Central Asian Journal of
Education and Innovation
FUNKSIYA GRAFIGINI YASASHDA EKSTREMUMNING
QO'LLANILISHI.
Latipova Shahnoza Salim qizi
Osiyo Xalqaro Universiteti "Umumtexnik fanlar" kafedrasi o'qituvchisi
[email protected] https://doi.org/10.5281/zenodo.10686661
ARTICLE INFO
ABSTRACT
Qabul qilindi: 10-February 2024 yil Ma'qullandi: 15- February 2024 yil Nashr qilindi: 21- February 2024 yil
KEY WORDS
Funksiya, ekstremum, maksimum, minimum, grafik
Biz funksiya grafigini nuqtalar bo'yicha yasashni bilamiz. Agar yetarlicha ko'p sondagi sondagi nuqtalar belgilangan bo'lsa, ko'p hollarda bu usul yaxshi natijalar beradi. Ammo bunda funksiyalar qiymatlarining katta jadvallarini tuzishga to'g'ri keladi, eng asosiysi bunda funksiyalarning muhim xususiyatlarini payqamay qolish va natijada grafikni yasashda hatoga yo'lqo'yish mumkin. Funksiyaning 15 ta nuqtadagi qiymatlarini hisoblab va grafikning koordinatalar tekisligidagi mos nuqtalarini belgilab, biz rasmni hosil qilamiz deb faraz qilaylik.Grafikning eskizi bu nuqtalarning hammasidan o'tuvchi uzluksiz egri chiziqqa yaqin deb faraz qilish tabiiy. Ammo "haqiqiy" grafik mutlaqo bu eskizga o'xshamasligi mumkin. Xatodan qochish uchun funksiyaning harakterli hususiyatlarini ochishni o'rganib olish kerak, ya'ni uni oldin tekshirib ko'rish lozim. f funksiya haqida bizga quyidagilar malum bo'lsin: -(-co; -10), (-10; 10) (10; oo)
oraliqlarning birlashmasida aniqlangan .-(-11) va 0 nuqtalarda nolga aylanadi^ ZC> ^
<-»; -11) va (-1°;OX-10;0) lntervallarda manfly hamda C-ii; -io) (o;io)
(-11: -10) (0; 10) va (10; —co)(10;-co) lnterva||al.damusbat.
-(-co; -10) (-10; 10) [12; 15]—(-co; -10) (-10: 10) [12; 15]ora|,q|arda
o'suvchi, (10,12] ya [15, go) [15, co)oraliqlarda kamayuvchi
-12 nuqtada minimumga ega, shu bilan birga^"'"'^ — 16/(12) — lb
15 nuqtada maksimumga ega, shu bilan birga^ — 19/(15) — 19
- nihoyat, argument qiymatlari -10 va 10 ga yaqinlashganda ^' funksiyaning qiymatlari absolyut kattaligi bo'yicha cheksiz o'sadi.
Bu ma'lumotlar funksiya grafigining eskizi taxminan 53-rasmda tasvirlanganidek ekanini kuzatishimiz mumkin.
Yana bitta funksiyani grafigini yasashga urinib ko'ramiz.
fix) = -ihf(x) =
1-misol.
xz-r
x2 +1
funksiyani grafigini chizing.
1) Funksiyaning aniqlanish sohasini topamiz.Ushbu holda ^-^^^sonlar to'g'
ri
X2 + 1 X" + 1
chizig'idan iborat, chunki maxraj ' nolga aylanmaydi.
fix) fix) XV
2J Ji\ J funksiya juft funksiya ekanini ko'ramiz: chunki har qanday uchun
/(-*) =
x2-l
(—a:)2+1 x2 +1
= /0)
v > 0 v > 0
Shu sababli funksiyani tekshirish va — — da uning grafigini yasash yetarli, keyin
esa yasalgan grafikni ordinatalar o'qiga nisbatan akslantirish qoladi.
ff ff 3) J J funksiya grafigining koordinatalar o'qlari bilan kesishish nuqtalarini ropamiz. J J
ning grafigi ordinatalar o'qini ^nuqtada kesib o'tadi-^^^^ning
qiymati 1 ga teng. Shu sababli grafik^1 1) nuqtadan o'tadi.
ff f( O = 0
- J funksiya grafigining absissalar o'qi bilan kesishish nuqtasini topish uchun - ■ /CO — 0 tenglamani yechish kerak (uning ildizlari funksiyaning nollari deyiladi).
