PHYSICAL SCIENCES
INVESTIGATION OF THE DYNAMICS OF THE VISCOUS FLUID MIXING APPARATUS BASED
ON A CRANK MECHANISM
Bisembaev K.
Professor of the Department of Physics, Doctor of Technical Sciences, KazNPU named after Abay
Tezekeev S.
Associate Professor of the Department of Physics, KazNPU named after Abay
Ignayeva Z.
The undergraduate, Department of Physics, KazNPU named after Abay
Yergesh N.
The undergraduate, Department of Physics, KazNPU named after Abay
И1НД1 БАЙЛАНЫС ТЫРЫЛАТЫН МЕХАНИЗМГЕ НЕГ1ЗДЕЛГЕН Т¥Т;ЫР С¥ЙЬЩТЬЩТЫ АРАЛАСТЫРАТЫН АППАРАТТЬЩ ДИНАМИКАСЫН ЗЕРТТЕУ
Бисембаев
физика кафедрасыныц профессоры, техникалыц гылымдар докторы, Абай атындагы Каз¥ПУ
Тезекеев С.М.
физика кафедрасыныц доцентг, Абай атындагы Цаз¥ПУ
Игнаева З.Б
Магистрант, физика кафедрасы, Абай атындагы Цаз¥ПУ
Ергеш Н.Ж.
Магистрант, физика кафедрасы, Абай атындагы Цаз¥ПУ
Abstrakt
This paper presents a study of the dynamics of the viscous fluid mixing apparatus based on a crank mechanism with a limited power drive.
Dynamic and mathematical models of the viscous liquid mixing apparatus with a limited power drive are compiled. The equations of motion were solved using analytical and numerical methods and their results were compared. The characteristics of the engine motion under the load of the viscous fluid mixing apparatus are determined depending on the viscosity coefficient of the liquid and the inner diameter of the tube.
The results obtained in the course of theoretical research can be successfully used to design a viscous fluid mixing device with a limited power drive.
Ацдатпа
Бул жумыста шектеулi цуат жетег1 бар uiHdi механизм негЫнде тутцыр суйыцтыцты араластыру аппаратыныц динамикасын зерттеу келтiрiлген.
Тутцыр суйыцтыцты шектеулi цуат жетегiмен араластыратын аппараттыц динамикалыц жэне математикалыц модельдерi жасалды. Крзгалыс тецдеулерi аналитикалыц жэне сандыц эдiстермен шештп, олардыц нэтижелерi салыстырылды. Суйыцтыцтыц тутцырлыц коэффициентте жэне тYтiктiц imxi диаметрiне байланысты тутцыр суйыцтыцты араластыру аппаратыныц жуктемеа кезтде цозгалтцыштыц цозгалыс сипаттамалары аныцталды.
Теориялыц зерттеулер барысында алынган нэтижелердi тутцыр суйыцтыцты mектеулi цуат же-тегiмен араластыру аппаратын жобалау уmiн сэттi цолдануга болады.
Keywords: piston, connecting rod, rotor, hydraulic turbine, crankshaft
Туит свздер: поршень, шатун, ротор, гидравликальщ турбина, кривошип
1 Шркпе
Технологияльщ процестер мен экспериментпк жумыстарды ескере отырып, рычаг машиналарыньщ динамикасын теориялык зерттеу практикага колайлы жаксы нэтижелер бередг Козгалыс тендеулерш шешудщ аналитикалык эдiстерi тербелмелi сипаттамалар, машина мен энергия кезшщ динамикалык, геометриялык жэне баска параметрлерi арасындагы аналитикалык байланыстарды орнатуга, эртYрлi козгалыс режимдерш карастыруга, жуйенщ энергия кезiмен езара эрекеттесуше жэне олардын турактылыгын
зерттеуге мYмкiндiк бередг Экспериментпк зерттеулер теориялык зерттеулер нэтижелершщ сешмдшпн растайды жэне рычаг машинасын жобалауга кажетп тербелмелi жуйенщ жетюпейтш параметрлерш аныктайды.
Б^л макалада математикалык модельдер жасалынган, айналмалы козгалыс режимдершдеп к¥рылымдык езгерктердщ эсерш жэне технологиялык процестщ сипаттамаларын ескере отырып, идеалды емес энергия кезi бар екiншi класты иiндi механизмдердщ негiзiнде жасалган суспензияны араластыру аппараттарынын
кинематикасы мен динамикасы аналитикальщ жэне сандьщ тYPде шешiлген. Кос иiндi б^лгактын ^зындыгы, шатун узындыгы, поршеньнщ диаметрi мен биiктiгi, шатун массасы, шток пен поршень массасы, к^быр влшемдерi, с^йык суспензиянын тыгыздыгы мен тугкырлыгы, козгалткыш роторынын инерция моментшщ кос иiндi айналу бдоыштык жылдамдыгына тэуелдiлiгi, козгалткыш бiлiгiнiн бiркелкi емес айналу коэффициент^ с^йыктыкты поршеньмен араластыру кYшi мен куатыны, механизмнiн кушш беру коэффициентi, уакыт бойынша тугыеылатын энергия тиiмдiлiгi (немесе козгалткыш бшпнщ айналу б^рышы) зерттеледi.
