 5.0 450 12

Water 60 27.0 450 24 45 12.0 450 20

25% solution of oxalic acid 30 0 240 125 30 0 240 119

CONCLUSION

In this paper the complex of researches directed to studying of physical and chemical basis of obtaining iron oxides from technogenic raw materials that are necessary for catalysts production is conducted. Besides, it was shown that iron oxides with different structure can be obtained by the MA of iron powder of PZhR grade and cast iron of 12-28 grade SCh in a vibration mill in the environment of technical

oxygen, vapour-oxygen mixture with the vapour :gas ratio of 0.45, water and oxalic acid solutions with concentrations from 5 to 30%. It was established that the most effective oxidizer of metal powders is 25% oxalic acid. Using this method and changing temperature of heat treatment from 240 to 450 °C it is possible to obtain anionically modified y-Fe2O3 and a-Fe2O3 with the surface area from 70 to 120 m2/g that is 10 times more than that of iron oxides received by industrial technology.

The paper is performed according to the state task of the Ministry of Education and Science of the Russian Federation - Project 3.1371.2017/4.6 (in the part of the MCO of IP and CIP by oxygen, vapour-oxygen mixture, water and researches of received oxides properties) and partial support of a grant of the President of the Russian Federation for the young scientists and graduate students who are carrying out perspective

research and development in the priority directions of modernization of the Russian economy (2016-2018) No. SP-3477.2016.1 (in the part of researches of rheological properties, active centers and MCO of IP and CIP by oxalic acid solutions). The resources of the ISUCT center of collective usage of the scientific equipment were attracted when researches were performing.

ЛИТЕРАТУРА

1. Ни Л.П., Гольдман М.М., Соленко Т.В., Бунчук Л.В., Халяпина О.Б. Окислы железа в производстве глинозема. Алма-Ата: Наука. 1971. 128 с.

2. Чалый В.П. Гидроокиси металлов. Закономерности образования, состав, структура и свойства. Киев: Наук. Думка. 1972. 153 с.

3. Лобойко А.Я, Михайлова Е.А., Маркова Н.Б., Бутенко А.Н., Ворожбиян М.И., Синческул А.Л., Гармаш Б.К. История, проблемы и перспективы железохромового катализатора конверсии оксида углерода (II). Вопросы химии и химической технологии. 2009. № 6. С. 116-127.

4. Ильин А.П., Смирнов Н.Н., Ильин A.A. Разработка катализаторов для процесса среднетемпературной конверсии монооксида углерода в производстве аммиака. Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2006. Т. L. № 3. С. 84-93.

5. Колесников И.М. Катализ и производство катализаторов. М.: Техника. 2004. 400 с.

6. Daou T.J. Synthèse et fonctionnalisation de nanoparticules d'oxydes de fer magnétiques. Diss. Strasbourg, Université Louis Pasteur. 2007. 23S p.

7. Schwertmann U., Cornell R.M. Iron oxides in the laboratory: preparation and characterization. Wiley-VCH. 2000. 210 p.

S. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. М.: ИКЦ Академкнига. 2007. 309 с.

9. Шабанова H.A. Саркисов П.Д. Основы золь-гель технологии нанодисперсного кремнезема. М.: ИКЦ Академкнига. 2004. 208 с.

10. Туренская Е.П., Яновская М.И., Турова И.Я. Использование алкоголятов металлов для получения оксидных материалов. Неорганические материалы. 2000. Т. 36. № 3. С. 330-341. DOI: 10.1007/BF02757931.

11. Родионов Ю.М., Слюсаренко Е.М., Лунин В.В. Перспективы применения алкоксотехнологии в гетерогенном катализе. Успехи химии. 1996. Т. 71. № 10. С. 865-S79.

12. Турова Н.Я., Яновская М.И. Оксидные материалы на основе алкоголятов металлов. Неорганические материалы. 1983. Т. 19. № 5. С. 693 - 706.

13. Прибылов К.П., Мельниченко Г.А. Исследование термических превращений FeC2O42H2O. Неорганическая химия. 19S3. Т. 28. № 3. С. 790-794.

