Научная статья на тему 'HEALTH RISK FACTORS OF EMISSIONS FROM INTERNAL COMBUSTION ENGINE VEHICLES: AN UP-TO-DATE STATUS OF THE PROBLEM'

HEALTH RISK FACTORS OF EMISSIONS FROM INTERNAL COMBUSTION ENGINE VEHICLES: AN UP-TO-DATE STATUS OF THE PROBLEM Текст научной статьи по специальности «Медицинские технологии»

CC BY-ND
50
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ROAD TRANSPORT / INTERNAL COMBUSTION ENGINE EXHAUSTS / AIR POLLUTION / HEALTH RISK

Аннотация научной статьи по медицинским технологиям, автор научной работы — Morgunov Boris A., Chashchin Valerii P., Gudkov Andrei B., Chashchin Maxim V., Popova Olga N.

Introduction: Motor transport with internal combustion engines powered by diesel fuel and gasoline is one of the main sources of ambient air pollution since its emissions pose an urgent medical and environmental challenge. The objective of the study was to identify priority types of pollutants from emissions of motor vehicles powered by internal combustion engines based on the results of a systematic review in order to substantiate the main preventive strategy to mitigate the associated public health adverse effects. Methods: We did keyword search for relevant publications in several electronic databases, such as the Russian Science Citation Index, CyberLeninka, Scopus, and WoS. Research papers published in 2000-2021 were selected for the analysis. Out of 103 topical full-text publications, 59 works met the criteria for inclusion in the systematic review. Results: We observed that atmospheric emissions of internal combustion engines represent a complex agglomeration of gases, vapors, and particulate matter. The chemicals present in the emissions impair the oxygen transport function by inhibiting cellular respiration, cause irritation of mucous membranes, have mutagenic and carcinogenic effects, contribute to the occurrence of acid rains and to global warming. The biological effect of airborne particles largely depends on their size. It has been established that an increase in the number of airborne particles with an aerodynamic diameter less than 10 pm is associated with the risk of endothelial inflammation, thrombosis, increased cell permeability, and DNA methylation. It has been also demonstrated that a 5 pg/m3 increment in ambient concentrations of fine particles (< 2.5 pm) causes a 7 % increase in the mortality rate. At the same time, PM2 5 exposure-related risks of excess deaths from cardiovascular diseases are twice as high as those posed by exposure to PM10. Conclusions: Diesel and gasoline engine exhausts are a significant risk factor for human health. An effective preventive strategy should be aimed at replacing heavy hydrocarbon motor fuels by compressed gas using hydrogen cells and electric motors.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «HEALTH RISK FACTORS OF EMISSIONS FROM INTERNAL COMBUSTION ENGINE VEHICLES: AN UP-TO-DATE STATUS OF THE PROBLEM»



H) Check for updates

Systematic Review

© Коллектив авторов, 2022 UDC 614.72

47

Health Risk Factors of Emissions from Internal Combustion Engine Vehicles: -j An Up-to-Date Status of the Problem

Boris A. Morgunov,1 Valerii P. Chashchin,1,2,4 Andrei B. Gudkov,3 Maxim V. Chashchin,1,4 ^ Olga N. Popova,3 Aleksandr N. Nikanov,2 Yngvar Thomassen1,5

a institute of Ecology, Higher School of Economics,

11 Pokrovsky Boulevard, Moscow, 101000, Russian Federation 2North-West Public Health Research Center, 4, 2nd Sovetskaya Street, Saint Petersburg, 191036, Russian Federation 3Northern State Medical University, 51 Troitsky Avenue, Arkhangelsk, 163061, Russian Federation 4I.I. Mechnikov North-Western State Medical University, 41 Kirochnaya Street, Saint Petersburg, 195067, Russian Federation 5National Institute of Occupational Health (STAMI), Pb 5330 Majorstuen, 0304, Oslo, Norway

Summary

Introduction: Motor transport with internal combustion engines powered by diesel fuel and gasoline is one of the main sources of ambient air pollution since its emissions pose an urgent medical and environmental challenge.

The objective of the study was to identify priority types of pollutants from emissions of motor vehicles powered by internal combustion engines based on the results of a systematic review in order to substantiate the main preventive strategy to mitigate the associated public health adverse effects.

Methods: We did keyword search for relevant publications in several electronic databases, such as the Russian Science Citation Index, CyberLeninka, Scopus, and WoS. Research papers published in 2000-2021 were selected for the analysis. Out of 103 topical full-text publications, 59 works met the criteria for inclusion in the systematic review.

Results: We observed that atmospheric emissions of internal combustion engines represent a complex agglomeration of gases, vapors, and particulate matter. The chemicals present in the emissions impair the oxygen transport function by inhibiting cellular respiration, cause irritation of mucous membranes, have mutagenic and carcinogenic effects, contribute to the occurrence of acid rains and to global warming. The biological effect of airborne particles largely depends on their size. It has been established that an increase in the number of airborne particles with an aerodynamic diameter less than 10 pm is associated with the risk of endothelial inflammation, thrombosis, increased cell permeability, and DNA methylation. It has been also demonstrated that a 5 ^g/m3 increment in ambient concentrations of fine particles (< 2.5 pm) causes a 7 % increase in the mortality rate. At the same time, PM2 5 exposure-related risks of excess deaths from cardiovascular diseases are twice as high as those posed by exposure to PM10.

Conclusions: Diesel and gasoline engine exhausts are a significant risk factor for human health. An effective preventive strategy should be aimed at replacing heavy hydrocarbon motor fuels by compressed gas using hydrogen cells and electric motors. Keywords: road transport, internal combustion engine exhausts, air pollution, health risk. For citation: Morgunov BA, Chashchin VP, Gudkov AB, Chashchin MV, Popova ON, Nikanov AN, Thomassen Y. Health risk factors of emissions from internal combustion engine vehicles: An up-to-date status of the problem. Zdorov'e Naseleniya i Sreda Obitaniya. 2022;30(5):7-14. (In Russ.) doi: https://doi.org/10.35627/2219-5238/2022-30-5-7-14 Author information:

Boris A. Morgunov, Dr. Sci. (Geog.), Director, Institute of Ecology, Higher School of Economics; e-mail: bmorgunov@hse.ru; ORCID: https://orcid.org/0000-0003-1687-2244.

И Valerii P. Chashchin, Dr. Sci. (Med.), Professor, Institute of Ecology, Higher School of Economics; Chief Researcher, North-West Public Health Research Center; Professor, Department of Preventive Medicine, I.I. Mechnikov North-Western State Medical University; e-mail: valerych05@mail.ru; ORCID: https://orcid.org/0000-0002-2600-0522.

Andrei B. Gudkov, Dr. Sci. (Med.), Professor, Head of the Department of Human Ecology, Northern State Medical University, Arkhangelsk; e-mail: gudkovab@nsmu.ru; ORCID: https://orcid.org/0000-0001-5923-0941.

Maxim V. Chashchin, Dr. Sci. (Med.), Senior Research Fellow, Institute of Ecology, Higher School of Economics; Head of the Research Laboratory of Arctic Medicine, I.I. Mechnikov North-Western State Medical University; e-mail: max.chashchin@gmail.com; ORCID: https://orcid.org/0000-0001-6759-5481.