= 0
= 0
ff
x2-i a-2+i tenglama ildizlarga ega emas. Demak, * J ning grafigi absissalar o'qi bilan kesishmaydi. ff
4) J 1 funksiya qanday oraliqlarda musbat, qanday oraliqlarda manfiy qiymatlarni qabul qilishini aniqlaymiz; bu oraliqlar funksiyaning ishorasi o'zgarmaydigan oraliqlari deyiladi. Bu oraliqlarda funksiyaning grafigi absissalar o'qidan yuqorida (mos ravishda pastda)
-y y ____^
yotadi. Mazkur holda, har qanday ' da ^ ^ ± v ^ x ning qiymati musbat bo'ladigan, sonlar to'g'ri chizig'ining hamma yerida -^CO ' ^/CO "" ^ bo'ladi.
5) f f funksiya qanday oraliqlarda o'suvchi yoki qanday oraliqlarda kamayuvchi ekanligi haqidagi ma'lumotlar (bu oraliqlar funksiyaning o'sish yoki kamayish oralilari deyiladi) uning grafigini yasashni jiddiy osonlashtiradi. Qaralayorgan funksiya uchun o'sish oralig'I
( 0) cjarij kamayish oralig'I esa ^ dan iborat.
6) Funksiyaning o'sishdan kamayishga o'tish yoki kamayishdan o'sishga o'tish nuqtalaridagi qiymatlarini topamiz. Qaralayotgan holda ham o'sish oralig'iga, ham kamayish oralig'iga tegishli bitta nuqta mavjud bu 0 nuqtadir 0 nuqta funksiyaning
maksimum nuqtasidir. f ^^ ~ 1/(0) — ^
x
+ lx2 + 1
7) qayd qilishimiz joizki
+ 1 X2 + 1 1
XX
ning qiymati cheksiz kattalashib borganda
/00 = -T-
ning qiymati cheksiz ortib boradi, shuning uchun ham + !
fix) =
x2+l
ning qiymatlari (musbatligicha qolib) nolga yaqinlasha boradi.
/00 = -T-/U) = -7-Tekshirishning boshida x -l a-2+i funksiya hossalari haqida olingan
ma'lumotlar uning grafigini yasash uchun yetarlidir.
Grafikning (Q'-0(0,1) njq^asini yasaymiz. Biz oraliq -^funksiyaning
kamayish oralig'i ekanini aniqladik. Shu sababli absisaasi 0 ga teng nuqtadan o'ngroqda
ff funksiya grafigini "pastga keyadigan" egri chiziq shaklida chizamiz. (54-rasm) Har
qanday da f^-^ ' ^/(Л") - 0 bo'lgani uchun bu egri chiziq absissalar o'qidan pastga tushib keta olmaydi, shu bilan birga o'ngga davom ettirganda grafik absissalar
ff v- > (")
o'qiga cheksiz yaqinlashib boradi. - J funksiyaning juftligidan foydalanish qoladi: —
л — ^ uchun yasalgan egri chiziqni ordinatalar o'qiga nisbatan simmeterik akslantirib, f
f funksiya grafigini hosil qilamiz. (55- rasm) Umumlashtirgan holda quyidagi hulosalarga kelish mumkin.
1) Berilgan f funksiyaning aniqlanish va qiymatlar sohalarini topish
2) Funksiyani tekshirishni osonlashtiruvchi hususiyatlarga ega yoki ega emasligini
ff
aniqlash, ya'ni 1 J funksiya
a) toq yoki juft funksiya ekani
b) davriy funksiya ekani aniqlanadi.
3) Grafikning koordinatalar o'qlari bilan kesishish nuqtalarini hisoblash. ff
4) J J funksiyaning ishorasi o'zgarmaydigan oraliqlarni topish.
5) f f funksiya qanday oraliqlarda o'suvchi, qanday oraliqlarda kamayuvchi ekanligini aniqlash.
6) funksiyaning ekstremum nuqtalarini topish, ekstremum turini (maksimum yoki minimum ekanligini ) aniqlash va ff ning shu nuqtalardagi qiymatini hisoblash.