2 ^озFалыс тевдеулерi
Бiз келесi женiлдетулер мен болжамдарды жасаймыз: влi квлем жок, сорылатын с^йыктыктар сыгылмайды, соргынын механикалык тYЙiндерiнде YЙкелiс болмайды.
Иiндi соргыларда поршеньнiн (плунжердiн) козгалыс заны иiндi механизмнiн кинематикасына байланысты.
Егер сiз байланыстырушы шатуннын сонгы ^зындыгынын эсерiн елемейтш болсаныз, онда поршеньмен втетiн жолды келесi тэуелдiлiкпен иiндi б^рылу б^рышымен байланыстыруга болады (сурет.1)
х = r(l - cos() ^
мандаты r -кривошип радиусы.
Поршеньнiн жылдамдыгы уакыт бойынша жолдын туындысы, ягни,
u = dx/dt = r sin (d( dt = ra sin (
(2)
мандаты a = d((d - кривошиптiн айналу жылдамдыгы. Поршень Yдеуi
j = du/dt = racos(d(dt = ra2 cos( ^ С^йыктык iс жYзiнде сыгылмайтын болгандыктан, dt уакыт шшде вткiзу тYтiктерi аркылы вткен квлемi К болады, ал поршень dx
кашыктыкка ауысканда
adx -
ка [ -поршень
ауданы] тен болады; демек, тYтiктер аркылы вткен квлемнщ секундтык агыны:
adx
О =-= ах
~ dt
(4)
Екiншi жагынан, бiр к¥быр аркылы вткен квлемнщ секундтык агыны тYтiктiн сонындагы кысым айырмасы Ар жэне с^йыктыктын динамикалык т^ткырлык коэффициентiн белгiлi Пуазейл формуласы аркылы бiлдiруге болады
7id4 Ар q =-
128¿/ (5)
М^ндагы d -тYтiктiн ты диаметрi, / -онын ^зындыгы; СИ жYЙесiндегi т^ткырлык коэффициентi ¿Паскаль-секундтда
кврсетiлген: 1Пахс=1 кг/м*с. Кубырдагы тущыр с^йыктыктын козгалысы квази-стационарлык жэне ламинарлы болады деп болжанады. Егер тYтiктiн узындыгы киманын диаметрiнен бiрнеше есе квп болса, б^л болжамдар д^рыс. Егер z-кайта iске косу тYтiктерiнiн саны болса, онда (4) жэне (5) салыстыру аркылы бiз келесi тендеудi аламыз 128/Лтх
4z (6)
Поршеньмен бвлiнген цилиндр квлемдерi арасында бiрдей кысым айырмашылыгы болады. Поршеньге эсер ететш кYштi R, поршень ауданына а катынасы Ар ретiнде аныктаймыз. Б^л ^штщ багыты поршень козгалысынын багытына карама - карсы екенiн ескере отырып, бiз поршеньнiн козгалысына с^йыктыктын карсылык кYшi
проекциясынын кажеттi врнегiн табамыз
128/Ат2х
(7)
Ар =:
Rx =-
Trd z
немесе
R =-
128¿u/a2ra sin (
(8)
Сурет. 1 - Суйьщтьщты араластыратын аппараттыц схемасы
Екiншi тек™ Лагранж тендеулерi козгалатын поршеньдi иiндi соргы Yшiн тYрiндегi механикалык жYЙе ретiнде козгалыс тендеуiн шыгарайык. бвгет^з гидравликалык турбинамен Б^л жYЙенiн кинетикалык энергиясы:
_ Jcp2 дам2
(7)(9)
2 2
мундагы да -поршень мен езек массаларынын косындысы, т - шатунный кинетикалык энергиясы,
J - гидравликалык турбинанын жумыс донгалагынын инерция моментi келесi ернекпен аныкталады
1
J =1 M„R2, 2 0
мундагы R - жумыс донгалагынын радиусы, M0 - козгалткыштын жумыс донгалагынын
массасы.