14. Riggs W.M., Bricker C.E. Thermal decomposition of iron(III) oxalates. J. Inorg. Nuclear Chem.1971. V. 33. N 6. P. 1635-1647. DOI: l0.l0l6/0022-l902(7l)S0599-7.

15. Ильин A.A. Ильин А.П. Румянцев Р.Н., Жуков А.Б., Мезенцева A.A. Исследование процесса механохимиче-ского синтеза и термического разложения оксалата железа (II). Изв. вузов. Химия и хим. технология. 2014. Т. 57. Вып. 7. С. 80-S4.

REFERENCES

1. Ni L.P., Gol'dman M.M., Solenko T.V. Bunchuk L.V., Haljapina O.B. Iron oxides in the production of alumina. Alma-Ata: Nauka. 1971. 128 p. (in Russian).

2. Chaly V.P. Metal hydroxide. The regularities of formation, composition, structure and properties. Kiev: Nauk. Dumka. 1972. 153 p. (in Russian).

3. Loboyiko A.Ya., Mikhaiylova E.A., Markova N.B., Bu-tenko A.N., Vorozhbiyan M.I., Sincheskul A.L., Garmash B.K. The history, problems and prospects of the iron-chromium carbon monoxide conversion catalyst (II). Voprosy khimii i khimicheskoiy tekhnologii. 2009. N 6. P. 116-127 (in Russian).

4. Ilyin A.P., Smirnov N.N., Il'in A.A. Development of catalysts for the process of medium-temperature conversion of carbon monoxide in the production of ammonia. Ros. khim. Zhurn. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva). 2006. V. L. N 3. P. 84-93 (in Russian).

5. Kolesnikov I.M. Catalysis and production of catalysts. M.: Tekhnika. 2004. 400 p. (in Russian).

6. Daou T.J. Synthèse et fonctionnalisation de nanoparticules d'oxydes de fer magnétiques. Diss. Strasbourg, Université Louis Pasteur. 2007. 238 p.

7. Schwertmann U., Cornell R.M. Iron oxides in the laboratory: preparation and characterization. Wiley-VCH. 2000. 210 p.

8. Shabanova N.A., Popov V.V., Sarkisov P.D. Chemistry and technology of nanodispersed oxides. M.: IKC Akade-mkniga. 2007. 309 p. (in Russian).

9. Shabanova H.A. Sarkisov P.D. Fundamentals of sol-gel na-noscale silica technology. M.: IKC Akademkniga. 2004. 208 p. (in Russian).

10. Turenskaya E.P., Yanovskaya M.I., Turova N.Ya. Preparation of oxide materials from metal alkoxides. Inorganic Materials. 2000. V. 36. N 3. P. 260-270. DOI: 10.1007/BF02757931.

11. Rodionov Yu.M., Slyusarenko E.M., Lunin V.V. Prospects in the application of alkoxo-technology in heterogeneous catalysis. Russ Chem. Rev. 1996. V. 65. N 9. P. 797-811. DOI: 10.1070/RC1996v065n09ABEH00023 5.

12. Turova N.Ya., Yanovskaya M.I. Oxide materials based on metal alkoxides. Neorganicheskie materialy. 1983. V. 19. N 5. P. 693-706 (in Russian).

13. Pribylov K.P., Mel'nichenko G.A. Study of thermal transformations of FeC2O4'2H2O. Neorganicheskaya Khimija. 1983. V. 28. N 3. P. 790-794 (in Russian).

14. Riggs W.M., Bricker C.E. Thermal decomposition of iron(III) oxalates. J. Inorg. Nuclear Chem.1971. V. 33. N 6. P. 1635-1647. DOI: 10.1016/0022-1902(71)80599-7.

15. Rumyantsev R.N., Il'in A.A., Ilyin A.P., Zhukov A.B., Mezenceva A.A. Mechanochemical synthesis and thermal decomposition of iron (II) oxalate. Izv. Vyssh. Uchebn.

16. Рукин В.В., Рюмина Л.В., Фофанов А.А. Акименко В.Б., Манегин Ю.В., Блажене Л.В., Куленис А.А. Способ получения магнетита. Пат. РФ №2039708. 1995.