7) ff funksoyaning aniqlanish sohasiga kirmaydigan harakterli nuqtalarda (masalan
x = Ox = 0
fix) = -fix) = -
x v funksiya uchun
nuqtada) hamda argumentning
(moduli bo'yicha) katta qiymatlarida funksiya holatini tekshirish kerak.
Shuni ta'kidlash zarurki, tekshirishning bu plani taxminiy harakterga ega. Masalan,
absissalar o'qi bilan kesishish nuqtalarini topish uchun ~ О/СО — 0 tenglamani
yechish kerak, biz esa /C'O/iX) hatto beshinchi darajali ko'phad bo'lganda buning uddasidan chiqa olmaymiz. (to'g'ri, ko'p hollarda bunday tenglama ildizlari sonini ham, ildizlarning o'zini ham har qanday aniqlikda toppish imkonini beruvchi usullar mavjud). Shu sababli tekshirishning u yoki bu bosqichini tushurib qoldirishga to'g'r i keladi. Ammo funksiyalarni tekshirishning borishida imkoni boricha shu sxemaga amal qilish maqsadga muvofiq.
Foydalanilgan adabiyotlar ro'yhati:
1. Latipova, S. (2024). YUQORI SINF GEOMETRIYA MAVZUSINI O'QITISHDA YANGI PEDAGOGIK TEXNOLOGIYALAR VA METODLAR. SINKVEYN METODI, VENN DIAGRAMMASI METODLARI HAQIDA. Theoretical aspects in the formation of pedagogical sciences, 3(3), 165173.
2. Latipova, S. (2024, February). SAVOL-JAVOB METODI, BURCHAKLAR METODI, DEBAT (BAHS) METODLARI YORDAMIDA GEOMETRIYANI O'RGANISH. In Международная конференция академических наук (Vol. 3, No. 2, pp. 25-33).
3. Latipova, S., & Sharipova, M. (2024). KESIK PIRAMIDA MAVZUSIDA FOYDALANILADIGAN
YANGI PEDAGOGIK TEXNOLOGIYALAR. 6X6X6 METODI, BBB (BILARDIM, BILMOQCHIMAN, BILIB OLDIM) METODLARI HAQIDA. Current approaches and new research in modern sciences, 3(2), 40-48.
4. Latipova, S. (2024). 10-11 SINFLARDA STEREOMETRIYA OQITISHNING ILMIY VA NAZARIY ASOSLARI. Академические исследования в современной науке, 3(6), 27-35.
5. Latipova, S. (2024). HILFER HOSILASI VA UNI HISOBLASH USULLARI. Центральноазиатский журнал образования и инноваций, 3(2), 122-130.
6. Latipova, S. (2024). HILFER MA'NOSIDA KASR TARTIBLI TENGLAMALAR UCHUN KOSHI MASALASI. Development and innovations in science, 3(2), 58-70.
7. Latipova, S. (2024). KESIK PIRAMIDA TUSHUNCHASI. KESIK PIRAMIDANING YON SIRTINI TOPISH FORMULALARI. Models and methods in modern science, 3(2), 58-71.
8. Shahnoza, L. (2023, March). KASR TARTIBLI TENGLAMALARDA MANBA VA BOSHLANG'ICH FUNKSIYANI ANIQLASH BO'YICHA TESKARI MASALALAR. In " Conference on Universal Science Research 2023" (Vol. 1, No. 3, pp. 8-10).
9. qizi Latipova, S. S. (2024). CAPUTO MA'NOSIDAGI KASR TARTIBLI TENGLAMALARDA MANBA FUNKSIYANI ANIQLASH BO 'YICHA TO 'G 'RI MASALALAR. GOLDEN BRAIN, 2(1), 375-382.
10. Latipova, S. S. (2023). SOLVING THE INVERSE PROBLEM OF FINDING THE SOURCE FUNCTION IN FRACTIONAL ORDER EQUATIONS. Modern Scientific Research International Scientific Journal, 1(10), 13-23.
11. Sharipova, M., & Latipova, S. (2024). TAKRORIY GRUPPALASHLAR. Development of pedagogical technologies in modern sciences, 3(3), 134-142.
12. Sharipova, M. (2024). TAQQOSLAMA TUSHUNCHASI VA UNING XOSSALARI. Current approaches and new research in modern sciences, 3(2), 68-78.
