Научная статья на тему 'IKKI O’ZGARUVCHILI TENGLAMALAR SISTEMASI'

IKKI O’ZGARUVCHILI TENGLAMALAR SISTEMASI Текст научной статьи по специальности «Математика»

CC BY
58
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Chiziqli tenglamalar / matritsa / Kramer formulasi / determinant

Аннотация научной статьи по математике, автор научной работы — Sharipova Madina Po’latovna, Latipova Shahnoza Salim Qizi

Maqolada ikki o’zgaruvchili tenglamalar sistemasi ,uni yechishning Kramer usullari o’rganilgan.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «IKKI O’ZGARUVCHILI TENGLAMALAR SISTEMASI»

Central Asian Journal of

Education and Innovation

IKKI O'ZGARUVCHILI TENGLAMALAR SISTEMASI Sharipova Madina Po'latovna

Osiyo Xalqaro Universiteti "Umumtexnik fanlar" kafedrasi o'qituvchisi [email protected] Latipova Shahnoza Salim qizi Osiyo Xalqaro Universiteti "Umumtexnik fanlar" kafedrasi o'qituvchisi

[email protected] https://doi.org/10.5281/zenodo.10691337

ARTICLE INFO

Qabul qilindi: 10-February 2024 yil Ma'qullandi: 15- February 2024 yil Nashr qilindi: 22- February 2024 yil

KEY WORDS

Chiziqli tenglamalar, matritsa, Kramer formulasi,determinan t.

ABSTRACT

Maqolada ikki o'zgaruvchili tenglamalar sistemasi ,uniyechishning Kramer usullari o'rganilgan..

(1)

Ikki o'zgaruvchili tenglamalar sistemasi, matematikda, texnikada va boshqa sohalar bo'yicha juda muhim ahamiyatga ega.Ikki o'zgaruvchili tenglamalar sistemasi, har bir x qiymatiga mos keladigan y qiymatlarini hisoblash uchun amalga oshiriladi. Bu, grafiklar, ko'ordinatalar va Kramer usuli orqali ham yoritilishi mumkin.

Bunday tenglamalar sistemasining umumiy ko'rinishi

¡ax+by = c\

\a2x + ^y = c2

dan iborat bo'lib, u ikki noma'lum (o'zgaruvchanli) chiziqli tenglamalar sistemasi deb

ataladi.

1-ta'rif. x va y o'zgaruvchilarning (2) sistemaning har bir tenglamasini to'g'ri sonli tenglikka aylantiruvchi a va ß qiymatlari jufti (a,ß) uning yechimi deyiladi. (2) sistemani yechish uchun uning birinchi tenglamasini b ga, ikkinchisini b ga ko'paytirib, ularni ayiramiz. U holda

x(ap2 -a2\) = cp2 -c2b hosil bo'ladi, agar a^b2 -a2b ^ 0 bo'lsa,

x = cA - c-A (2) ap2 - a2bx

ga ega bo'lamiz.

y =

ac2 - a2c!

ap2 - a2bx

(3)

ni topamiz.

Shunday qilib, aft2 - a2b ^ 0 bo'lsa, (1) sistema yagona yechimga ega bo'ladi. Ushbu

A =

al b a b

ko'rinishdagi jadval 2 sistemaning matritsasi deyiladi. A matritsaning gorizontal qatorlari uning satrlari, vertikal qatorlari esa - ustunlari deyiladi. a, b,, a2, b lar uning

elementlari deyiladi. Qaralayotgan matritsa, ikkinchi tartibli kvadrat matritsa deyiladi. Uning chap yuqori burchagidan o'ng pastki burchagiga boruvchi dioganal uning bosh dioganali deyiladi.

3 va 4 formulalardagi kasrlarning maxraji bosh dioganaldagi elementlar ko'paytmasidan, ikkinchi dioganalda turgan elementlarning ko'paytmasini ayirish natijasida tuzilganligi ko'rinib turibdi: a:b2 — a2b . Bu ifoda A matritsaning determinanti deb ataladi va quyidagicha belgilanadi: a b

a b2

A =

Demak, ta'rifga ko'ra,

A=

a b

a2 b2

= ab - ab

Quyidagicha tasdiq o'rinli: ikkinchi tartibli determinant nolga teng bo'lishi uchun, uning satrlaridagi yoki ustunlaridagi elementlar proporsional bo'lishi zarur va yetarli.

Yuqoridagi belgilashlar asosida 3 tenglikning surati quyidagi determinantdan iborat:

A, =

ci bi C2 b2

C1b2 - C2b1 .