17. Иванов В.К. Баранов А.Н., Олейников Н.Н., Третьяков Ю.Д. Синтез оксида железа(Ш) с контролируемой фрактальной размерностью поверхности. Неорганическая химия. 2002. Т. 47. № 12. С. 1925-1929.

18. Куликов Ф. А., Ванецев А. С., Муравьева Г. П., Ильинский А.Л., Олейников Н.Н., Третьяков Ю.Д. Получение y-Fe2O3 при микроволновом синтезе. Неорганические материалы. 2003. Т. 39. № 10. С. 1244-1246.

19. Хабаров Ю.Г., Бабкин И.М. Способ получения оксида железа. Пат. РФ № 2489358. 2013. Бюл. 22.

20. Комова З.В., Калинченко Ф.В., Коробка Н.С., Деркач В.К., Полосина Л.В., Калиневич А Ю., Данилова Л.Г., Шихалеев А.Е., Пантазьев Г.И., Кубрак Л.П. Способ приготовления железохромового катализатора. Пат. РФ № 2275963. 2005. Бюл. 13.

21. Андреева Н.А., Горбачева Н.Б., Семенова Г.А. Катализатор для паровой конверсии оксида углерода. Пат. РФ № 2059430. 1996.

22. Шаркина В.И., Серегина Л.К., Горожанкин Э.В. Способ приготовления катализатора для среднетемператур-ной конверсии оксида углерода с водяным паром. Пат. РФ №2157731. 2000. Бюл. 29.

23. Ильин А.П., Смирнов Н.Н., Ильин А.А. Способ приготовления катализатора для среднетемпературной конверсии оксида углерода водяным паром. Пат. РФ №2254922. 2005. Бюл. 18.

24. Пантазьев Г.Л., Лисиця АН., Деркач В.К. Установка для ви-робництва затсзохромового кататзатора. Пат. № 15016 UA. 1997.

25. Сеттерфилд Ч. Практический курс гетерогенного катализа. М.: Мир. 1984. 520 с.

26. Костров В.В., Морозов Л.Н. Разработка катализаторов для процессов паровой конверсии монооксида углерода и синтеза метанола. В кн.: Научные основы приготовления катализаторов. Творческое наследие и дальнейшее развитие работ профессора И.П. Кириллова. Под ред. А.П. Ильина. Иваново: ИГХТУ. 2008. С. 7-16.

27. Юрьева Т.М., Демешкина М.П., Хасин А.А. Миню-кова Т.П., Плясова Л.М., Баронская Н.А., Лебедева М.В., Резниченко И.Д., Волчатов Л.Г., Бочаров А.П., Целютина М.И., Посохова О.М., Андреева Т.И. Катализатор паровой конверсии моноксида углерода, способ его приготовления и способ его использования. Пат. РФ №2314870. 2008. Бюл. 2.

28. Комова З.В., Тагинцев Б.Г., Семенова Т.А. Катализатор для конверсии оксида углерода. А.с. № 1482721 СССР. 1989.

29. Уорд Э.Ю., Эксон С.А., Мюррей П.Д. Высокотемпературные катализаторы конверсии на основе шпинели. Пат. РФ № 2305006. 2005.

30. Денисов А.А., Жидков Б.А., Прыгунов А.С. Катализатор для конверсии окиси углерода водяным паром. А.с. № 341518 СССР. 1985.

31. Конка Э., Рубини К., Петрини Г. Способ получения оксида железа. Пат.РФ № 2318730. 2008. Бюл.7.

32. Колпакова К.Е., Склокин Л.И. Получение высокочистого оксида железа из техногенного сырья методом жидкостной экстракции. Химическая технология. 2001. № 11. С. 20-26.

33. Минюкова Т.П. Физико-химические основы регулирования каталитических свойств катализаторов на основе Cu- и Fe-содержащих оксидных соединений для синтеза

Zaved. Khim. Khim. Tekhnol. 2014. V. 57. N 7. P. 80-84 (in Russian).