13. Sharipova, M. (2024). IKKI O'ZGARUVCHILI TENGSIZLIKLAR SISTEMASINI TAQQOSLAMALAR USULI BILAN YECHISH. Development and innovations in science, 3(2), 97105.
14. Sharipova, M. (2024). BIRINCHI DARAJALI TAQQOSLAMALARNI YECHISH USULLARI. Solution of social problems in management and economy, 3(2), 60-69.
15. Latipova, S., & Sharipova, M. (2024). KESIK PIRAMIDA MAVZUSIDA FOYDALANILADIGAN YANGI PEDAGOGIK TEXNOLOGIYALAR. 6X6X6 METODI, BBB (BILARDIM, BILMOQCHIMAN, BILIB OLDIM) METODLARI HAQIDA. Current approaches and new research in modern sciences, 3(2), 40-48.
16. Sharipova, M. (2024). IN THE FORM OF AN UNBOUNDED PARALLELEPIPED IN THE FIELD NONLOCAL BORDERLINE CONDITIONAL LINEAR THE REVERSE IS THE CASE. Science and innovation in the education system, 3(1), 105-116.
17. Sharipova, M. (2024). FUNCTIONAL SPACES. IN SHORT REFLECTION PRINCIPLE. Current approaches and new research in modern sciences, 3(1), 131-142.
18. Sharipova, M. (2024). A IS CORRECT OF THE INTEGRAL TO THE ECONOMY APPLICATIONS. Solution of social problems in management and economy, 3(1), 116-125.
19. Sharipova, M. (2024). ASYMMETRY AND KURTOSIS COEFFICIENTS. Theoretical aspects in the formation of pedagogical sciences, 3(1), 216-225.
20. Sharipova, M. (2024). TWO MULTIPLE OF THE INTEGRAL APPLICATIONS. Инновационные исследования в науке, 3(1), 135-140.
21. Sharipova, M. P. L. (2023). CAPUTA MA'NOSIDA KASR TARTIBLI HOSILALAR VA UNI HISOBLASH USULLARI. Educational Research in Universal Sciences, 2(9), 360-365.
22. Sharipova, M. P. (2023). MAXSUS SOHALARDA KARLEMAN MATRITSASI. Educational Research in Universal Sciences, 2(10), 137-141.
23. Madina Polatovna Sharipova. (2023). APPROXIMATION OF FUNCTIONS WITH COEFFICIENTS. American Journal of Public Diplomacy and International Studies (2993-2157), 1(9), 135-138.
24. Bobokulova, M. (2024). IN MEDICINE FROM ECHOPHRAPHY USE. Development and innovations in science, 3(1), 94-103.
25. Bobokulova, M. (2024). INTERPRETATION OF QUANTUM THEORY AND ITS ROLE IN NATURE. Models and methods in modern science, 3(1), 94-109.
26. Bobokulova, M. (2024, January). RADIO WAVE SURGERY. In Международная конференция академических наук (Vol. 3, No. 1, pp. 56-66).
27. Bobokulova, M. (2024). UNCERTAINTY IN THE HEISENBERG UNCERTAINTY PRINCIPLE. Академические исследования в современной науке, 3(2), 80-96.
28. Bobokulova, M. (2024). BLOOD ROTATION OF THE SYSTEM PHYSICIST BASICS. Инновационные исследования в науке, 3(1), 64-74.
29. Bobokulova, M. (2024). THE ROLE OF NANOTECHNOLOGY IN MODERN PHYSICS. Development and innovations in science, 3(1), 145-153.
30. Boboqulova, M. X. (2023). STOMATOLOGIK MATERIALLARNING FIZIK-MEXANIK XOSSALARI. Educational Research in Universal Sciences, 2(9), 223-228.
31. Xamroyevna, B. M. (2023). ORGANIZM TO 'QIMALARINING ZICHLIGINI ANIQLASH. GOLDEN BRAIN, 1(34), 50-58.
32. Bobokulova, M. K. (2023). IMPORTANCE OF FIBER OPTIC DEVICES IN MEDICINE. Multidisciplinary Journal of Science and Technology, 3(5), 212-216.