Bu determinant A determinantdagi birinchi ustunni ozod hadlar ustuni bilan almashtirishdan hosil qilingan. Xuddi shunga o'xshash A determinantning ikkinchi ustunini ozod hadlar bilan almashtirsak, 4 tenglikning suratidagi ifoda hosil bo'ladi:

A 2 =

A,

A,

Shunday qilib, agar A * 0 bo'lsa, 2 sistemaning yechimi x = —-, y =

AA

lardan iborat va yagonadir. Bu formulalar Kramer formulalari deyiladi. Misol. Kramer formulalaridan foydalanib, 1 sistemani yechamiz.

\x + y = 20 [4 x + 2 y = 76, 20 1 76 2

A =

1 1 4 2

= 1-2 - 4-1 = -2 * 0

A =

= 20-2 - 76-1 = -36; A =

1 20 4 76

= 76-1 - 20 - 4 = -4.

U holda, x = (-36) : (-2) = 18, y = (-4) : (-2) = 2. Endi

A=

a b a b

= axb2 -a2b =0

(4)

al c1

a2 c2

a

b

holni qaraymiz. 5 tenglikni — = — ko'rinishda yozish mumkin, ya'ni bu holda

ab

noma'lumlarning koeffisentlari proporsionaldir. Bundan tashqari, agar

C b

c b

a b, = 0 ya'ni = -L

a2

ham o'rinli bo'lsa,

a

b

a

bL ÇL b2 a2

bo'lib, biz ikki noma'lumli bitta tenglamaga ega bo'lamiz. Bu holda u sistema cheksiz ko'p yechimga ega bo'ladi. Nihoyat, agar

a, b. c b

A = 1 1 =0 lekin, 1 1 * 0

a b C2 b2

ya'ni

a b a, — = — * 1

a

b

bo'lsa, u holda sistema ziddiyatli bo'ladi va yechimga ega bo'lmaydi. 1- sistemaning x = a, y = ¡3 yechimi Dekart koordinatalari sistemasida

axx + by = C va a2x + b2y = c2 to'g'ri chiziqlarning kesishish nuqtasini ifodalaydi.

Agar

a b

a2 b

* 0 bo'lsa, to'g'ri chiziqlar har xil bo'lib, yagona umumiy nuqtaga ega

b

bo'ladi. — = — =— bo'lsa, har ikkala tenglama bitta tenglamani ifodalaydi va uning har bir

a b c

nuqtasi, berilgan to'g'ri chiziqning «kesishish nuqtalari» bo'ladi, ya'ni ular ustma-ust tushadi.

Nihoyat, agar — = — ^ — bo'lsa, to'g'ri chiziqlar parallel va ular bitta ham umumiy nuqtaga

a b c

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ega bo'lmaydi.

Shuni ta'kidlab o'tamizki, maktab matematika kursida 2 sistemani o'rniga qo'yish va qo'shish usullari yordamida yechilar edi. Bu yerda yana bitta usulni o'rgandik. Ushbu usulning bitta qulayligi shundaki, uning yordamida n noma'lumli n -ta chiziqli tenglamalar sistemasini ham yechish mumkin. Bunga qiziqqan o'quvchilar [1] adabiyotga murojaat qilishlari mumkin.

Umuman, f (x, y) = 0 Ba x, y) = 0 tenglamalar sistemasi deb, ularning (f (x, y) = 0) a (p( x, y) = 0) kon'yunksiyasiga, maktabda belgilangandek, jf (x, y) = 0 x y) = 0

sistemaga aytiladi. 6 sistemaning har birini to'g'ri sonli tenglikka aylantiruvchi a Ba ¡3 sonlar jufti (a, uning yechimi deyiladi.

Bizga ma'lumki, ikki predikat kon'yunksiyasining rostlik to'plami, shu predikatlar rostlik to'plamlari kesishmasidan iborat. Xuddi shunga o'xshash 6 sistema yechimlarining

(5)

to'plami, f (x, y) = 0 Ba p(x, y) = 0 tenglamalar yechimlari to'plamining kesishmasidan iborat. Geometrik yo'l bilan bu to'plam quyidagicha topiladi: f (x, y) = 0 Ba <^(x, y) = 0 tenglamalarning grafigi chiziladi, so'ngra bu grafiklarning kesishish nuqtalari topiladi. Misol. (4; 3), (-4; -3) juftliklar

Í3x - 4 y = 0 [x2 + y2 = 25

sistema yechimlari to'plamiga tegishli bo'ladi. Haqiqatdan, x = 4, y = 3 hamda x = -4, y = -3 lar tenglamalarning har birini qanoatlantiradi: 3 • 4 - 4 • 3 = 0, 42 + 32 = 25. Ba 3 • (-4)-4 • (-3) = 0, (-4)2 + (-3)2 = 25

Bunday sistemalar, statistik hisob-kitoblarda, matematik modellarda, injenerlik amaliyotlarda, kriptografiyada, hisoblash texnologiyalarida va boshqalar kabi ko'plab sohalarda foydalaniladi.