16. Rukin V.V., Ryumina L.V., Fofanov A.A., Akimenko V.B., Manegin Ju.V., Blazhene L.V., Kulenis A.A.

Method for obtaining magnetite. Pat. RF N 2039708.1995 (in Russian).

17. Ivanov V.K., Baranov A.N., Oleiynikov N.N., Tret'yakov

Ju.D. Synthesis of Ferric Oxide with Controlled Surface Fractal Dimension. Zhurn. Neorg. Khim. 2002. V. 47. N 12. P. 1925-1929 (in Russian).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

18. Kulikov F.A., Murav'eva G.P., Il'inskii A.L., Il'inskij A.L., Olejnikov N.N., Tret'jakov Ju.D. Microwave Synthesis of Y-Fe2O3. Inorganic Materials. 2003. V. 39. N 10. P. 1074-1075. DOI: 10.1023/A:1026047310833.

19. Khabarov Yu.G., Babkin I.M. Method of producing iron oxide. Pat. RF N 2489358. 2013. Bull. 22 (in Russian).

20. Komova Z.V., Kalinchenko F.V., Korobka N.S. Derkach V.K., Polosina L.V., Kalinevich A Yu., Danilova L.G., Shikhaleev A.E., Pantaz'ev G.I., Kubrak L.P. Iron-chromium catalyst preparation method. Pat. RF N2275963. 2005. Bull. 13 (in Russian).

21. Andreeva N.A., Gorbacheva N.B., Semenova G.A. Catalyst for steam conversion of carbon monoxide. Pat. RF N 2059430. 1996 (in Russian).

22. Sharkina V.I., Seregina L.K., Gorozhankin E.V. Method of preparing a catalyst for medium-temperature conversion of carbon monoxide with steam. Pat. RF N 2157731. 2000. Bull. 29 (in Russian).

23. Ilyin A.P., Smirnov N.N., Il'in A.A. Method of preparing catalyst for median-temperature carbon monoxidewater steam conversion. Pat. RF N 2254922. 2005. Bull. 18 (in Russian).

24. Pantaziev G.L., Lysytsya A.Z., Derkach V.K. Installation for production of iron-chromium catalyst. Pat. N 15016 UA. 1997.

25. Setterfild Ch. The practical course of heterogeneous catalysis. M.: Mir. 1984. 520 p. (in Russian).

26. Kostrov V.V., Morozov L.N. Development of catalysts for the processes of steam conversion of carbon monoxide and the synthesis of methanol. In book: Scientific foundations for the preparation of catalysts. The creative heritage and further development of the works of Professor I.P. Kirillov. Ed. A.P. Ilyin. Ivanovo: ISUCT. 2008. P. 7-16 (in Russian).

27. Yur'eva T.M., Demeshkina M.P., Khasin A.A., Minyu-kova T.P., Plyasova L.M., Baronskaya N.A., Lebedeva M.V., Reznichenko I.D., Volchatov L.G., Bocharov A.P., Tselyutina M.I., Posokhova O.M., Andreeva T.I. Catalyst of the steam conversion of carbon monoxide, method of its preparation and the method of its usage. Pat. RF N2314870. 2008. Bull. 2 (in Russian).

28. Komova Z.V., Tagintsev B.G., Semenova T.A. Catalyst for conversion of carbon monoxide. A.C N 1482721 USSR. 1989 (in Russian).

29. Uord E.J., Ehkson SA, Mjurrej P.D. High-temperature spinel-based shift reaction catalysts. Pat. RF N 2305006. 2005. Bull. 24 (in Russian).

30. Denisov A.A., Zhidkov B.A., Prygunov A.S. Catalyst for the conversion of carbon monoxide by steam. A.C N 341518 USSR. 1985 (in Russian).

31. Konka E., Rubini K., Petrini G. Method of production of the ferric oxides. Pat.RF N2318730. 2008. Bull. 7 (in Russian).

32. Kolpakova K.E., Sklokin L.I. Preparation of high-purity iron oxide from technogenic raw materials by the method of liquid extraction. Khim. Tehhnol. 2001. N 11. P. 20-26 (in Russian).