33. Khamroyevna, M. B. (2023). PHYSICO-CHEMICAL PROPERTIES OF BIOLOGICAL MEMBRANES, BIOPHYSICAL MECHANISMS OF MOVEMENT OF SUBSTANCES IN THE MEMBRANE. Multidisciplinary Journal of Science and Technology, 3(5), 217-221.
34. Bobokulova, M. K. (2024). TOLALI OPTIKA ASBOBLARINING TIBBIYOTDAGI AHAMIYATI. GOLDEN BRAIN, 2(1), 517-524.
35. Axmedova, Z. I. (2024). LEARNING MANAGEMENT SYSTEM IMKONIYATLARI. GOLDEN BRAIN, 2(1), 509-516.
36. Akhmedova, Z. (2024). DATA BY COMBINING MAIL THROUGH TO SEND METHODS. Theoretical aspects in the formation of pedagogical sciences, 3(1), 198-207.
37. Axmedova, Z. (2024). KOMPYUTER TESTLARINING MAQSADLARI, MAZMUNI VA TUZILISHI. В THEORETICAL ASPECTS IN THE FORMATION OF PEDAGOGICAL SCIENCES (Т. 3, Выпуск 3, сс. 211-222).
38. Akhmedova, Z., & Rahmatova, N. (2024). LMS (LEARNING MANAGEMENT SYSTEM) LEARNING MANAGEMENT SYSTEM FEATURES. Science and innovation in the education system, 3(1), 85-94.
39. Akhmedova, Z. (2024). CREATION OF A DATABASE FOR THE SYSTEM PLATFORM OF NON-GOVERNMENT EDUCATIONAL CENTERS. Development of pedagogical technologies in modern sciences, 3(1), 106-116.
40. Akhmedova, Z. (2024). IPHONE OPERATIONAL IN THE SYSTEM MOBILE
APPLICATIONS TO CREATE INTENDED PROGRAMMING ENVIRONMENTS. Current approaches and new research in modern sciences, 3(1), 111-121.
41. Axmedova, Z. I. (2023). MA'LUMOTLAR BAZASI BOSHQARISH TIZIMLARI. GOLDEN BRAIN, 1(34), 40-49.
42. Akhmedova, Z. (2023). CREATION AND PLACEMENT OF INTERACTIVE ELEMENTS. Solution of social problems in management and economy, 2(13), 120-128.
43. Ikromovna, A. Z. (2023). Programming Environments for Creating Mobile Applications on the Android Operating System. American Journal of Public Diplomacy and International Studies (2993-2157), 1(10), 305-309.
44. Akhmedova, Z. (2023). EDUCATIONAL MANAGEMENT SYSTEMS, ELECTRONIC EDUCATION: TASKS AND OPPORTUNITIES. Theoretical aspects in the formation of pedagogical sciences, 2(21), 171-177.
45. Ikromovna, A. Z. (2023). SQL (STRUCTURED QUERY LANGUAGE) CAPABILITIES OF THE STATISTICAL DATABASE LANGUAGE. Multidisciplinary Journal of Science and Technology, 3(5), 274-280.
46. Ikromovna, A. Z. (2023). SQL (STRUCTURED QUERY LANGUAGE) STATISTICAL PACKAGES OF CAPABILITIES. Best Journal of Innovation in Science, Research and Development, 2(12), 781-787.
47. Akhmedova, Z. (2023). SQL SPECIFICATIONS FOR DATA ANALYSIS. Science and innovation in the education system, 2(13), 113-120.
48. Akhmedova, Z. (2023). DISADVANTAGES OF ELECTRONIC LEARNING. Current approaches and new research in modern sciences, 2(12), 99-109.
49. Axmedova, Z. (2023). MOODLE TIZIMI VA UNING IMKONIYATLARI. Development and innovations in science, 2(11), 29-35.
50. Ikromovna, A. Z. (2023). USING THE USEFUL ASPECTS OF THE MOODLE SYSTEM AND ITS POSSIBILITIES. American Journal of Public Diplomacy and International Studies (29932157), 1(9), 201-205.
51. Axmedova, Z. I. (2023). LMS TIZIMIDA INTERAKTIV ELEMENTLARNI YARATISH TEXNOLOGIYASI. Educational Research in Universal Sciences, 2(11), 368-372.
52. Axmedova, Z. (2024). KOMPYUTER TESTLARINING MAQSADLARI, MAZMUNI VA TUZILISHI. Theoretical aspects in the formation of pedagogical sciences, 3(3), 211-222.