1. Sharipova, M., & Latipova, S. (2024). TAKRORIY GRUPPALASHLAR. Development of pedagogical technologies in modern sciences, 3(3), 134-142.

2. Sharipova, M. (2024). TAQQOSLAMA TUSHUNCHASI VA UNING XOSSALARI. Current approaches and new research in modern sciences, 3(2), 68-78.

3. Sharipova, M. (2024). IKKI O'ZGARUVCHILI TENGSIZLIKLAR SISTEMASINI TAQQOSLAMALAR USULI BILAN YECHISH. Development and innovations in science, 3(2), 97105.

4. Sharipova, M. (2024). BIRINCHI DARAJALI TAQQOSLAMALARNI YECHISH USULLARI. Solution of social problems in management and economy, 3(2), 60-69.

5. Latipova, S., & Sharipova, M. (2024). KESIK PIRAMIDA MAVZUSIDA FOYDALANILADIGAN YANGI PEDAGOGIK TEXNOLOGIYALAR. 6X6X6 METODI, BBB (BILARDIM, BILMOQCHIMAN, BILIB OLDIM) METODLARI HAQIDA. Current approaches and new research in modern sciences, 3(2), 40-48.

6. Sharipova, M. (2024). IN THE FORM OF AN UNBOUNDED PARALLELEPIPED IN THE FIELD NONLOCAL BORDERLINE CONDITIONAL LINEAR THE REVERSE IS THE CASE. Science and

A(4

Y

Berilgan sistema boshqa yechimlarga ega emasligini ko'rsatish mumkin. Sistema yechi-mini grafik tasvirlaymiz. Sistemaning birinchi tenglamasining grafigi to'g'ri chiziq, ikkinchisiniki esa markazi koor-dinata boshida va radiusi 5 ga teng bo'lgan aylana. Ular A(4, 3) va B(-4, - 3) nuqtalarda kesishadi.

Foydalanilgan adabiyotlar ro'yxati:

innovation in the education system, 3(1), 105-116.

7. Sharipova, M. (2024). FUNCTIONAL SPACES. IN SHORT REFLECTION PRINCIPLE. Current approaches and new research in modern sciences, 3(1), 131-142.

8. Sharipova, M. (2024). A IS CORRECT OF THE INTEGRAL TO THE ECONOMY APPLICATIONS. Solution of social problems in management and economy, 3(1), 116-125.

9. Sharipova, M. (2024). ASYMMETRY AND KURTOSIS COEFFICIENTS. Theoretical aspects in the formation of pedagogical sciences, 3(1), 216-225.

10. Sharipova, M. (2024). TWO MULTIPLE OF THE INTEGRAL APPLICATIONS. Инновационные исследования в науке, 3(1), 135-140.

11. Sharipova, M. P. L. (2023). CAPUTA MA'NOSIDA KASR TARTIBLI HOSILALAR VA UNI HISOBLASH USULLARI. Educational Research in Universal Sciences, 2(9), 360-365.

12. Sharipova, M. P. (2023). MAXSUS SOHALARDA KARLEMAN MATRITSASI. Educational Research in Universal Sciences, 2(10), 137-141.

13. Madina Polatovna Sharipova. (2023). APPROXIMATION OF FUNCTIONS WITH COEFFICIENTS. American Journal of Public Diplomacy and International Studies (2993-2157), 1(9), 135-138.

14. Madina Polatovna Sharipova. (2023). Applications of the double integral to mechanical problems. International journal of sciearchers,2(2), 101-103.

15. Sharipova, M. P. L. (2023). FINDING THE MAXIMUM AND MINIMUM VALUE OF A FUNCTION ON A SEGMENT. American Journal of Public Diplomacy and International Studies (2993-2157), 1(9), 245-248.

16. Sharipova, M. P. (2023). FUNKSIYALARNI KOEFFITSIENTLAR ORQALI FUNKSIYALARNI YAKINLASHTIRISH HAQIDA MA'LUMOTLAR. GOLDEN BRAIN, 1(34), 102110.

17. Sharipova, M. (2023, December). RELATIONSHIPS BETWEEN STRAIGHT LINES AND PLANES IN SPACE. In Международная конференция академических наук (Vol. 2, No. 12, pp. 60-66).

18. Sharipova, M. (2023). FRACTIONAL DERIVATIVES. Академические исследования в современной науке, 2(27), 106-113.

19. Sharipova, M. (2023). CORRECT PLACED AND CORRECT NOT PLACED ISSUES. Models and methods in modern science, 2(13), 115-121.