33. Minyukova T.P. Physico-chemical basis for regulating the catalytic properties of catalysts based on Cu and Fe-contain-ing oxide compounds for the synthesis and dehydrogenation

34.

35.

36.

37.

38.

39.

40

41

42

43

44

45

46

47

48

49

74

и дегидрирования метанола и паровой конверсии СО. Дис. ... д.х.н. Новосибирск: ИК СО РАН. 2014. 278 с. Khassin A.A., Minyukova T.P., Plyasova L.M., Filonenko

G.A., Yurieva T.M. Catalysts Based on the Nanodispersed Metastable Iron Oxyhydroxide, 2-Line Ferrihydrite. In «Advances in Nanotechnology». V. 2. (Z. Bartul and J. Trenor Eds.). New York: Nova Science Publishers. 2010. Р. 347363.

Чухров Ф.В., Звягин Б.Б., Горшков А.И., Ермилова Л.П., Балашова В.В. О ферригидрите. Изв. АН СССР. Сер. геол. 1973. № 4. С. 23-33.

Yu J.Y., Park M., Kim J. Solubilities of synthetic schwert-mannite and ferrihydrite. Geochem. J. 2002. V. 36. N 2. P. 119-132.

Jambor J.L., Dutrizac J.E. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhy-droxide. Chem. Rev. 1998. V. 98. P. 2549-2585. Cornell R.M., Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons. 2003. 694 p. DOI: 10.1002/3527602097. Емельянов Д.А., Королев К.Г., Михайленко М.А., Кнотько А.В., Олейников Н.Н., Третьяков Ю.Д., Болдырев В.В. Механохимический синтез вюстита Fe1-XO в аппаратах повышенной мощности. Неорганические материалы. 2004. Т. 40. № 6. С. 726-729. Ломаева С.Ф., Маратканова А.Н., Немцова О.М., Чулкина А.А., Елсуков Е.П. Механоактивация железа в присутствии воды. Химия в интересах устойчивого развития. 2007. № 1-2. С. 103-109. Ильин А.А., Румянцев Р.Н., Ильин А.П., Смирнов

H.Н. Низкотемпературное окисление железа в процессе его механической активации. Изв. вузов. Химия и хим. технология. 2011. Т. 54. Вып. 1. С. 103-107. Румянцев Р.Н., Ильин А.А., Ильин А.П., Панкратова С.П. Механохимический синтез оксида железа из скрапа чугуна. Изв. вузов. Химия и хим. технология. 2011. Т. 54. Вып. 3. С. 50-53.

Румянцев Р.Н. Ильин А.А., Ильин А.П. Механохими-ческий синтез оксида железа путем взаимодействия металлических порошков с водой. Изв. вузов. Химия и хим. технология. 2013. Т. 56. Вып. 6. С. 45-49. Avvakumov E.G., Senna M., Kosova N.V. Soft mechano-chemical synthesis: a basis for new chemical technologies. Boston: Kluwer Acad. Publ. 2001. 218 p. Ильин А.А., Смирнов Н.Н., Румянцев Р.Н., Иванова Т.В. Механохимический синтез оксидов цинка с использованием жидких и газообразных сред. Журн. прикладной химии. 2014. Т. 87. № 10. С. 1410-1414. DOI: 10.1134/S1070427214100036.

Крешков А.П. Основы аналитической химии. М.: Химия. 1976. Т. 2. 262 с.

Nemtsova O.M. The method of extraction of subspectra with appreciably different values of hyperfine interaction parameters from mossbauer spectra. Nucl. Instr. andMeth. in Phys. Res. 2006. V. 244. N 2. Р. 501-507.

Хеегн Х. Изменение свойств твердых тел при механической активации и тонком измельчении. Изв. СО АН СССР. Сер.хим. наук. 1988. Вып. 1. № 2. С. 3-9. Кадяничив А.Ю., Калиниченко Ф.В., Данилова Л.Г., Кубак Л.П., Довганюк В.Ф. Способ приготовления катализатора паровой конверсии оксида углерода и катализатор паровой конверсии оксида углерода. Пат. РФ № 2170615. 2001. Бюл. 20.

of methanol and steam conversion of CO. Dissertation for doctor degree on chemical sciences. Novosibirsk: BIC SB RAS. 2014. 278 p. (in Russian).