Olga N. Popova, Dr. Sci. (Tech.), Dr. Sci. (Med.); Professor, Department of Human Ecology, Northern State Medical University; e-mail: popova_nsmu@mail.ru; ORCID: https://orcid.org/0000-0002-0135-4594.

Aleksandr N. Nikanov, Cand. Sci. (Med.), Head of Occupational Disease Clinic, North-West Public Health Research Center; e-mail: a.nikanov@s-znc.ru; ORCID: https://orcid.org/0000-0003-3335-4721.

Yngvar Thomassen, PhD (Chem.), Senior Adviser, Department of Chemical and Biological Work Environment, National Institute of Occupational Health (STAMI); e-mail: yngvar.thomassen@stami.no; ORCID: https://orcid.org/0000-0001-7334-6385. Author contributions: study conception and design: Morgunov B.A.; data collection: Thomassen Y, Chashchin M.V., and Nikanov A.N.; data systematization: Thomassen Y., ChashchinM.V., and Nikanov A.N.; data summarization and analysis: Chashchin V.P., Gudkov A.B., and Popova O.N.; manuscript preparation: Thomassen Y., Chashchin M.V., and Nikanov A.N. All authors reviewed the results and approved the final version of the manuscript.

Compliance with ethical standards: Ethics approval was not required for this systematic review.

Funding: The article was prepared within the framework of a research grant funded by the Ministry of Science and Higher Education of the Russian Federation (Grant ID: 075-15-2020-978).

Conflict of interest: The co-authors of the article Yngvar Thomassen and Valerii P. Chashchin are members of the Editorial Council of the journal Public Health and Life Environment; other authors declare that there is no conflict of interest. Received: March 15, 2022 / Accepted: April 4, 2022 / Published: May 31, 2022

Факторы риска нарушений здоровья от транспортных выбросов двигателей внутреннего сгорания: современное состояние проблемы

Б.А. Моргунов1, В.П. Чащин124, А.Б. Гудков3, М.В. Чащин14, О.Н. Попова3, А.Н. Никанов2, Ю. Томассен5 'Институт экологии НИУ ВШЭ, Покровский бульвар, д. 11, стр. 2-Е, г. Москва, 101000, Российская Федерация 2ФБУН «Северо-Западный научный центр гигиены и общественного здоровья» Роспотребнадзора, 2-я Советская улица, д. 4, г. Санкт-Петербург, 191036, Российская Федерация

7

YQLume зо, issue 5, 2022

Систематический обзор

3 ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России, Троицкий пр., д. 51, г. Архангельск, 163061, Российская Федерация 4 ФГБОУ ВО «Северо-Западный государственный медицинский университет имени И.И. Мечникова» Минздрава России, ул. Кирочная, д. 41, г. Санкт-Петербург, 195067, Российская Федерация 5 Национальный институт гигиены труда, Pb 5330 Majorstuen, 0304 Осло, Норвегия

Резюме

Введение. Автомобильный транспорт с дизельными и бензиновыми двигателями внутреннего сгорания (ДВС), выбросы которых представляют актуальную медико-экологическую проблему, является одним из основных источников загрязнения атмосферного воздуха.

Целью исследования является выявление по результатам систематического обзора приоритетных видов загрязняющих веществ в выбросах автотранспорта с двигателями внутреннего сгорания с целью определения общей стратегии по снижению связанных с ними неблагоприятных последствий для здоровья населения.

Методы. Поиск релевантных публикаций осуществлялся по ключевым словам, размещенным в базах данных и информационных системах, в том числе таких электронных базах данных, как РИНЦ, КиберЛенинка, Scopus, WoS. Для анализа были выбраны научные работы, опубликованные за период 2000-2021 гг. По результатам целевого поиска выявлено 103 полнотекстовые публикации, из них 59 полностью соответствуют критериям включения в систематический обзор.

Результаты. Показано, что выбросы ДВС в атмосферу представляют собой сложную агломерацию газов, паров и взвешенных частиц. Химические вещества, присутствующие в выбросах, нарушают кислородтранспортную функцию, подавляя тканевое дыхание, вызывают раздражение слизистых оболочек, проявляют мутагенное и канцерогенное действие, способствуют возникновению кислотных дождей и глобальному потеплению. Биологическое действие взвешенных в воздухе частиц во многом зависит от их размера. Установлено, что увеличение количества частиц с аэродинамическим диаметром менее 10 мкм в воздухе связано с риском воспаления эндотелия, тромбоза, повышения проницаемости клеток, метилирования ДНК. Показано, что увеличение концентрации в воздухе частиц размером менее 2,5 мкм на каждые 5 мкг/м3 приводит к увеличению смертности на 7 %. При этом риски дополнительных случаев смерти от сердечно-сосудистых заболеваний при воздействии этих частиц в 2 раза выше по сравнению с частицами большего размера (PM10).

Заключение. Выбросы автомобилей с дизельными и бензиновыми двигателями внутреннего сгорания являются значительным фактором риска для здоровья населения. Эффективная стратегия предотвращения их неблагоприятного воздействия должна быть направлена на замену тяжелых углеводородных моторных топлив сжатым газом с использованием водородных элементов и электродвигателей для транспортных средств.

Ключевые слова: автомобильный транспорт, выбросы двигателей внутреннего сгорания, загрязнение воздуха, риск для здоровья.

Для цитирования: Моргунов Б.А., Чащин В.П., Гудков А.Б., Чащин М.В., Попова О.Н., Никанов А.Н., Томассен Ю. Факторы риска нарушений здоровья от транспортных выбросов двигателей внутреннего сгорания: современное состояние проблемы // Здоровье населения и среда обитания. 2022. Т. 30. № 5. С. 7-14. doi: https://doi.org/10.35627/2219-5238/2022-30-5-7-14 Сведения об авторах:

Моргунов Борис Алексеевич - д.г.н., директор Института экологии НИУ ВШЭ; e-mail: bmorgunov@hse.ru; ORCID: https:// orcid. org/0000-0003-1687-2244.

И Чащин Валерий Петрович - д.м.н., профессор Института экологии НИУ ВШЭ; главный научный сотрудник ФБУН «Северо-Западный научный центр гигиены и общественного здоровья» Роспотребнадзора; профессор кафедры профилактической медицины ФГБОУ ВО «Северо-Западный государственный медицинский университет имени И.И. Мечникова» Минздрава России; e-mail: valerych05@mail.ru; ORCID: https://orcid.org/0000-0002-2600-0522.

Гудков Андрей Борисович - д.м.н., профессор, зав. кафедрой экологии человека ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России; e-mail: gudkovab@nsmu.ru; ORCID: https://orcid.org/0000-0001-5923-0941. Чащин Максим Валерьевич - д.м.н., старший научный сотрудник Института экологии НИУ ВШЭ; заведующий НИЛ арктической медицины ФГБОУ ВО «Северо-Западный государственный медицинский университет имени И.И. Мечникова» Минздрава России; e-mail: max.chashchin@gmail.com; ORCID: https://orcid.org/0000-0001-6759-5481.