Шатунный кинетикалык энергиясы келесi формула бойынша аныкталады:
1 , 1
T = -M V. + - J О
(8)(10)
T = -2
—M R2 + mr2 sin2 p 2 0
Г
+-М г2ф2 2 i V
мундагы о - шатуынныц бурыштык
жылдамдыгы, J - орталык аркылы ететiн оське
катысты шатунный инерция моментi. Келе^ катынастар бар
_ г cos q>
Ч1 - Г2sin2w
<Р
2 2 • 2 vc=r ф
Y
1 —
cosp
21
1 --psin'w
1
cos p
У
мундагы l - штаун узындыгы. Демек, жалпы кинетикалык энергия
1
-cos ср
(9)(11)
М
_s_
24
■Гер"
cos ср
г2 sin2 (р
1 -
Ендi суйыктык толтырылган цилиндр iшiнде козгалу кезiнде поршеньге эсер ететiн жалпыланган гидродинамикалык кYштердi аныктаймыз. Поршеньдi жылжыту кезiнде эрекет ететiн гидродинамикалык ^штердщ жумысы:
SA = AparcsinpSp (10)(12)
17
Сондыктан жалпыланган
гидродинамикалык ^штер келесi тYPде аныкталады
Qb = 128^1^2 r2Osin2 p (11)(13) nd z
Идеалды емес энергия кезiмен поршеньдiк кривошиптi араластыру аппараттыц козгалыс тендеулерi:
Л2 >
J + mr 2sin2p+Mr2
1 --
cosp
2' i r2 • 2
11 - ^2sin p
1
-cos p
1 12
1 2 cos2 p
—Mr -,——
1 -j7sin2P
<P-
+Mr2
f
1-
cosp
128/ula2
Mi r2 • 2 h - - S1n p
r2 <^sin2 cp=MD
sinp
cospsin2p
1 - rTsin2 p
4l'V r 2 V
1 - rrsin2p
V У у
1 • о
—sin2p
Ф2
TtdAz D
Женiлдету Yшiн келе^ шарттар бар делiк
г ш
-U Iй— □ 1
мундагы
l
Mr2 6 J
mr2 128ula2
c = -
(14)
2J
nd zJ
M„
2
r
Осы шарттарга байланысты поршеньдш кривошиптi насостыц козгалыс тендеулерi (12) тYрге айналады:
ф + {е2 -£1)sin2^2 + asm2 = (15)
Кейбiр козгалткыштын бiлiгiндегi момент, мысалы, параллель козуы бар туракты ток козгалткышы формула бойынша аныкталады
Мв=а-Ъф Ц6ч
жэне
b
м^ндагы - козгалткыш
параметрлерше байланысты теракты коэффициенттер.
3 Козгалыс тендеуiн шешу
(14) жэне (15) тевдеулер айтарлыктай сызыкты емес болып шыгады, вйткенi сызыкты емес врнек тевдеуге аз параметрмен енедь Тапсырманы женiлдету
Yшiн si ~ е2 делiк
(16) тендеудi (14) ке ауыстыру аркылы козгалыс тевдеуш (14) влшемсiз пiшiнге тYрлендiремiз
d2m b dm . 2 dm a
—Y +--- + sin2 m— = —
dr Ja dz dr Ja ^i)
(17) тендеудi одан эрi женiлдетуге болады, егер бiр периодта б^рыштын
• А ~ a =dm шамасы аз
взгеруi 0-ден 2 ^ болса a = ^
взгередi, содан кейiн онын айналу б^рышындагы туынды онын орташа мэнiне тен деп санауга болады. Б^рыштын айнымалысы ^ретшде жэне dcp = adr, катынасты поддана отырып, 6Í3 (17) тендеудi тYрге тYрлендiремiз:
dCQ & ^ 2 ^ ^ 2л
— =--dcp--sin2 ахЛтл--dcp
dcp 2л3 i™ 3
2ж
2 na
м^ндагы
S = b-, B = a
Ja Ja¿
жагыдайды ескерiп
2 ж
^ Z ж 2 ж
— sin2 cpdm = —, — dm = 1 • 2ж3 2 2ж3
о
бiз
мынаны
интегралдаудан кейiн аламыз
(i8)
dcp ^ 2 Ja (18) тендеудi втпелi режимдердегi айнымалыны аныктау Yшiн зерттеуге болады. Орташа тендеуден кейiн (17) тендеу де (18) тYрiнде болады.
Стационарлык режимдердiн болу шарты da _
dm
Б^л жагдайда стационарлык козгалыс режимдерiнiн тендеулерi келесiдей болады:
Осыдан бiз стационарлык режимде козгалткыш бiлiгiнiн айналмалы
козгалысыньщ б^рыштык жылдамдыгынын орташа мэнiн табамыз:
2J \ 2s, Катынасын ескере отырып:
dcp = dcp _ Clc (20)
dz dt ■a a (19) тендiктен келе^ врнектi аламыз:
м^ндагы q = a _ бос жYрiстегi 0 b
гидротурбинанын б^рыштык жылдамдыгы
Б^дан шыгатыны, араластыру
аппаратынын поршеньiнiн тербел^ жиiлiгiнiн орташа мэнi ж^мыс ^темей т^рган кезде шектеулi куатты козгалткыш бштнщ айналу жылдамдыгына тура пропорционал.