34. Khassin A.A., Minyukova T.P., Plyasova L.M., Filonenko G.A., Yurieva T.M. Catalysts Based on the Nanodispersed Metastable Iron Oxyhydroxide, 2-Line Ferrihydrite. In «Advances in Nanotechnology». V. 2. (Z. Bartul and J. Trenor Eds.). New York: Nova Science Publishers. 2010. P. 347363.

35. Chukhrov F.V., Zvyagin B.B., Gorshkov A.I., Ermilova L.P., Balashova V.V. About ferrihydrite. Int. Geol. Rev. 1974. V. 16. P. 1131-1143.

36. Yu J. Y., Park M., Kim J. Solubilities of synthetic schwert-mannite and ferrihydrite. Geochem. J. 2002. V. 36. N 2. P. 119-132.

37. Jambor J.L., Dutrizac J.E. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhy-droxide. Chem. Rev. 1998. V. 98. P. 2549-2585.

38. Cornell R.M., Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons. 2003. 694 p. DOI: 10.1002/3527602097.

39. Emel'yanov D.A., Korolev K.G., Mikhaiylenko M.A., Knot'ko A.V., Oleiynikov N.N., Tret'yakov Yu.D., Boldyrev V.V. Mechanochemical synthesis of Wustite, Fe1-xO, in high-energy apparatuses. Inorganic Materials. 2004. V. 40. N 6. P. 632-635.

40. Lomaeva S.F., Maratkanova A.N., Nemtsova O.M., Chulkina A.A., Elsukov E.P. Mechanoactivation of iron in the presence of water. Khimija v interesakh ustoiychivogo razvityja. 2007. N 1-2. P. 103-109 (in Russian).

41. Il'in A.A., Rumyantsev R.N., Ilyn A.P., Smirnov N.N. Low-temperature oxidation of iron during its mechanical activation. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2011. V. 54. N 1. P. 103-107 (in Russian).

42. Rumyantsev R.N., Il'in A.A., Ilyin A.P., Pankratovа S.P. Mechano-chemical synthesis of iron oxide from cast iron scrap. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2011. V. 54. N 3. P. 50-53 (in Russian).

43. Rumyantsev R.N., Il'in A.A., Ilyin A.P. Mechanochemical synthesis of iron oxide by means of interaction of metal powders with water. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2013. V. 56. N 6. P. 45-49 (in Russian).

44. Avvakumov E.G., Senna M., Kosova N.V. Soft mechano-chemical synthesis: a basis for new chemical technologies. Boston: Kluwer Acad. Publ. 2001. 218 p.

45. Il'in A.A., Smirnov N.N., Rumyantsev R.N., Ivanova T.V. Mechanochemical Synthesis of Zinc Oxides with the Use of Liquid and Gaseous Media. Russ. J. Appl. Chem. 2014. V. 87. N 10. P. 1412-1416. DOI: 10.1134/S1070427214100036.

46. Kreshkov A.P. Fundamentals of Analytical Chemistry. M.: Khimiya. 1976. V. 2. 262 p. (in Russian).

47. Nemtsova O.M. The method of extraction of subspectra with appreciably different values of hyperfine interaction parameters from mossbauer spectra. Nucl. Instr. and Meth. in Phys. Res. 2006. V. 244. N 2. P. 501-507.

48. Heegn H. Change in the properties of solids during mechanical activation and fine comminution. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk. 1988. V. 2. N 1. P. 3-9 (in Russian).

49. Kadyanichiv A.Yu., Kalinichenko F.V., Danilova L.G., Kubak L.P., Dovganyuk V.F. A method of preparing a carbon monoxide vapor conversion catalyst and a carbon oxide vapor conversion catalyst. Pat. RF N 2318730. 2001. Bull. 20 (in Russian).

50. Диаграммы состояния двойных металлических систем. Под общ. ред. Лякишева Н.П. М: Машиностроение. 1997. Т. 2. 1024 с.