Попова Ольга Николаевна - д.т.н., д.м.н., профессор кафедры экологии человека ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России; e-mail: popova_nsmu@mail.ru; ORCID: https:// orcid.org/0000-0002-0135-4594. Никанов Александр Николаевич - к.м.н., руководитель клиники профессиональных заболеваний ФБУН «Северо-Западный научный центр гигиены и общественного здоровья» Роспотребнадзора; e-mail: a.nikanov@s-znc.ru; ORCID: https:// orcid.org/0000-0003-3335-4721.

Томассен Ингвар - к.х.н., старший советник отдела химической и биологической рабочей среды, Национальный институт гигиены труда; e-mail: yngvar.thomassen@stami.no; ORCID: https://orcid.org/0000-0001-7334-6385.

Информация о вкладе авторов: концепция и дизайн обзорно-аналитического исследования: Моргунов Б.А.; сбор данных литературы: Томассен И., Чащин М.В., Никанов А.Н.; систематизация данных литературы: Томассен И., Чащин М.В., Никанов А.Н.; анализ и обобщение данных литературы: Чащин В.П., Гудков А.Б. и Попова О.Н.; подготовка рукописи: Томассен И., Чащин М.В., Никанов А.Н. Все авторы ознакомились с результатами работы и одобрили окончательный вариант рукописи. Соблюдение этических стандартов: для данного систематического обзора не требуется одобрение этического комитета. Финансирование: статья подготовлена при поддержке Министерства науки и высшего образования Российской Федерации в рамках исследовательского гранта (ID гранта: 075-15-2020-978).

Конфликт интересов: соавторы статьи Томассен И., Чащин В.П., являются членами редакционного совета научно-практического журнала «Здоровье населения и среда обитания», остальные авторы заявляют об отсутствии конфликта интересов. Огатья получена: 15.03.22 / Принята к публикации: 04.04.22 / Опубликована: 31.05.22

The use of mineral fuel in internal combustion engines (ICE) of motor vehicles is the largest source of air pollution [1—3], which is a major public health concern worldwide [4—8]. Emissions from road transport account for at least 60 % of the total air pollution in the United States, Germany and France. Annual combustion of 31.2 billion tons of motor fuel in 106 billion tons of atmospheric oxygen generates 137.2 billion tons of additional waste [9]. Cars and trucks contribute major percent to road transport exhaust [10].

Exhaust fumes contain from 200 to 300 pollutants and their compounds [11, 12]. At the same time, the

term "exhaust fumes" cannot be considered completely correct, since engine emissions include both gases (gas phase) and fine particulate matter (particulate phase).

The objective of the study was to identify, based on the results of a systematic review, priority types of pollutants from emissions of motor vehicles powered by internal combustion engines in order to substantiate the main preventive strategy to mitigate the associated public health adverse effects

Methods. We searched for publications on emissions from internal combustion engine vehicles in several electronic databases, such as the Russian Science Citation Index, CyberLeninka, Scopus, and WoS using

В

ТОМ 30 №5 2022

Systematic Review

the following keywords and phrases: "road transport", i—h "internal combustion engines", "air pollution", and ^^ "health risks".

The main criteria for including the results of —i published works into the systematic analysis were:

— a detailed description of research objects and methods, a quantitative assessment of exposure to the

~E key components of hazardous emissions of internal i—. combustion engine vehicles;

' ' — compliance of the study design and findings to our research objective, and

— statistical significance of values showing the intensity of exposure to certain ICE exhaust pollutants and distribution of related harmful effects.

Research papers published in 2000—2021 were selected for the analysis, and 59 of 103 topical full-text publications met the criteria of inclusion in the systematic review.

Results. Emissions produced by internal combustion engines powered by hydrocarbon fuels, such as gasoline,

diesel, and fuel oil, are a complex mixture of gas-, vapor-, and fine particulate-phase materials. Their major pollutants include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, fine, ultrafine and nano-sized carbonaceous particulate matter (PM), hydrofluorocarbon-134a (HFC-134a), methane (CH4), nitrous oxide (N2O), ozone (O3), and other chemicals classified as "hazardous air pollutants" [13, 14].

To date, characteristics of the major types of airborne contaminants coming from internal combustion engines utilizing fuels produced from heavy hydrocarbon raw materials, products of their transformation in atmospheric air, and types of exposure-related adverse human health effects have been established (see Table).

Judging by the results of recent national and international research, special attention is paid to aerosol particulate matter (PM) when analyzing ICE emissions [15, 16]. This is due to the fact that numerous

Table. Components of internal combustion engine emissions and their potential adverse human health effects Таблица. Эмиссионные компоненты двигателей внутреннего сгорания и их возможные вредные эффекты на организм человека

Exhaust pollutants / Эмиссионные компоненты Products of their transformation in the atmosphere / Продукты их превращения в атмосфере Adverse human health effects / Вредное воздействие на организм человека

Gaseous phase / Газовая фаза

Carbon monoxide / Монооксид углерода, CO Highly toxic to humans: blocks oxygen saturation of hemoglobin, thus preventing its transport; affects cytochrome oxidase, thus impeding tissue respiration; as part of Haldane effect, hampers oxygen release by hemoglobin in tissues / Сильно токсичен для человека: блокирует насыщение гемоглобина кислородом, препятствуя его переносу; воздействует на цитохромоксидазу, затрудняя тканевое дыхание; в рамках феномена Холдена нарушает отдачу кислорода гемоглобином в тканях

Nitrogen oxides / Оксиды азота, NOx Nitric acid, ozone / Азотная кислота, озон Nitrogen dioxide is an airway irritant and a major precursor to ozone. Nitric acid contributes to acidification of air and precipitation (acid rains) / Двуокись азота является раздражителем дыхательных путей и основным предшественником озона. Азотная кислота способствует закислению атмосферных осадков (кислотные дожди)

Sulfur dioxide / Диоксид серы, SO2 Sulfuric acid / Серная кислота Sulfur dioxide is an airway irritant. Sulfur acid contributes to acidification of air and precipitation (acid rains) / Диоксид серы является раздражителем дыхательных путей. Серная кислота способствует закислению атмосферных осадков (кислотные дожди)

Carbon dioxide / Углекислый газ Major factor of global warming / Главный фактор глобального потепления

Saturated hydrocarbons (alkanes, < C19) / Насыщенные углеводороды (алканы, < C19) Aldehydes, alkyl nitrates, ketones / Альдегиды, алкилнитраты, кетоны Respiratory tract irritation; reaction products are ozone precursors (in the presence of NOx) / Раздражение дыхательных путей. Продукты реакции -предшественники озона (в присутствии NOx)

Unsaturated hydrocarbons (Alkenes, < C5) / Ненасыщенные углеводороды (Алкены, < C5) Aldehydes, ketones / Альдегиды, кетоны Respiratory tract irritation; some alkenes are mutagenic and carcinogenic; reaction products are ozone precursors (in the presence of NOx) / Раздражение дыхательных путей. Некоторые алкены обладают мутагенными и канцерогенными свойствами. Продукты реакции — предшественники озона (в присутствии NOx)

Formaldehyde / Формальдегид Carbon monoxide, hydroperoxyl radicals / Окись углерода, гидропероксильные радикалы Formaldehyde is a probable human carcinogen and ozone precursor (in the presence of NOx) / Формальдегид является вероятным канцерогеном для человека и предшественником озона (в присутствии NOx)