(19) врнегш колдана отырып, (18) тендеудi тYрге тYрлендiремiз:
da -Mí (21)
dr 1 2 Д a J 2а
Бастапкы шартта: r = 0,a = 0, (21)
тендеудi интегралдау аркылы сору жэне айдау кезещ Yшiн келесi врнектердi аламыз
Í9 = —I 1-а \ 2 s
1
(
Осы жерден
Q = Q0| 1-
1
2s +1
1 _ e
1 _ e
11 Л
1 i л
s+— \at
2 '
(22)
(23)
Шектеулi куаттагы козгалткыш бiлiгiнiн орташа айналу жшлт, ягни t 1
кезiнде q 1 _
2s +1
болады, ягни
0)11 _■
1
= lim Q s = ——, B = ~a~; t^™ J a J a
2s +1J ^ J a (18) тендеудщ интегралы:
J Q 1 , Q J 1
m =
b (1+1 2s
-ln-
Qn - 1 + — Q
Q
(24)
2s) ^ 2s J
2 жэне 3 -суреттерде (24) формулалар бойынша с^йыктын т^ткырлыгынын динамикалык коэффициентiне мен тYтiктiн iшкi диаметрiнiн эртYPлi мэндерi Yшiн орташа б^рыштык жылдамдыктын козгалткыш бштнщ айналу б^рышына, тэуелдiлiк графиктерi т^ргызылган. Стационар режимдегi козгалткыш бштнщ айналуынын орташа б^рыштык
жылдамдыгы бос жYрiс кезiндегi айналу
жылдамдыгына пропорциональ болады жэне козгалткыштын жумыс жасау режимше тэуелдi болмайды. Орташа айналу жылдамдыгы тек кана козгалткыштын,
араластыгыш аппараттын параметрлерше жэне суйыктын туткырлык коэффициентiне тэуелдi болады.
Сурет-2-Суйыцтыцтыц тутцырлыц коэффициентiнiц эртурлi мэндердегi бурыштыц жылдамдыцтыц цозгалтцыштыц айналу бурышына тэуелд1л1к графигл
ЫО 2x10
Сурет-3- тутiктiц imrn диаметрiнiц эртYрлi мэндердегi бурыштыц жылдамдыцтыц цозгалтцыштыц айналу бурышына тэуелдiлiгiнiц графигi
4 ЖYЙе козгалысынын орныктылыгы Ендi тендеу (18) аркылы аныкталатын араластыру аппаратынын стационарлык режимдершщ турактылыгын карастырыныз.
Ол Yшiн (18) тендеудi тYрге тYрлендiремiз
( \
do ( 1 1 _ B
(27) тендеулер жYЙесiнiн интегралдары т^да, p = 0, q = 0 кезiнде
p = Ce
11
ел— т
2 У
1
ь — 2
dp _
—L- = о
dT
Вариацияларда тендеулер жYЙесiн (25) курамыз.
p=p"+q, (26)
co = a>* + p,
(25) тендеулер стационарлы шешiмдерi
Cc" = Q, pp = Qt
(26) ернегiн (25) ауыстыру аркылы бiз аламыз
q =
-C
e+- T
2 У
(28)
dP = -L +1
dT V. 2
dq
P,
(27)
dT
= P
Демек, иiндi козгалткышы бар козгалткыштын стационарлык козгалысы асимптотикалык туракты.
5 К^орытынды
Туракты режимдегi козгалткыштын орташа бурыштык жылдамдыгы жумыс ^темейтш козгалткыштын бурыштык жылдамдыгына тен жэне араластыру машинасынын жумыс режимiне байланысты емес. Орташа айналу жылдамдыгы тек козгалткыштын параметрлерше жэне араластырылган суйыктыктын агу
коэффициентiне байланысты. Жетек донгалагынын радиусы жогарылаган сайын онын орташа бурыштык жылдамдыгы темендейд^ ал агын жылдамдыгынын жогарылауымен орташа бурыштык жылдамдык артады.
ПАЙДАЛАНЫЛГАН ЭДЕБИЕТТЕР Т1З1М1:
1. Чирнаев И.А. Поршневые кривошипные насосы. - Л: Машиностроение, Ленингр. отд-ние, 1983. - 176 с.
2. Тулешов А.К., Бисембаев К., Жаменкеев Е.К. Момент силы и мощность гидротурбины в начале погружении лопасти // Вестник Московского городского педагогического университета. Серия информатика и информатизация образования, 2008, №4(14), - С.154-161.