51. Вол А.Е. Строение и свойства двойных металлических систем. М.: Наука. 1962. Т. 2. 982 с.

52. Архаров В.И. К вопросу о природе отпускной хрупкости стали. Докл. АН СССР. 1945. Т. 50. С. 293-294.

53. Гудремон Э.А. Специальные стали. М.: Металлургия. 1966. 540 с.

54. Ainslie N.G., Phillips V.A., Turnbull D. Sulfur segregation at a-iron grain boundaries—II. Acta Metallurgica. 1960. V. 8. N 8. P. 528-538.

55. Oh Sei J., Cook D.C., Townsend H.E. Characterization of iron oxides commonly formed as coprrosion products on steel. Hyperfine Interactions. 2004. V. 112. N 1. P. 59- 65. DOI: 10.1023/A:1011076308501.

56. Химическое применение Мессбауэровской спектроскопии. Под ред. Гольданского В.И. М.: Мир. 1970. 502 с.

57. Шабашов В.А., Литвинов А.В., Мукосеев А.Г., Сага-радзе В.В., Вильданов Н.Ф. Деформационно-индуциро-ванные фазовые переходы в системе оксид железа-металл. Физика металлов и металловедение. 2004. Т. 98. № 6. С. 38-53.

58. Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004. N 36. P. 1564-1574. DOI: 10.1002/sia.1984.

59. Анализ поверхности методами Оже- и рентгенфотоэлек-тронной спектроскопии. Под ред. Д. Бриггса и М Сиха. М: Мир. 1987. 600 с.

60. Чердынцев В.В., Калошкин С.Д., Томилин И.А. Взаимодействие железного порошка с кислородом воздуха при механическом легировании. Физика металлов и металловедение. 1998. Т. 86. Вып. 6. С. 84-89.

50. Diagrams of the state of double metal systems. Under the Society. Ed. Lyakisheva N.P. M.: Mashinostroenie. 1997. V. 2. 1024 p. (in Russian).

51. Vol A.E. The structure and properties of binary metal systems. M.: Nauka. 1962. V. 2. 982 p. (in Russian).

52. Arkharov V.I. On the nature of temper brittleness of steel. Dokl. ANSSSR. 1945. V. 50. P. 293-294 (in Russian).

53. Gudremon Je.A. Special steels. M.: Metallurgija. 1966. 540 p. (in Russian).

54. Ainslie N.G., Phillips V.A., Turnbull D. Sulfur segregation at a-iron grain boundaries—II. Acta Metallurgica. 1960. V. 8. N 8. P. 528-538. DOI: 10.1016/0001-6160(60)90106-1.

55. Oh Sei J., Cook D.C., Townsend H.E. Characterization of iron oxides commonly formed as coprrosion products on steel. Hyperfine Interactions. 2004. V. 112. N 1. P. 59- 65. DOI: 10.1023/A:1011076308501.

56. The chemical application of Mossbauer spectroscopy. Ed. V.I. Gol'danskiy. M.: Mir. 1970. 502 p. (in Russian).

57. Shabashov V.A., Litvinov A.V., Mukoseev A.G., Sagaradze V.V., Vil'danov N.F. Deformation-induced phase transitions in the iron oxide-metal system. Physics of Metals and Metallography. 2004. V. 98. N 6. P. 580-595.

58. Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004. N 36. P. 1564-1574. DOI: 10.1002/sia.1984.

59. Surface analysis by Auger and X-ray photoelectron spectros-copy. Ed. by D. Briggs and M. Siha. M.: Mir. 1987. 600 p. (in Russian).

60. Cherdyntsev V.V., Kaloshkin S.D., Tomilin I.A. Interaction of Iron Powder with Oxygen of Air upon Mechanical Alloying. Physics of Metals andMetallography. 1998. V. 86. N 6. P. 585-589.

Поступила в редакцию 25.07.2017 Принята к опубликованию 19.09.2017

Received 25.07.2017 Accepted 19.09.2017

i Надоели баннеры? Вы всегда можете отключить рекламу.