Higher aldehydes (e.g. acrolein) / Высшие альдегиды (напр., акролеин) Peroxyacyl nitrates / Пероксиацилнитраты Respiratory tract and eye irritation; impairs immunity / Раздражение дыхательных путей и глаз; снижение иммунитета

Monocyclic aromatic compounds (e.g. benzene, toluene) / Моноциклические ароматические соединения (напр., бензол, толуол) Hydroxylated nitro derivatives / Гидроксилированные нитропроизводные Benzene is toxic and carcinogenic to humans; some reaction products are mutagenic for bacteria (Ames test) / Бензол токсичен и канцерогенен для человека. Некоторые продукты реакции являются мутагенными для бактерий (анализ Эймса)

YOLume зо, issue 5, 2022

10

Систематический обзор

Exhaust pollutants / Эмиссионные компоненты Products of their transformation in the atmosphere / Продукты их превращения в атмосфере Adverse human health effects / Вредное воздействие на организм человека

PAHs (< 5 rings) e.g. phenanthrene, fluoranthene) / ПАУ (< 5 колец) (например, фенантрен, фторантен) Nitro-PAHs (< 5 rings) / Нитро-ПАУ (< 5 колец) Some of these PAHs and nitro-PAHs are mutagenic and carcinogenic to humans / Некоторые из этих ПАУ и нитро-ПАУ являются доказанными мутагенами и канцерогенами

Nitro-PAHs (2 and 3 rings) (e.g. nitronaphthalene) / Нитро-ПАУ (2 и 3 кольца) (напр., нитронафталины) Quinones and hydroxylated nitro-derivatives / Хиноны и гидроксилированные нитропроизводные Some reaction products are mutagenic (Ames test) / Некоторые продукты реакции обладают мутагенными свойствами (анализ Эймса)

Solid phase / Фаза твёрдых частиц

Elemental carbon / Элементарный углерод Nuclei absorb organic compounds; the aerodynamic size of less than 1 micrometer allows deep penetration of particles into the lungs (alveoli), while the size of < 100 nm allows penetration through the walls of blood vessels directly into the blood flow / Ядра адсорбируют органические соединения; аэродинамический размер частиц менее 1 мкм позволяет проникать глубоко в легкие (альвеолы), а при размере менее 100 нм проникают через стенки сосудов непосредственно в кровоток

Magnetite / Магнетит Plays a role in the development of Alzheimer's disease / Влияет на развитие болезни Альцгеймера

Inorganic sulfates / Неорганические сульфаты - Respiratory tract irritation / Раздражение дыхательных путей

Aliphatic hydrocarbons / Алифатические углеводороды (C14-C35) They are oxidized in the air as a result of photochemical reactions in the presence of nitrogen dioxide, forming toxic oxygen-containing compounds; possibly aldehydes, ketones and alkyl nitrates. They are the components contributing to smog / Окисляются в воздухе в результате фотохимических реакций в присутствии двуокиси азота, образуя ядовитые кислородсодержащие соединения; возможно, альдегиды, кетоны и алкилнитраты. Являются одним из компонентов, участвующим в образовании смога Narcotic, possible mutagenic effects. General toxic effects are not well understood / Наркотическое действие, возможно мутагенное действие. Общетоксические эффекты изучены недостаточно

PAHs (> 4 rings; e.g. pyrene, benzo(a)pyrene)/ ПАУ (4 кольца и более; например, пирен, бенз(а) пирен) Nitro-PAHs (> 4 rings), nitro-PAH lactones / Нитро-ПАУ (4 кольца и более), нитро-ПАУ-лактоны Larger PAHs are major causes of carcinogenic effect of combustion products. Many nitro-PAHs are strong mutagens and carcinogens / Более крупные ПАУ являются основными источниками канцерогенного эффекта в выбросах при сжигании. Многие нитро-ПАУ являются сильнодействующими мутагенами и канцерогенами

Nitro-PAHs (> 3 rings; e.g. nitropyrenes) / Нитро-ПАУ (3 кольца и более; например нитропирены) Hydroxylated nitro derivatives / Гидроксилированные нитропроиз-водные Many nitro-PAHs are strong mutagens and carcinogens / Многие нитро-ПАУ являются сильнодействующими мутагенами и канцерогенами

Abbreviation: PAHs, polycyclic aromatic hydrocarbons. Аббревиатура: ПАУ, полициклические ароматические углеводороды.

studies have proven a negative impact of fine particle on human health, including the incidence [17—20] and mortality [21, 22] from diseases of cardiovascular and respiratory systems. Contained fine particles include nickel, vanadium, sulfates, nitrates, and silicon compounds [23]. The proportion of nickel in particulate matter is a marker of air pollution with ICE vehicle emissions [24]. Fine PM consists of various airborne objects, such as dust, dirt, soot, smoke, and liquid droplets [25, 26].

It has been demonstrated that human health effects of fine particles are largely determined by their aerodynamic diameter: particles smaller than 10 micrometers (PM10) are able to pass through the bronchial tree and accumulate in the lung tissue; particles smaller than 2.5 pm (PM25) reach the alveoli, and those smaller than 0.1 pm (PM01) penetrate the blood flow [27-30].

Suspended particles smaller than 10 pm (PM10) have no safe exposure threshold and are considered priority pollutants in terms of public health impact [31]. The proportion of such particles in ambient air

of industrial cities ranges from 30 % to 60 % of TSP [32—36] and is mainly attributed to motor vehicle exhausts, tire and road surface wear, contribution of which to emissions ranges from 30 % to 40 % [37]. Transport-related PM25 was found to induce more pronounced systemic inflammation than industrial particles of similar composition [38]. Diesel exhaust is the major source of PM10 and PM25 [39]. Up to 90 % of solid particles emitted by internal combustion engines powered by hydrocarbon fuels are fine particles (PM25). They are usually used as the most informative marker of transport-related air pollution intensity produced by internal combustion engines, including for assessing the benefits of using various types of motor fuel, for example, liquefied natural gas compared to diesel or gasoline as regards their potential adverse effects on public health [40].

The analysis of big data arrays, cohort studies and meta-analysis has shown correlations between PM10 air pollution and stoke hospitalizations [41—43] as well as PM2 5 air levels and the risk of stroke [44] and deaths from ischemic and hemorrhagic stroke

ТОМ 30 №5 2022

Systematic Review

[45]. It has also revealed that nanoparticles are able i—h to penetrate alveoli [46] and cause inflammation in cellular endothelium [47], which induces increased cell permeability [48] and DNA methylation [49]; —> arterial fibrillation [50] and autonomous disturbances [8] are observed, leading to higher mortality rates in the population. Thus, every 5 ^g/m3 of increment of ~E ambient PM2 5 level accounts for a 7 % increase in i—. the mortality rate [51]. At the same time, the risks ' ' of additional deaths from cardiovascular diseases related to PM2.5 exposure are twice as high as those associated with. PM10 [28].

It is assumed that ultrafine fractions of carbonaceous particulate matter pose the most serious health challenge compared to other ICE pollutants [52—55]. Human exposure to the latter usually occurs in the form of a three-phase system: "gas — liquid — particulate matter", where liquid and partially gaseous phases are absorbed by solid carbon particles, resulting in the phenomenon of deep penetration of liquid and gaseous pollutants to alveoli, the most vulnerable part of the respiratory system [56—58]. It should be noted that ICE pollutants, when not carried in the absorbed form by carbon ultrafine particles, are almost completely absorbed in the upper respiratory tract.