53. Axmedova, Z. (2024). NODAVLAT O'QUV MARKAZLARI TIZIMI PLATFORMASI UCHUN MOBIL ILOVA YARATISH. Академические исследования в современной науке, 3(6), 162179.
54. Axmedova, Z. (2024). NODAVLAT O'QUV MARKAZLARI TIZIMI PLATFORMASI UCHUN MA'LUMOTLAR BAZASINI YARATISH. Science and innovation in the education system, 3(3), 83-93.
55. Akhmedova, Z. (2024). STRUCTURES OF SMALL DATABASE MANAGEMENT SYSTEMS. Solution of social problems in management and economy, 3(1), 97-107.
56. Behruz Ulug'bek o'g Q. li.(2023). Mobil ilovalar yaratish va ularni bajarish jarayoni. International journal of scientific researchers, 2(2).
57. Karimov, F. (2022). ANIQ INTEGRALNI TAQRIBIY HISOBLASH. ЦЕНТР НАУЧНЫХ ПУБЛИКАЦИЙ (buxdu. uz), 14(14).
58. Quvvatov, B. (2024). GLOBAL IN VIRTUAL LEARNING MOBILE APP CREATION
INFORMATION SYSTEMS AND TECHNOLOGIES. Science and innovation in the education system, 3(1), 95-104.
59. Quvvatov, B. (2024). SQL DATABASES AND BIG DATA ANALYTICS: NAVIGATING THE DATA MANAGEMENT LANDSCAPE. Development of pedagogical technologies in modern sciences, 3(1), 117-124.
60. Quvvatov, B. (2024). CONSTRUCTION OF SPECIAL MODELS THROUGH DIFFERENTIAL EQUATIONS AND PRACTICAL SOLUTIONS. Solution of social problems in management and economy, 3(1), 108-115.
61. Quvvatov, B. (2024). FINDING SOLUTIONS OF SPECIAL MODELS BY INTEGRATING INTEGRAL EQUATIONS AND MODELS. Current approaches and new research in modern sciences, 3(1), 122-130.
62. Quvvatov, B. (2024). WEB FRONT-END AND BACK-END TECHNOLOGIES IN PROGRAMMING. Theoretical aspects in the formation of pedagogical sciences, 3(1), 208-215.
63. Behruz Ulug'bek o'g, Q. (2023). USE OF ARTIFICIAL NERVOUS SYSTEMS IN MODELING. Multidisciplinar^ Journal of Science and Technology, 3(5), 269-273.
64. Behruz Ulugbek og, Q. (2023). TECHNOLOGY AND MEDICINE: A DYNAMIC PARTNERSHIP. International Multidisciplinary Journal for Research & Development, 10(11).
65. Quvvatov, B. (2024). DIFFERENTSIAL TENGLAMALAR VA AMALIY ECHIMLAR ORQALI MAXSUS MODELLARNI QURISH. Menejment va iqtisodiyotda ijtimoiy muammolarni hal qilish , 3 (1), 108-115.
66. Behruz Ulug'bek o'g', Q. (2023). SUN'IY NERV TIZIMLARIDAN MODELLASHDA FOYDALANISH. Fan va texnologiyaning ko'p tarmoqli jurnali , 3 (5), 269-273.
67. Behruz Ulug'bek og', Q. (2023). TEXNOLOGIYA VA TIBBIYOT: DlNAMIK HAMKORLIK. Tadqiqot va ishlanmalar bo'yicha xalqaro multidisipliner jurnali , 10 (11).
68. Quvvatov, B. (2024). ALGEBRAIK ANIQLIGI YUQORI BOLGAN KVADRATUR FORMULALAR. GAUSS KVADRATUR FORMULALARI. Models and methods in modern science, 3(2), 114-125.
69. Quvvatov, B. (2024). ALGEBRAIK ANIQLIGI YUQORI BOLGAN KVADRATUR FORMULALAR. ORTOGONAL KOPHADLAR. Инновационные исследования в науке, 3(2), 47-59.
70. Quvvatov, B. (2024, February). ALGEBRAIK ANIQLIGI YUQORI BOLGAN KVADRATUR FORMULALAR. REKURSIV TRAPETSIYALAR QOIDASI. In Международная конференция академических наук (Vol. 3, No. 2, pp. 41-51).
