ХИМИЧЕСКИЕ НАУКИ
К ВОПРОСУ МЕХАНОХИМИЧЕСКОГО СИНТЕЗА ДИФОСФАТОВ Zn,Mn,Ni
Ботамбай А.М, Цалыбекцызы С, Куанышева Г.С, Джамансариева К.У.
Факультет химии и химической технологии КазНУ им.аль-Фараби,г.Алматы
Проблема синтеза неорганических соединений является одним из основных проблем в области химии и химической технологии неорганических веществ.Среды них известны классические методы синтеза полимерных фосфатов: дегидратация различный замещенности солей фосфорной кислоты. Однако, некоторые из них требуютпри-менения высоких температур, связи с этим заслуживает внимания механохимический способ получения.
Для механохимического синтеза используются высокореакционные соединения-гидратированные оксиды, гидроксиды, твердые кислоты,основные и кислын соли,их кристаллогидраты.Метод синтеза механохимии так,назы-ваемой мягкой механохимический синтез(ММхС) использован для получения дифосфатов.Стехиометрические смеси систем 2п0,Мп0,№0 с (NH4)H2PO4 составлены из оксидов металлов с (NH4)H2PO4.
МХ-синтез проводился на современной 4-х камерной планетарной мельнице марки РМ-400.ММхС прекурсоров дифосфатов были проведены в лаборатории КазНУ им.Аль-Фараби г.Алматы Республики Казахстан.Установ-лено что при этом происходит следующая реакция:
М0(2п0,Мп0,№0)+ (NH4)H2P04=NH4MP04+H20
После термической обработки в диапазоне температур 250-400°С и продолжительности 20 минут имеет место схема реакции в общем виде:
2 NH4MPO4^М2Р2О7+2NHз+ ^О
В результате с помошью метода ММхС удалось снизить температуру получения дифосфатов в 2-3 раза. Данные РФА,ИК и химические методы исследования подтверждают индивидуальность полученных соединений.
Список литературы:
1. Констант З.А., Диндуне О.В. «Фосфаты двухвалентных металлов» Рига, Зинатне 1987г.
2. Щегров Л.Н.Фосфаты двухвалентных метал-лов.Киев-Наукова думка.1987г.
3. Ван Везер.Фосфор и его соединения М.:Изд.Ин-лит.1962 г.
IDENTIFICATION LIQUID PRODUCTS OF THE THERMAL AND THERMOCATALYTIC RECYCLING OF WORN OUT TIRES
2Aubakirov Ermek Aitkazynovich, 2Tashmukhambetova Zheneta Khalelovna, 1Burkhanbekov Kairat Edilbekovich
1Al-Farabi Kazakh National University, Almaty, Kazakhstan 2Scientific Research Institute for New Chemical Technologies and Materials, Almaty, Kazakhstan
Abstract. The paper represents results of analysis for hydrocarbon composition of the products of thermal and thermocatalytic processing of worn out tires by IR spectroscopy. The optimum conditions of the process are established, also defined that liquid products of the thermal processing rich in aromatic, paraffinic-naphthenic and unsaturated heteroatom hydrocarbons. The main characteristics of the fuel distillates are identified.
Keywords: thermal recycling, thermocatalytic recycling, wastes, utilization, catalysis, distillation.
Introduction
In recent years, production of industrial rubber products are significantly increased, which has been resulted in a large number of its wastes. Nowadays, the main utilization methods of these wastes are their storage in landfills or incineration. However, these methods do not solve the problem of environmental pollution. Most of the rubber wastes can be converted by the influence of microorganisms into environmentally hazardous substances, also when such wastes are burned they emit a significant amount of gaseous and solid wastes which are needed to be utilized.
In this regard, it is necessary to develop effective recycling ways of used tires, rubber wastes, which will simultaneously solve the problem of re-use, environmental protection. Moreover solving these problems will give additional types of energy sources. All of this says for necessity to develop effective ways of recycling rubber waste
materials with the aim of sustainable development. The most well-known areas of waste recycling are their thermal and thermocatalytic degradation to hydrocarbon fractions, which can be used as high-quality motor fuels after appropriate treatment [1].
The experimental part
Experiments were carried out on the batch type installation at 5 MPa pressure and 400°C temperature by continuous stirring.
The main part of the apparatus is a metal reactor X18H10T made from stainless steel in type of "duck" with a volume of 0.25 dm3. Thermal heating of the reactor was done by using a heater of AC (alternating current) which is adjustable by transformer and ammeter. Temperature of inner part of the reactor was controlled by Chromel-Copel thermocouple. Reading data of fixed temperatures was performed on the device PCB-4 (automatic potentiometer),
scale tape of the device was calibrated with a temperature of boiling water (100°C), the melting point of tin (232°C), lead (327°C) and zinc (427°C). To create pressure in the hydrogenation process was used argon. Changes of the pressure in the system are fixed by manometer.
Experiments of the thermal processing of used tires were carried out in the presence of catalyst and without it. For raw materials were used crushed to small crumbs of worn out tires (TC).
As catalyst in the process was used waste from ferroalloy production (FAP), which is composed with variable-valence metals, such as manganese, iron and others. As a source of hydrogen and a binder of components of the raw materials and catalyst was taken paste formation (PF) based on heavy oil residues from "Kumkol" deposit, with an initial boiling point above 500°C [2].
Samples of distillates of the thermal processing of tires were tested by IR spectroscopy on VERTEX 70v - fully digital FT-IR spectrometer of the BRUKER Company at frequencies
of 4000 - 400 cm-1. The crystal samples were prepared as potassium bromide tablets.