Fine and nano-sized fractions of carbon particles are capable of agglomeration and agglutination, which significantly increases their sorption potential (Figure).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Due to certain biological inertness, elemental carbon particles that have reached the alveoli are capable of accumulation in pulmonary tissue, thus increasing the risk of diseases in the etiology of which carbon black plays an important role as age and duration of employment increase.

Thus, both gaseous and especially particulate phases of emissions from internal combustion engine vehicles are significant public health risk factors.

Conclusions. Gaseous and aerosol air pollution attributed to motor vehicles with internal combustion engines is one of the most important risk factors for non-communicable diseases in the population. The gaseous phase of exhaust fumes mainly affects the respiratory system causing mucous membrane irritation and gas exchange disturbances. Certain gaseous emission components have potential or proven

Figure. Agglomeration of airborne carbon and silicon nanoparticles in the vicinity of open-pit mines in Kola Peninsula [59] Рисунок. Агломерационный комплекс витающих в воздухе наночастиц углерода и кремния в районе размещения открытых карьеров горнодобывающих предприятий Кольского региона [59]

mutagenic and carcinogenic properties and suppress immunity. In addition, gas-phase components of vehicle emissions contribute to acid rains and global warming. Health effects of particulate matter emitted by internal combustion engines are determined by the aerodynamic diameter of particles that can accumulate in pulmonary tissue (PM10), reach the alveoli (PM25), and penetrate into the blood flow (PM0 x). Airborne particles affect not only lungs, but also the cardiovascular system and increase risks of death from ischemic and hemorrhagic strokes.

References

1. Mongush A, Mongush SCh. Impact of vehicle for the environment. Tekhnika i Tekhnologiya Transporta. 2021;(4(23)):24. (In Russ.) Accessed May 16, 2022. http://transport-kgasu.ru/files/N23-24ET421.pdf

2. Musikhina SA, Stepanova VG, Musikhina EA. Sanitary and hygienic characteristics of the ambient air of major roads in an industrial city. Zdorov'e Naseleniya i Sreda Obitaniya. 2021;(1(334)):49-53. (In Russ.) doi: 10.35627/2219-5238/2021-334-1-49-53

3. Akulov KA, Voevodin ES. Motorization and its impact on the ecology of the Krasnoyarsk Territory. Tekhnika i Tekhnologiya Transporta. 2021;(2(21)):24. (In Russ.) Accessed May 16, 2022. http://transport-kgasu.ru/files/ N21-24IT221.pdf

4. Rakitskii VN, Avaliani SL, Novikov SM, Shashina TA, Dodina NS, Kislitsin VA. Health risk analysis related to exposure to ambuent air contamination as a component in the strategy aimed at reducing global non-infectious epidemics. Health Risk Analysis. 2019;(4):30-35. doi: 10.21668/health.risk/2019.4.03.eng

5. Brook RD, Rajagopalan S, Pope CA 3rd, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331-2378. doi: 10.1161/CIR.0b013e3181dbece1

6. Giroud M, Reis J. Stroke and air pollution. A worldwide public health problem. Health Risk Analysis. 2020;(3):19-21. doi: 10.21668/health. risk/2020.3.02.eng

7. Samarasekera U. New EU health programme comes into force. Lancet. 2021;397(10281):1252-1253. doi: 10.1016/S0140-6736(21)00772-8

8. Graber M, Mohr S, Baptiste L, et al. Air pollution and stroke. A new modifiable risk factor is in the air. Rev Neurol (Paris). 2019;175(10):619-624. doi: 10.1016/j. neurol.2019.03.003

9. RSW. Transport as one of the main causes for environmental pollution. September 30, 2019. Accessed May 16, 2022. https://rsw-systems.com/news/environmen-tal-pollution

10. Allen MR, Frame DJ, Huntingford C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature. 2009;458(7242):1163-1166. doi: 10.1038/nature08019

11. Reif K, ed. Dieselmotor-Management im Überblick: Einschließlich Abgastechnik. 2nd ed. Springer Vieweg Wiesbaden; 2014. doi: 10.1007/978-3-658-06555-3

12. U.S. EPA. Health Assessment Document for Diesel Engine Exhaust (Final 2002). U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office, Washington, DC, EPA/600/8-90/057F, 2002. Accessed May 16, 2022. https://cfpub.epa.gov/ncea/ risk/recordisplay.cfm?deid=29060

13. Wallington TJ, Sullivan JL, Hurley MD. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet. Meteorol Z. 2008;17(2):109-116. doi: 10.1127/0941-2948/2008/0275

14. Maryland Department of the Environment. Diesel emissions health and environmental effects. Accessed May 15, 2022. https://mde.maryland.gov/programs/air/mobilesources/ pages/dieselhealthandenvironmentaleffects.aspx

15. Jiang S, Bo L, Gong C, et al. Traffic-related air pollution is associated with cardio-metabolic biomarkers in general residents. Int Arch Occup Environ Health. 2016;89(6):911-921. doi: 10.1007/s00420-016-1129-3

16. Vil'k MF, Sachkova OS, Levanchuk LA, Latynin EO. Peculiarities in assessing occupational health risks

voLume 30, issue 5, 2022

12

for workers who are in contact with aerosols containing fine-dispersed dust particles. Health Risk Analysis, 2020;(4):107-112. doi: 10.21668/health.risk/2020.4.12.eng

17. Polichetti G, Cocco S, Spinali A, Trimarco V, Nun-ziata A. Effects of particulate matter (PM(10), PM(25) and PM(1)) on the cardiovascular system. Toxicology. 2009;261(1-2):1-8. doi: 10.1016/j.tox.2009.04.035

18. Kunzli N, Kaiser R, Medina S, et al. Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet. 2000;356(9232):795-801. doi: 10.1016/S0140-6736(00)02653-2

19. Wang W, Yu T, Ciren P, Jiang P. Assessment of human health impact from PM exposure in China based on satellite observations. J Appl Remote Sens. 2015;9(1):096027. doi: 10.1117/1.JRS.9.096027

20. Kalaeva SZk, Chistyakov YV, Muratova KM, Chebotarev PV. Influencing fine-dispersed dust upon biosphere and human. Izvestiya Tul'skogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2016;(3):40-63. (In Russ.)

21. Berico M, Luciani A, Formignani M. Atmospheric aerosol in an urban area — measurements of TSP and PM standards and pulmonary deposition assessments. Atmos Environ. 1997;31(21):3659-3665. doi: 10.1016/ S1352-2310(97)00204-5

22. Powe NA, Willis KG. Mortality and morbidity benefits of air pollution (SO2 and PM10) absorption attributable to woodland in Britain. J Environ Manage. 2004;70(2):119-128. doi: 10.1016/j.jenvman.2003.11.003

23. Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. World Health Organization; 2013. Accessed

May 16, 2022 https://www.euro.who.int/__data/assets/

pdf_file/0006/189051/Health-effects-of-particulate-mat-ter-final-Eng.pdf

24. Andronova AV, Iordanskii MA, Trefilova AV, et al. Comparative analysis of pollution of the surface atmospheric layer in such megalopolises as Moscow and Beijin. Izvestiya. Atmospheric and Oceanic Physics. 2011;47(7):819-827. doi: 10.1134/S0001433811070024

25. Tchashin VP, Siurin SA, Gudkov AB, Popova ON, Vo-ronin AYu. Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions. Meditsina Truda i Promyshlennaya Ekologiya. 2014;(9):20-26. (In Russ.)