20. Sharipova, M. (2023). HEAT SPREAD EQUATION. Инновационные исследования в науке, 2(12), 50-56.

21. Madina Polatovna Sharipova. (2023). HIGH MATH SCORE AND INTERVAL ASSESSMENT. American Journal of Public Diplomacy and International Studies (2993-2157), 1(10), 420-424.

22. Madina Polatovna Sharipova. (2023). IN HIGHER MATHEMATICS, THE EXTREMUM OF A MULTIVARIABLE FUNCTION. American Journal of Public Diplomacy and International Studies (2993-2157), 1(10), 425-429.

23. Sharipova, M. P. (2024). ISSIQLIK TARQALISH TENGLAMASI UCHUN KOSHI MASALASI. GOLDEN BRAIN, 2(1), 525-532.

24. Latipova, S. (2024). YUQORI SINF GEOMETRIYA MAVZUSINI O'QITISHDA YANGI PEDAGOGIK TEXNOLOGIYALAR VA METODLAR. SINKVEYN METODI, VENN DIAGRAMMASI METODLARI HAQIDA. Theoretical aspects in the formation of pedagogical sciences, 3(3), 165-

173.

25. Latipova, S. (2024, February). SAVOL-JAVOB METODI, BURCHAKLAR METODI, DEBAT (BAHS) METODLARI YORDAMIDA GEOMETRIYANI O'RGANISH. In Международная конференция академических наук (Vol. 3, No. 2, pp. 25-33).

26. Latipova, S., & Sharipova, M. (2024). KESIK PIRAMIDA MAVZUSIDA FOYDALANILADIGAN YANGI PEDAGOGIK TEXNOLOGIYALAR. 6X6X6 METODI, BBB (BILARDIM, BILMOQCHIMAN, BILIB OLDIM) METODLARI HAQIDA. Current approaches and new research in modern sciences, 3(2), 40-48.

27. Latipova, S. (2024). 10-11 SINFLARDA STEREOMETRIYA OQITISHNING ILMIY VA NAZARIY ASOSLARI. Академические исследования в современной науке, 3(6), 27-35.

28. Latipova, S. (2024). HILFER HOSILASI VA UNI HISOBLASH USULLARI. Центральноазиатский журнал образования и инноваций, 3(2), 122-130.

29. Latipova, S. (2024). HILFER MA'NOSIDA KASR TARTIBLI TENGLAMALAR UCHUN KOSHI MASALASI. Development and innovations in science, 3(2), 58-70.

30. Latipova, S. (2024). KESIK PIRAMIDA TUSHUNCHASI. KESIK PIRAMIDANING YON SIRTINI TOPISH FORMULALARI. Models and methods in modern science, 3(2), 58-71.

31. Shahnoza, L. (2023, March). KASR TARTIBLI TENGLAMALARDA MANBA VA BOSHLANG'ICH FUNKSIYANI ANIQLASH BO'YICHA TESKARI MASALALAR. In " Conference on Universal Science Research 2023" (Vol. 1, No. 3, pp. 8-10).

32. qizi Latipova, S. S. (2024). CAPUTO MA'NOSIDAGI KASR TARTIBLI TENGLAMALARDA MANBA FUNKSIYANI ANIQLASH BO 'YICHA TO 'G 'RI MASALALAR. GOLDEN BRAIN, 2(1), 375-382.

33. Latipova, S. S. (2023). SOLVING THE INVERSE PROBLEM OF FINDING THE SOURCE FUNCTION IN FRACTIONAL ORDER EQUATIONS. Modern Scientific Research International Scientific Journal, 1(10), 13-23.

34. Latipova, S. (2024). GEOMETRIYADA EKSTREMAL MASALALAR. В DEVELOPMENT OF PEDAGOGICAL TECHNOLOGIES IN MODERN SCIENCES (Т. 3, Выпуск 3, сс. 163-172).

35. Latipova, S. (2024). EKSTREMUMNING ZARURIY SHARTI. В SOLUTION OF SOCIAL PROBLEMS IN MANAGEMENT AND ECONOMY (Т. 3, Выпуск 2, сс. 79-90).

36. Latipova, S. (2024). FUNKSIYANING KESMADAGI ENG KATTA VA ENG KICHIK QIYMATI. В CURRENT APPROACHES AND NEW RESEARCH IN MODERN SCIENCES (Т. 3, Выпуск 2, сс. 120-129).

37. Latipova, S. (2024). EKSTREMUMLARNING YUQORI TARTIBLI HOSILA YORDAMIDA TEKSHIRILISHI. IKKINCHI TARTIBLI HOSILA YORDAMIDA EKSTREMUMGA TEKSHIRISH. В SCIENCE AND INNOVATION IN THE EDUCATION SYSTEM (Т. 3, Выпуск 3, сс. 122-133).