71. Murodov, O. (2024). DEVELOPMENT OF AN AUTOMATED PARAMETER CONTROL SYSTEM ROOMS AND WORKSHOPS BASED ON CLOUD TECHNOLOGIES. Академические исследования в современной науке, 3(2), 16-27.Murodov, O. T. R. (2023). Zamonaviy ta'limda axborot texnologiyalari va ularni qo 'llash usul va vositalari. Educational Research in Universal Sciences, 2(11), 481-486.
72. Муродов, О. Т. (2023). РАЗРАБОТКА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ В ПРОИЗВОДСТВЕННЫХ КОМНАТ. GOLDEN BRAIN, 1(26), 91-95.
73. Murodov, O. T. R. (2023). INFORMATIKA DARSLARINI TASHKIL ETISHDA INNOVATSION USULLARDAN FOYDALANISH. GOLDEN BRAIN, 1(32), 194-201.
74. Murodov, O. T. R. (2023). INFORMATIKA FANINI O 'QITISHDA YANGI INNOVATSION
USULLARDAN FOYDALANISH METODIKASI. GOLDEN BRAIN, 1(34), 130-139.
75. Turakulovich, M. O. (2023). DEVELOPMENT AND INSTALLATION OF AN AUTOMATIC TEMPERATURE CONTROL SYSTEM IN ROOMS. International Multidisciplinary Journal for Research & Development, 10(12).
76. MURODOV, O. T. (2023). INNOVATIVE INFORMATION TECHNOLOGIES AND NEW METHODS AND TOOLS FOR THEIR APPLICATION IN TODAY'S EDUCATION. International Multidisciplinary Journal for Research & Development, 10(12).
77. Muradov, O. (2024, January). APPLICATION OF BASIC PRINCIPLES AND RULES OF INNOVATIVE PEDAGOGICAL TECHNOLOGIES TO EDUCATIONAL PROCESSES. In Международная конференция академических наук (Vol. 3, No. 1, pp. 46-55).
78. Muradov, O. (2024). BASIC PRINCIPLES AND RULES OF INNOVATIVE PEDAGOGICAL TECHNOLOGIES IN THE EDUCATIONAL PROCESS. Models and methods in modern science, 3(1), 84-93.
79. Muradov, O. (2024). APPLIED TO THE CURRENT TRAINING PROCESS REQUIREMENTS. Инновационные исследования в науке, 3(1), 54-63.
80. Murodov, O. (2024). DEVELOPMENT OF AN AUTOMATED PARAMETER CONTROL SYSTEM ROOMS AND WORKSHOPS BASED ON CLOUD TECHNOLOGIES. Академические исследования в современной науке, 3(2), 16-27.
81. Tursunov, B. J., & Allanazarov, G. O. (2019). Perspektivnye tehnologii proizvodstva po uluchsheniyu kachestva benzina. Theory and practice of contemporary science, 3(45), 305308.
82. Турсунов, Б. Ж., & Алланазаров, Г. О. (2019). Перспективные технологии производства по улучшению качества бензина. Теория и практика современной науки, (3 (45)), 305-308.
83. Tursunov, B. Z. (2023). Analysis of Concepts About the Effect of an Explosion in Solid Wednesday. American Journal of Public Diplomacy and International Studies (2993-2157), 1(10), 296-304.
84. Tursunov, B. Z. (2023). Methods of Control of Explosion Energy Distribution in Rocks. Intersections of Faith and Culture: American Journal of Religious and Cultural Studies (29932599), 1(10), 108-117.
85. Tursunov, B. Z. (2023). WASTE-FREE TECHNOLOGY FOR ENRICHMENT OF PURIFIC COPPER-ZINC ORE. American Journal of Public Diplomacy and International Studies (29932157), 1(9), 288-293.
86. Tursunov, B. Z. (2023). ANALYSIS OF MODERN METHODS FOR OIL SLUDGE PROCESSING. American Journal of Public Diplomacy and International Studies (2993-2157), 1(9), 280-287.
87. Jumaev, K., & Tursunov, B. (2022, December). Environmentally friendly technology for obtaining fuel briquettes from oil waste. In IOP Conference Series: Earth and Environmental Science (Vol. 1112, No. 1, p. 012005). IOP Publishing.