26. Strelyaeva AB, Lavrentyeva LM, Lupinogin VV, Gvozdkov IA. [Studies of PM10 and PM25 air pollution in a residential area adjacent to industrial enterprises.] Inzhenernyy Vestnik Dona. 2017;(2(45)):164. (In Russ.) Accessed May 16, 2022. http://ivdon.ru/uploads/article/ pdf/IVD_164_Strelyaeva_Lavrentyeva.pdf_079280bd44.pdf

27. Revich BA. Fine suspended particulates in ambient air and their health effects in megalopolises. Problemy Ekologicheskogo Monitoringa i Modelirovaniya Ekosistem. 2018;29(3):53-78. (In Russ.) doi: 10.21513/0207-25642018-3-53-78

28. Health and Environmental Effects of Particulate Matter (PM). U.S. Environmental Protection Agency. Accessed May 16, 2022. https://www.epa.gov/pm-pollution/ health-and-environmental-effects-particulate-matter-pm

29. Chizhova VS. Assessment of influence of various factors on the intensity of the allocation of aerosol particles less than 10 micrometer on the street road network. Vestnik Moskovskogo Avtomobil'no-Dorozhnogo Gosudarstvennogo Tekhnicheskogo Universiteta (MADI). 2014;(2(37)):106-110. (In Russ.)

30. Yi O, Hong YC, Kim H. Seasonal effect of PM(10) concentrations on mortality and morbidity in Seoul, Korea: a temperature-matched case-crossover analysis. Environ Res. 2010;110(1):89-95. doi: 10.1016/j. envres.2009.09.009

31. Prosviryakova IA, Shevchuk LM. Hygienic assessment of PM10 and PM25 contents in the atmosphere and population health risk in zones influenced by emissions from stationary sources located at industrial enterprises. Health Risk Analysis. 2018;(2):14-22. doi: 10.21668/ health.risk/2018.2.02.eng

32. Lim JM, Lee JH, Moon JH, Chung YS, Kim KH. Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos Res. 2010;96(1):53-64. doi: 10.1016/j.atmosres.2009.11.013

33. Zhang XX, Sharratt B, Chen X, et al. Dust deposition and ambient PM concentration in northwest China:

Систематический обзор

spatial and temporal variability. Atmos Chem Phys. 2017;17(3):1699-1711. doi: 10.5194/acp-17-1699-2017

34. Otorepec S, Podbevsek N, Jereb B. PM risks in countries of European Union. Vestnik SamGUPS. 2014;3(25):9-17. (In Russ.)

35. Soriano A, Pallarés S, Vicente AB, Sanfeliu T, Jordán MM. Assessment of the main sources of PM10 in an industrialized area situated in a Mediterranean Basin. Fresenius Environ Bull. 2011;20(9):2379-2390.

36. Bernardoni V, Vecchi R, Valli G, Piazzalunga A, Fer-mo P. PM10 source apportionment in Milan (Italy) using time-resolved data. Sci Total Environ. 2011;409(22):4788-4795. doi: 10.1016/j.scitotenv.2011.07.048

37. Cozzi L, et al. World Energy Outlook Special Report 2016: Energy and Air Pollution. Paris, France: International Energy Agency; 2016. Accessed May 16, 2022. http:// pure.iiasa.ac.at/id/eprint/13467/1/WorldEnergyOutlo-okSpecialReport2016EnergyandAirPollution.pdf

38. Hennlg F, Fuks K, Moebus S, et al. Association between source-specific particulate matter air pollution and hs-CRP: Local traffic and industrial emissions. Environ Health Perspect. 2014;122(7):703-710. doi: 10.1289/ ehp.1307081

39. Azarov VN, Gorshkova YeV, Nedre AYu, Vorobev VI. About methods to reduce emissions of particulate matters (PM10 and PM25) empirically Netherlands. Vestnik Volgogradskogo Gosudarstvennogo Arkhitekturno-Stroi-tel'nogo Universiteta. Seriya: Stroitel'stvo i Arkhitektura. 2011;(25(44)):407-410. (In Russ.)

40. Teixeira ACR, Borges RR, Machado PG, Mouette D, Ribeiro FND. PM emissions from heavy-duty trucks and their impacts on human health. Atmos Environ. 2020;241:117814. doi: 10.1016/j.atmosenv.2020.117814

41. Kulick ER, Wellenius GA, Boehme AK, Sacco RL, Elkind MS. Residential proximity to major roadways and risk of incident ischemic stroke in NOMAS (The Northern Manhattan Study). Stroke. 2018;49(4):835-841. doi: 10.1161/STROKEAHA.117.019580

42. Ljungman PL, Mittleman MA. Ambient air pollution and stroke. Stroke. 2014;45(12):3734-3741. doi: 10.1161/ STROKEAHA.114.003130

43. Wang M, Beelen R, Stafoggia M, et al. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: Results from the ESCAPE and TRANSPHORM projects. Environ Int. 2014;66:97-106. doi: 10.1016/j. envint.2014.01.026

44. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52(3):311-317. doi: 10.1038/ s12276-020-0403-3

45. Zhang R, Liu G, Jiang Y, et al. Acute effects of parti-culate air pollution on ischemic stroke and hemorrhagic stroke mortality. Front Neurol. 2018;9:827. doi: 10.3389/ fneur.2018.00827

46. Oberdörster G, Sharp Z, Atudorei V, et al. Extra-pulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A. 2002;65(20):1531-1543. doi: 10.1080/00984100290071658

47. Aung HH, Lame MW, Gohil K, et al. Comparative gene responses to collected ambient particles in vitro: endothelial responses. Physiol Genomics. 2011;43(15):917-929. doi: 10.1152/physiolgenomics.00051.2011

48. Chao MW, Kozlosky J, Po IP, et al. Diesel exhaust particle exposure causes redistribution of endothelial tube VE-cadherin. Toxicology. 2011;279(1-3):73-84. doi: 10.1016/j.tox.2010.09.011

49. Fraineau S, Palii CG, Allan DS, Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J. 2015;282(9):1605-1629. doi: 10.1111/febs.13183

50. Chung JW, Bang OY, Ahn K, et al. Air pollution is associated with ischemic stroke via cardiogenic embolism. Stroke. 2017;48(1):17-23. doi: 1Ö.1161/STROKEA-HA.116.015428

51. Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014;383(9919):785-795. doi: 10.1016/S0140-6736(13)62158-3

52. WHO Expert Meeting: Methods and Tools for Assessing the Health Risks of Air Pollution at Local, National and International Level, Bonn, Germany, May 12—13,

ТОМ 30 №5 2022

13

Systematic Review

^ 2014. World Health Organization; 2014. Accessed May

i_p 16, 2022. https://www.euro.who.int/__data/assets/

^ pdf_file/0010/263629/WH0-Expert-Meeting-Metho-^^ ds-and-tools-for-assessing-the-health-risks-of-air-pollu-—^ tion-at-local,-national-and-international-level.pdf ;=i 53. Health Risks of Air Pollution in Europe - HRAPIE -rr— Project. Recommendations for concentration-response functions for cost-benefit analysis of particulate matter, ozone and nitrogen dioxide. World Health Organization; 2013. Accessed May 16, 2022. https://www.euro.who.