38. Latipova, S. (2024). BIR NECHA O'ZGARUVCHILI FUNKSIYANING EKSTREMUMLARI. В THEORETICAL ASPECTS IN THE FORMATION OF PEDAGOGICAL SCIENCES (Т. 3, Выпуск 4, сс. 14-24).

39. Latipova, S. (2024). SHARTLI EKSTREMUM. В МЕЖДУРОДНАЯ КОНФЕРЕНЦИЯ АКАДЕМИЧЕСКИХ НАУК (Т. 3, Выпуск 2, сс. 61-70).

40. Latipova, S. (2024). KASR TARTIBLI HOSILALARGA BO'LGAN ILK QARASHLAR. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск 2, сс. 46-51).

41. Latipova, S. (2024). TURLI EKSTREMAL MASALALAR. BAZI QADIMIY EKSTREMAL MASALALAR. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск

2, сс. 52-57).

42. Latipova, S. (2024). FUNKSIYA GRAFIGINI YASASHDA EKSTREMUMNING QO'LLANILISHI. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск 2, сс. 58-65).

43. Latipova, S. (2024). BIRINCHI TARTIBLI HOSILA YORDAMIDA FUNKSIYANING EKSTREMUMGA TEKSHIRISH, FUNKSIYANING EKSTREMUMLARI. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск 2, сс. 66-72).

44. Boboqulova, M. (2024). FIZIKA O'QITISHNING INTERFAOL METODLARI. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск 2, сс. 73-82).

45. Murodov, O. (2024). INNOVATIVE INFORMATION TECHNOLOGIES AND NEW METHODS AND TOOLS FOR THEIR APPLICATION IN TODAY'S EDUCATION. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 3, Выпуск 2, сс. 83-92).

46. qizi Sharopova, M. M. (2023). RSA VA EL-GAMAL OCHIQ KALITLI SHIFRLASH ALGORITMI ASOSIDA ELEKTRON RAQMLI IMZOLARI. RSA OCHIQ KALITLI SHIFRLASH ALGORITMI ASOSIDAGI ELEKTRON RAQAMLI IMZO. Educational Research in Universal Sciences, 2(10), 316-319.

47. Sharopova, M. M. qizi . (2023). JAVA TILI YORDAMIDA OB'EKTGA YUNALTIRILGAN DASTURLASH ASOSLARI BILAN TANISHISH. GOLDEN BRAIN, 1(34), 111-119.

48. Sharopova, M. (2023). CHOOSE: COMPOSITION OR INHERITANCE. Science and innovation in the education system, 2(13), 96-102.

49. Sharopova, M. (2023). JAVA PROGRAMMING IN THE LANGUAGE HERITAGE TO DO SYNTAX. Current approaches and new research in modern sciences, 2(12), 82-87.

50. Sharopova, M. (2023). ARRAY AND ARRAYS INSTALLATION. Development of pedagogical technologies in modern sciences, 2(12), 102-107.

51. Sharopova, M. (2023). CLASSES AGAIN APPLY. Solution of social problems in management and economy, 2(13), 106-111.

52. qizi Sharopova, M. M. (2023). INTRODUCING" PROGRAM CONTROL OPERATORS" IN THE JAVA PROGRAMMING LANGUAGE. Multidisciplinar/ Journal of Science and Technology, 3(5), 222-231.

53. qizi Sharopova, M. M. (2023). Working with folders in the JAVA programming language. Multidisciplinary Journal of Science and Technology, 3(5), 232-236.

54. Sharopova, M. (2024). CREATION OF A DATABASE FOR THE SYSTEM PLATFORM OF NON-GOVERNMENT EDUCATIONAL CENTERS. Current approaches and new research in modern sciences, 3(1), 185-191.

55. Sharopova, M. (2024). DSA ERI STANDARD. ELECTRONIC DIGITAL SIGNATURE OF GOST R 34.10-94. Theoretical aspects in the formation of pedagogical sciences, 3(1), 169-178.

56. Sharopova, M. (2024). COLLECTORS.(OBJECT CONTAINERS). Development of pedagogical technologies in modern sciences, 3(1), 93-101.

57. Sharopova, M. (2024). JAVA PROGRAMMING IN THE LANGUAGE FLOWING INPUT AND RELEASE. Solution of social problems in management and economy, 3(1), 84-93.

58. Tursunov, B. J., & Allanazarov, G. O. (2019). Perspektivnye tehnologii proizvodstva po uluchsheniyu kachestva benzina. Theory and practice of contemporary science, 3(45), 305308.

59. Турсунов, Б. Ж., & Алланазаров, Г. О. (2019). Перспективные технологии

производства по улучшению качества бензина. Теория и практика современной науки, (3 (45)), 305-308.