Results and discussion
For conducting of the experiment was used previously established optimal parameters of the thermal processing: the ratio of TC:PF - 1:1 (15 g), the hydrogenation time - 60 minutes, the amount of catalyst - 0.67 g.
Found that the presence in the reaction FAP catalyst and PF as aimed in the roles of active hydrogen donor increases the degree of conversion of the raw rubber material and correspondingly the total liquid yield, which was 56.8% (Table 1).
Liquid products of thermal and thermocatalytic processing of tire crumbs were subjected to dividing by distillation into several fractions with boiling points up to 180°C, 180-250°C and 250-320°C. The obtained fractions boiling before 180°C of the liquid products were analyzed by IR spectroscopy.
Table 1.
The yield of liquid products of the thermal and thermocatalytic processing of tire crumbs (T = 400°C, mtire = 15g, mPF = 15g, ____mcat = 0,67g, t = 60 min)___
Catalyst Pmax Па Yield of gas, mass,% Yield of liquid products, mass.% Yield of sludge, mass.% Losses, mass.%
Before 1800С 180-2500С 250-3200С Xlp
Without catalyst 1,70 7,80 6,90 4,30 10,20 21,40 68,40 2,40
With FAP catalyst 2,10 13,90 16,40 18,70 21,70 56,80 25,00 4,30
Below are shown IR - spectrum of liquid products of thermal and thermocatalytic processing of tire crumbs with a boiling point up to 180°C (Figure 1-2).
1-r
4000 3500 3000 2500 2000 1500 1000 500
Wavenumber cm-1
Figure 1. The IR spectrum of the liquid products of thermocatalytic processing (with catalyst) of tire crumbs with a
boiling point up to 180°C
8 о
п 8
о о
4000
Figure 2. The IR
3500
3000
1500
1000
500
2500 2000
Wavenumber cm-1
spectrum of the liquid products of thermal processing (without catalyst) of tire crumbs with a boiling point up to 180°C
Infrared spectral analysis (Figure 1, 2) of the products of thermal and thermocatalytic processing of tire crumbs has showed that in the spectrums of the studied substances present absorption bands typical for alkanes, arenes, aliphatic hydrocarbons, ethers, esters, carboxylic acids and polymethylene fragment of (CH2V
In both spectrums in the range of 1000-600 cm-1 absorption peaks of the liquid fractions indicate to the presence of different functional groups in the composition of liquid products of the thermal processing.
The absorption bands at 742-720 cm-1 correspond to the fluctuations of -CH2 groups of an aliphatic radical, which indicates the presence of aliphatic radical with a long carbon chain in the composition of the products of thermal processing. Then absorption bands in the range of 790-760 cm-1 show presence of acetyl groups. Bands in the range of 698 cm-1 indicates to deformational fluctuations of hydrogen in the monosubstituted aromatic ring. Multiple peaks in the range of 800-600 cm-1 is likely to hydrocarbon bonds with sulfur, which is typical for compounds such as mercaptans and thiols [3, 4].
In the IR spectrums of the liquid products were identified intense absorption bands in the range of 2866, 2925, 2953, also 1457 and 1375 cm-1 illustrating to the presence of -CH2 and -CH3 groups. Absorption bands in the range of 1495 and 1641 cm-1 of the IR spectrums of the thermal processing products correspond to the unsaturated compounds. Aromatic compounds are represented in the spectrum with absorption
bands 1600 cm-1 and the band at 3020 cm-1 indicates to the valence fluctuations of =CH groups [3, 4]. Conclusion
Thus, based on our preliminary experiment it can be concluded that the using a catalyst in the process it leads to the increasing of yield of the liquid fractions, but virtually doesn't do effect on its hydrocarbon composition as compared with non-catalytic process. All of taken results are absolutely consistent with published data of the pyrolysis of hydrocarbon containing wastes.
References
1. Yongrong Y. / Technical advance on the pyrolysis of used tires in China / Y. Yongrong, C. Jizhong, Z. Guibin // Sendai -2000. - P. 8.
2. Aubarirov E.A., Burkhanbekov K.E., Serikov E.B. Seconary catalytic recycling of worn out tires // Materials of IX-International scientific-practical conference "Bdeschite izsledvaniya-2013", 17-25 February 2013. Sofia, Bulgaria, vol. 26.-2013.- P.43-45.
3. Vassiliev A.B., Grynenko E.V., Shukin, A.O., Fedulin T.G. Infrared spectroscopy of organic and natural compounds. SPb FTA. St. Petersburg. 2007.30 P.
4. Pihl. O.A., Soone Yu.Kh., Kekisheva L.V., Kaev M.A. Recycling of automobile tires by pyrolysis and hydrogenation // Chemistry of solid fuel, 2013.- № 3.- P.51-60.
ЭКСТРАКЦИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СМЕСЯМИ ЭКСТРАГЕНТОВ
Сальникова Елена Владимировна
Канд. хим.наук, доцент, заведующий кафедрой химии ОГУ, г.Оренбург
Дошарова Дина Тасбулатовна
Студентка 5 курса ОГУ, г. Оренбург
Редкоземельные элементы (РЗЭ) находят широкое применение в промышленности. В настоящее время потребность в лантаноидах оценивается в десятки тысяч тонн. К группе РЗЭ относят 15 элементов III B подгруппы периодической системы элементов Д.И. Менделеева
с порядковыми номерами от 57 до 71 включительно. Из-за близости химических и физических свойств к ним примыкает иттрий и скандий. Эти элементы, как правило, находятся в природе и выделяются в обогатительных процессах совместно [2].