S int/_data/assets/pdf_file/0006/238956/Health_ris-

ks_air_pollution_HRAPIE_project.pdf

54. Piskunov IV, Glagoleva OF, Golubeva IA. Alternative fuels for sustainable development of the transport sector. Part 2. Hydrogen fuel. Transport na Al'ternativnom Toplive. 2021;(5(83)):53-62. (In Russ.)

55. Kleyn SV, Popova EV. Hygienic assessment of ambient air quality in Chita, a priority area of the Federal Clean Air Project. Zdorov'e Naseleniya i Sreda Obitaniya. 2020;(12(333)):16-22. (In Russ.) doi: 10.35627/22195238/2020-333-12-16-22

56. Tishchenko VP. [Dispersed Systems and Pollution of the Atmosphere and Hydrosphere.] Mayorova LP, ed. Khabarovsk: Pacific State University Publ.; 2017. (In Russ.)

57. Tsuda A, Henry FS, Butler JP. Particle transport and deposition: basic physics of particle kinetics. Compr Physiol. 2013;3(4):1437-1471. doi: 10.1002/cphy.c100085

58. Landrigan Pj, Fuller R, Acosta NjR, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462-512. doi: 10.1016/S0140-6736(17)32345-0

59. SINTEF Project. MineHealth — Sustainability of miners well-being, health and work Barents. February 4, 2013. Accessed May 16, 2022. https://www.sintef.no/en/ projects/2012/sustainability-of-miners-well-being-heal-th-and-wor/

Список литературы

1. Монгуш А., Монгуш С. Ч. Влияние транспортного средства на окружающую среду // Техника и технология транспорта. 2021. № 4 (23). Доступно по: http://transport-kgasu.ru/files/N23-24ET421.pdf. Ссылка активна на 17.11.2021.

2. Мусихина С.А., Степанова В.Г., Мусихина Е.А. Санитарно-гигиеническая характеристика атмосферного воздуха основных транспортных магистралей промышленного города. Здоровье населения и среда обитания. 2021. № 1(334). С. 49—53. doi: 10.35627/2219-5238/2021-334-1-49-53

3. Акулов К.А. Воеводин Е.С. Автомобилизация и ее воздействие на экологию Красноярского края // Техника и технология транспорта. 2021. № 2(21). Доступно по: http://transport-kgasu.ru/files/N21-24IT221.pdf. Ссылка активна на 16.05.2022.

4. Ракитский В.Н., Авалиани С.Л., Новиков С.М., Шашина Т.А., Додина Н.С., Кислицин В.А. Анализ риска здоровью при воздействии атмосферных загрязнений как составная часть стратегии уменьшения глобальной эпидемии неинфекционных заболеваний // Анализ риска здоровью. 2019. № 4. С. 30—36. doi: 10.21668/health.risk/2019.4.03

5. Brook RD, Rajagopalan S, Pope CA 3rd, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331-2378. doi: 10.1161/CIR.0b013e3181dbece1

6. Гироу М., Рейс Ж. Инсульт и загрязнение воздуха как общемировая проблема здравоохранения // Анализ риска здоровью. 2020. № 3. С. 19—22. doi: 10.21668/health.risk/2020.3.02

7. Samarasekera U. New EU health programme comes into force. Lancet. 2021;397(10281):1252-1253. doi: 10.1016/S0140-6736(21)00772-8

8. Graber M, Mohr S, Baptiste L, et al. Air pollution and stroke. A new modifiable risk factor is in the air. Rev Neurol (Paris). 2019;175(10):619-624. doi: 10.1016/j. neurol.2019.03.003

9. RSW. Transport as one of the main causes for environmental pollution. September 30, 2019. Accessed May 16, 2022. https://rsw-systems.com/news/environmen-tal-pollution

10. Allen MR, Frame DJ, Huntingford C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature. 2009;458(7242):1163-1166. doi: 10.1038/nature08019

11. Reif K, ed. Dieselmotor-Management im Überblick: Einschließlich Abgastechnik. 2nd ed. Springer Vieweg Wiesbaden; 2014. doi: 10.1007/978-3-658-06555-3

12. U.S. EPA. Health Assessment Document for Diesel Engine Exhaust (Final 2002). U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office, Washington, DC, EPA/600/8-90/057F, 2002. Accessed May 16, 2022. https://cfpub.epa.gov/ncea/ risk/recordisplay.cfm?deid=29060

13. Wallington TJ, Sullivan JL, Hurley MD. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet. Meteorol Z. 2008;17(2):109-116. doi: 10.1127/0941-2948/2008/0275

14. Maryland Department of the Environment. Diesel emissions health and environmental effects. Accessed May 15, 2022. https://mde.maryland.gov/programs/air/mobilesources/ pages/dieselhealthandenvironmentaleffects.aspx

15. Jiang S, Bo L, Gong C, et al. Traffic-related air pollution is associated with cardio-metabolic biomarkers in general residents. Int Arch Occup Environ Health. 2016;89(6):911-921. doi: 10.1007/s00420-016-1129-3

16. Вильк М.Ф., Сачкова О.С., Леванчук Л.А., Латынин Е.О. Особенности оценки профессионального риска здоровью работников, контактирующих с аэрозолями мелкодисперсных пылевых частиц // Анализ риска здоровью. 2020. № 4. С. 106—112. doi: 10.21668/health.risk/2020.4.12

17. Polichetti G, Cocco S, Spinali A, Trimarco V, Nun-ziata A. Effects of particulate matter (PM(10), PM(25) and PM(1)) on the cardiovascular system. Toxicology. 2009;261(1-2):1-8. doi: 10.1016/j.tox.2009.04.035

18. Künzli N, Kaiser R, Medina S, et al. Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet. 2000;356(9232):795-801. doi: 10.1016/S0140-6736(00)02653-2

19. Wang W, Yu T, Ciren P, Jiang P. Assessment of human health impact from PM exposure in China based on satellite observations. J Appl Remote Sens. 2015;9(1):096027. doi: 10.1117/1.JRS.9.096027

20. Калаева С.З., Чистяков Я.В., Муратова К.М., Чеботарев П.В. Влияние мелкодисперсной пыли на биосферу и человека // Известия Тульского государственного университета. Науки о Земле. 2016. № 3. С. 40-63.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

21. Berico M, Luciani A, Formignani M. Atmospheric aerosol in an urban area - measurements of TSP and PM standards and pulmonary deposition assessments. Atmos Environ. 1997;31(21):3659-3665. doi: 10.1016/ S1352-2310(97)00204-5

22. Powe NA, Willis KG. Mortality and morbidity benefits of air pollution (SO2 and PM10) absorption attributable to woodland in Britain. J Environ Manage. 2004;70(2):119-128. doi: 10.1016/j.jenvman.2003.11.003

23. Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. World Health Organization; 2013. Accessed

May 16, 2022 https://www.euro.who.int/__data/assets/

pdf_file/0006/189051/Health-effects-of-particulate-mat-ter-final-Eng.pdf

24. Andronova AV, Iordanskii MA, Trefilova AV, et al. Comparative analysis of pollution of the surface atmospheric layer in such megalopolises as Moscow and Beijin. Izvestiya. Atmospheric and Oceanic Physics. 2011;47(7):819-827. doi: 10.1134/S0001433811070024

25. Чащин В.П., Сюрин С.А., Гудков А.Б., Попова О.Н., Воронин А.Ю. Воздействие промышленных загрязнений атмосферного воздуха на организм работников, выполняющих трудовые операции на открытом воздухе в условиях холода // Медицина труда и промышленная экология. 2014. № 9. С. 20-26.