60. Tursunov, B. Z. (2023). Analysis of Concepts About the Effect of an Explosion in Solid Wednesday. American Journal of Public Diplomacy and International Studies (2993-2157), 1(10), 296-304.

61. Tursunov, B. Z. (2023). Methods of Control of Explosion Energy Distribution in Rocks. Intersections of Faith and Culture: American Journal of Religious and Cultural Studies (29932599), 1(10), 108-117.

62. Tursunov, B. Z. (2023). WASTE-FREE TECHNOLOGY FOR ENRICHMENT OF PURIFIC COPPER-ZINC ORE. American Journal of Public Diplomacy and International Studies (29932157), 1(9), 288-293.

63. Tursunov, B. Z. (2023). ANALYSIS OF MODERN METHODS FOR OIL SLUDGE PROCESSING. American Journal of Public Diplomacy and International Studies (2993-2157), 1(9), 280-287.

64. Jumaev, K., & Tursunov, B. (2022, December). Environmentally friendly technology for obtaining fuel briquettes from oil waste. In IOP Conference Series: Earth and Environmental Science (Vol. 1112, No. 1, p. 012005). IOP Publishing.

65. Murodov, O. (2024). DEVELOPMENT OF AN AUTOMATED PARAMETER CONTROL SYSTEM ROOMS AND WORKSHOPS BASED ON CLOUD TECHNOLOGIES. Академические исследования в современной науке, 3(2), 16-27.Murodov, O. T. R. (2023). Zamonaviy ta'limda axborot texnologiyalari va ularni qo 'llash usul va vositalari. Educational Research in Universal Sciences, 2(11), 481-486.

66. Муродов, О. Т. (2023). РАЗРАБОТКА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ В ПРОИЗВОДСТВЕННЫХ КОМНАТ. GOLDEN BRAIN, 1(26), 91-95.

67. Murodov, O. T. R. (2023). INFORMATIKA DARSLARINI TASHKIL ETISHDA INNOVATSION USULLARDAN FOYDALANISH. GOLDEN BRAIN, 1(32), 194-201.

68. Murodov, O. T. R. (2023). INFORMATIKA FANINI O 'QITISHDA YANGI INNOVATSION USULLARDAN FOYDALANISH METODIKASI. GOLDEN BRAIN, 1(34), 130-139.

69. Turakulovich, M. O. (2023). DEVELOPMENT AND INSTALLATION OF AN AUTOMATIC TEMPERATURE CONTROL SYSTEM IN ROOMS. International Multidisciplinary Journal for Research & Development, 10(12).

70. MURODOV, O. T. (2023). INNOVATIVE INFORMATION TECHNOLOGIES AND NEW METHODS AND TOOLS FOR THEIR APPLICATION IN TODAY'S EDUCATION. International Multidisciplinary Journal for Research & Development, 10(12).

71. Muradov, O. (2024, January). APPLICATION OF BASIC PRINCIPLES AND RULES OF INNOVATIVE PEDAGOGICAL TECHNOLOGIES TO EDUCATIONAL PROCESSES. In Международная конференция академических наук (Vol. 3, No. 1, pp. 46-55).

72. Muradov, O. (2024). BASIC PRINCIPLES AND RULES OF INNOVATIVE PEDAGOGICAL TECHNOLOGIES IN THE EDUCATIONAL PROCESS. Models and methods in modern science, 3(1), 84-93.

73. Muradov, O. (2024). APPLIED TO THE CURRENT TRAINING PROCESS REQUIREMENTS. Инновационные исследования в науке, 3(1), 54-63.

74. Murodov, O. (2024). DEVELOPMENT OF AN AUTOMATED PARAMETER CONTROL

SYSTEM ROOMS AND WORKSHOPS BASED ON CLOUD TECHNOLOGIES. Академические исследования в современной науке, 3(2), 16-27.

75. Bobokulova, M. (2024). IN MEDICINE FROM ECHOPHRAPHY USE. Development and innovations in science, 3(1), 94-103.

76. Bobokulova, M. (2024). INTERPRETATION OF QUANTUM THEORY AND ITS ROLE IN NATURE. Models and methods in modern science, 3(1), 94-109.

77. Bobokulova, M. (2024, January). RADIO WAVE SURGERY. In Международная конференция академических наук (Vol. 3, No. 1, pp. 56-66).

78. Bobokulova, M. (2024). UNCERTAINTY IN THE HEISENBERG UNCERTAINTY PRINCIPLE. Академические исследования в современной науке, 3(2), 80-96.

79. Bobokulova, M. (2024). BLOOD ROTATION OF THE SYSTEM PHYSICIST BASICS. Инновационные исследования в науке, 3(1), 64-74.

80. Bobokulova, M. (2024). THE ROLE OF NANOTECHNOLOGY IN MODERN PHYSICS. Development and innovations in science, 3(1), 145-153.

81. Boboqulova, M. X. (2023). STOMATOLOGIK MATERIALLARNING FIZIK-MEXANIK XOSSALARI. Educational Research in Universal Sciences, 2(9), 223-228.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

82. Xamroyevna, B. M. (2023). ORGANIZM TO 'QIMALARINING ZICHLIGINI ANIQLASH. GOLDEN BRAIN, 1(34), 50-58.

83. Bobokulova, M. K. (2023). IMPORTANCE OF FIBER OPTIC DEVICES IN MEDICINE. Multidisciplinary Journal of Science and Technology, 3(5), 212-216.

84. Khamroyevna, M. B. (2023). PHYSICO-CHEMICAL PROPERTIES OF BIOLOGICAL MEMBRANES, BIOPHYSICAL MECHANISMS OF MOVEMENT OF SUBSTANCES IN THE MEMBRANE. Multidisciplinary Journal of Science and Technology, 3(5), 217-221.

85. Bobokulova, M. K. (2024). TOLALI OPTIKA ASBOBLARINING TIBBIYOTDAGI AHAMIYATI. GOLDEN BRAIN, 2(1), 517-524.

86. Behruz Ulug'bek o'g, Q. li.(2023). Mobil ilovalar yaratish va ularni bajarish jarayoni. International journal of scientific researchers, 2(2).

87. Karimov, F. (2022). ANIQ INTEGRALNI TAQRIBIY HISOBLASH. ЦЕНТР НАУЧНЫХ ПУБЛИКАЦИЙ (buxdu. uz), 14(14).

88. Quvvatov, B. (2024). GLOBAL IN VIRTUAL LEARNING MOBILE APP CREATION INFORMATION SYSTEMS AND TECHNOLOGIES. Science and innovation in the education system, 3(1), 95-104.

89. Quvvatov, B. (2024). SQL DATABASES AND BIG DATA ANALYTICS: NAVIGATING THE DATA MANAGEMENT LANDSCAPE. Development of pedagogical technologies in modern sciences, 3(1), 117-124.

90. Quvvatov, B. (2024). CONSTRUCTION OF SPECIAL MODELS THROUGH DIFFERENTIAL EQUATIONS AND PRACTICAL SOLUTIONS. Solution of social problems in management and economy, 3(1), 108-115.

91. Quvvatov, B. (2024). FINDING SOLUTIONS OF SPECIAL MODELS BY INTEGRATING INTEGRAL EQUATIONS AND MODELS. Current approaches and new research in modern sciences, 3(1), 122-130.

92. Quvvatov, B. (2024). WEB FRONT-END AND BACK-END TECHNOLOGIES IN PROGRAMMING. Theoretical aspects in the formation of pedagogical sciences, 3(1), 208-215.

93. Behruz Ulug'bek o'g, Q. (2023). USE OF ARTIFICIAL NERVOUS SYSTEMS IN MODELING.

Multidisciplinary Journal of Science and Technology, 3(5), 269-273.

94. Behruz Ulugbek og, Q. (2023). TECHNOLOGY AND MEDICINE: A DYNAMIC PARTNERSHIP. International Multidisciplinary Journal for Research & Development, 10(11).

95. Quvvatov, B. (2024). DIFFERENTSIAL TENGLAMALAR VA AMALIY ECHIMLAR ORQALI MAXSUS MODELLARNI QURISH. Menejment va iqtisodiyotda ijtimoiy muammolarni hal qilish , 3 (1), 108-115.

96. Behruz Ulug'bek o'g', Q. (2023). SUN'IY NERV TIZIMLARIDAN MODELLASHDA FOYDALANISH. Fan va texnologiyaning ko'p tarmoqli jurnali , 3 (5), 269-273.

97. Behruz Ulug'bek og', Q. (2023). TEXNOLOGIYA VA TIBBIYOT: DlNAMIK HAMKORLIK. Tadqiqot va ishlanmalar bo'yicha xalqaro multidisipliner jurnali , 10 (11).

98. Quvvatov, B. (2024). ALGEBRAIK ANIQLIGI YUQORI BOLGAN KVADRATUR FORMULALAR. GAUSS KVADRATUR FORMULALARI. Models and methods in modern science, 3(2), 114-125.

99. Quvvatov, B. (2024). ALGEBRAIK ANIQLIGI YUQORI BOLGAN KVADRATUR FORMULALAR. ORTOGONAL KOPHADLAR. Инновационные исследования в науке, 3(2), 47-59.

100. Quvvatov, B. (2024, February). ALGEBRAIK ANIQLIGI YUQORI BOLGAN KVADRATUR FORMULALAR. REKURSIV TRAPETSIYALAR QOIDASI. In Международная конференция академических наук (Vol. 3, No. 2, pp. 41-51).

101. Axmedova, Z. (2024). KOMPYUTER TESTLARINING MAQSADLARI, MAZMUNI VA TUZILISHI. Theoretical aspects in the formation of pedagogical sciences, 3(3), 211-222.

102. Axmedova, Z. (2024). NODAVLAT O'QUV MARKAZLARI TIZIMI PLATFORMASI UCHUN MOBIL ILOVA YARATISH. Академические исследования в современной науке, 3(6), 162179.

103. Axmedova, Z. (2024). NODAVLAT O'QUV MARKAZLARI TIZIMI PLATFORMASI UCHUN MA'LUMOTLAR BAZASINI YARATISH. Science and innovation in the education system, 3(3), 83-93.

104. Akhmedova, Z. (2024). STRUCTURES OF SMALL DATABASE MANAGEMENT SYSTEMS. Solution of social problems in management and economy, 3(1), 97-107.

105. Akhmedova, Z. (2024). DATA BY COMBINING MAIL THROUGH TO SEND METHODS. Theoretical aspects in the formation of pedagogical sciences, 3(1), 198-207.

106. Akhmedova, Z., & Rahmatova, N. (2024). LMS (LEARNING MANAGEMENT SYSTEM) LEARNING MANAGEMENT SYSTEM FEATURES. Science and innovation in the education system, 3(1), 85-94.

107. Akhmedova, Z. (2024). CREATION OF A DATABASE FOR THE SYSTEM PLATFORM OF NON-GOVERNMENT EDUCATIONAL CENTERS. Development of pedagogical technologies in modern sciences, 3(1), 106-116.

108. Akhmedova, Z. (2024). IPHONE OPERATIONAL IN THE SYSTEM MOBILE APPLICATIONS TO CREATE INTENDED PROGRAMMING ENVIRONMENTS. Current approaches and new research in modern sciences, 3(1), 111-121.

109. Axmedova, Z. I. (2024). LEARNING MANAGEMENT SYSTEM IMKONIYATLARI. GOLDEN BRAIN, 2(1), 509-516.

110. Axmedova, Z. I. (2023). MA'LUMOTLAR BAZASI BOSHQARISH TIZIMLARI. GOLDEN BRAIN, 1(34), 40-49.

111. Akhmedova, Z. (2023). CREATION AND PLACEMENT OF INTERACTIVE ELEMENTS. Solution of social problems in management and economy, 2(13), 120-128.

112. Ikromovna, A. Z. (2023). Programming Environments for Creating Mobile Applications on the Android Operating System. American Journal of Public Diplomacy and International Studies (2993-2157), 1(10), 305-309.

113. Akhmedova, Z. (2023). EDUCATIONAL MANAGEMENT SYSTEMS, ELECTRONIC EDUCATION: TASKS AND OPPORTUNITIES. Theoretical aspects in the formation of pedagogical sciences, 2(21), 171-177.

114. Ikromovna, A. Z. (2023). SQL (STRUCTURED QUERY LANGUAGE) CAPABILITIES OF THE STATISTICAL DATABASE LANGUAGE. Multidisciplinary Journal of Science and Technology, 3(5), 274-280.

115. Ikromovna, A. Z. (2023). SQL (STRUCTURED QUERY LANGUAGE) STATISTICAL PACKAGES OF CAPABILITIES. Best Journal of Innovation in Science, Research and Development, 2(12), 781-787.

116. Zulxumor, A. (2022). IMPLEMENTATION OF INTERACTIVE COURSES IN THE EDUCATIONAL PROCESS. ILMIY TADQIQOT VA INNOVATSIYA, 1(6), 128-132.

117. Axmedova, Z. (2023). MOODLE TIZIMI VA UNING IMKONIYATLARI. Development and innovations in science, 2(11), 29-35.

118. Ikromovna, A. Z. (2023). USING THE USEFUL ASPECTS OF THE MOODLE SYSTEM AND ITS POSSIBILITIES. American Journal of Public Diplomacy and International Studies (29932157), 1(9), 201-205.

119. Ikromovna, A. Z. (2023). USING THE USEFUL ASPECTS OF THE MOODLE SYSTEM AND ITS POSSIBILITIES. American Journal of Public Diplomacy and International Studies (29932157), 1(9), 201-205.

120. Axmedova, Z. I. (2023). LMS TIZIMIDA INTERAKTIV ELEMENTLARNI YARATISH TEXNOLOGIYASI. Educational Research in Universal Sciences, 2(11), 368-372.

i Надоели баннеры? Вы всегда можете отключить рекламу.