26. Стреляева А.Б., Лаврентьева Л., Лупиногин В.В., Гвоздков И.А. Исследования запылённости в жилой зоне, расположенной вблизи промышленных предприятий частицами РМ и РМ^ // Инженерный вестник Дона. 2017. № 2(45). С. 164. http://ivdon.ru/ uploads/article/pdf/IVD_164_Strelyaeva_Lavrentyeva. pdf_079280bd44.pdf

voLume зо, ш с, 2022

14

27. Ревич БА. Мелкодисперсные взвешенные частицы в атмосферном воздухе и их воздействие на здоровье жителей мегаполисов // Проблемы экологического мониторинга и моделирования экосистем. 2018. Т. 29. № 3. С. 53—78. doi: 10.21513/0207-2564-2018-3-53-78

28. Health and Environmental Effects of Particulate Matter (PM). U.S. Environmental Protection Agency. Accessed May 16, 2022. https://www.epa.gov/pm-pollution/ health-and-environmental-effects-particulate-matter-pm

29. Чижова В.С. Оценка влияния различных факторов на интенсивность выделения аэрозольных частиц менее 10 мкм на улично-дорожной сети // Вестник Московского автомобильно-дорожного государственного технического университета (МAДИ). 2014. № 2 (37). С. 106-110.

30. Yi O, Hong YC, Kim H. Seasonal effect of PM(10) concentrations on mortality and morbidity in Seoul, Korea: a temperature-matched case-crossover analysis. Environ Res. 2010;110(1):89-95. doi: 10.1016/j. envres.2009.09.009

31. Просвирякова И.А, Шевчук Л.М. Гигиеническая оценка содержания твердых частиц РМ10 и РМ2 5 в атмосферном воздухе и риска для здоровья жителей в зоне влияния выбросов стационарных источников промышленных предприятий // Aнализ риска здоровью. 2018. № 2. С. 14-22. doi: 10.21668/health. risk/2018.2.02

32. Lim JM, Lee JH, Moon JH, Chung YS, Kim KH. Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos Res. 2010;96(1):53-64. doi: 10.1016/j.atmosres.2009.11.013

33. Zhang XX, Sharratt B, Chen X, et al. Dust deposition and ambient PM10 concentration in northwest China: spatial and temporal variability. Atmos Chem Phys. 2017;17(3):1699-1711. doi: 10.5194/acp-17-1699-2017

34. Otorepec S, Podbevsek N, Jereb B. PM10 risks in countries of European Union. Vestnik SamGUPS. 2014;3(25):9-17. (In Russ.)

35. Soriano A, Pallarés S, Vicente AB, Sanfeliu T, Jordán MM. Assessment of the main sources of PM10 in an industrialized area situated in a Mediterranean Basin. Fresenius Environ Bull. 2011;20(9):2379-2390.

36. Bernardoni V, Vecchi R, Valli G, Piazzalunga A, Fer-mo P. PM10 source apportionment in Milan (Italy) using time-resolved data. Sci Total Environ. 2Ö11;4Ö9(22):4788-4795. doi: 10.1016/j.scitotenv.2011.07.048

37. Cozzi L, et al. World Energy Outlook Special Report 2016: Energy and Air Pollution. Paris, France: International Energy Agency; 2016. Accessed May 16, 2022. http:// pure.iiasa.ac.at/id/eprint/13467/1/WorldEnergyOutlo-okSpecialReport2016EnergyandAirPollution.pdf

38. Hennig F, Fuks K, Moebus S, et al. Association between source-specific particulate matter air pollution and hs-CRP: Local traffic and industrial emissions. Environ Health Perspect. 2014;122(7):703-710. doi: 10.1289/ ehp.1307081

39. Aзаров В.Н., Горшков Е.В., Недре A.Ю., Воробьев В.И. О некоторых мерах по снижению выбросов в атмосферный воздух твердых частиц (РМ10 и РМ2 5) на основе опыта Нидерландов // Вестник Волгоградского государственного архитектурно-строительного университета. Серия: Строительство и архитектура. 2011. № 25(44). С. 407-410.

40. Teixeira ACR, Borges RR, Machado PG, Mouette D, Ribeiro FND. PM emissions from heavy-duty trucks and their impacts on human health. Atmos Environ. 2020;241:117814. doi: 10.1016/j.atmosenv.2020.117814

41. Kulick ER, Wellenius GA, Boehme AK, Sacco RL, Elkind MS. Residential proximity to major roadways and risk of incident ischemic stroke in NOMAS (The Northern Manhattan Study). Stroke. 2018;49(4):835-841. doi: 10.1161/STROKEAHA.117.019580

42. Ljungman PL, Mittleman MA. Ambient air pollution and stroke. Stroke. 2014;45(12):3734-3741. doi: 10.1161/ STROKEAHA.114.003130

43. Wang M, Beelen R, Stafoggia M, et al. Long-term exposure to elemental constituents of particulate matter

Систематический обзор

and cardiovascular mortality in 19 European cohorts: Results from the ESCAPE and TRANSPHORM projects. Environ Int. 2014;66:97-106. doi: 10.1016/j. envint.2014.01.026

44. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52(3):311-317. doi: 10.1038/ s12276-020-0403-3

45. Zhang R, Liu G, Jiang Y, et al. Acute effects of particulate air pollution on ischemic stroke and hemorrhagic stroke mortality. Front Neurol. 2018;9:827. doi: 10.3389/ fneur.2018.00827

46. Oberdörster G, Sharp Z, Atudorei V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A. 2002;65(20):1531-1543. doi: 10.1080/00984100290071658

47. Aung HH, Lame MW, Gohil K, et al. Comparative gene responses to collected ambient particles in vitro: endothelial responses. Physiol Genomics. 2011;43(15):917-929. doi: 10.1152/physiolgenomics.00051.2011

48. Chao MW, Kozlosky J, Po IP, et al. Diesel exhaust particle exposure causes redistribution of endothelial tube VE-cadherin. Toxicology. 2011;279(1-3):73-84. doi: 10.1016/j.tox.2010.09.011

49. Fraineau S, Palii CG, Allan DS, Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J. 2015;282(9):1605-1629. doi: 10.1111/febs.13183

50. Chung JW, Bang OY, Ahn K, et al. Air pollution is associated with ischemic stroke via cardiogenic embolism. Stroke. 2017;48(1):17-23. doi: 10.1161/STR0KEA-HA.116.015428

51. Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014;383(9919):785-795. doi: 10.1016/S0140-6736(13)62158-3

52. WHO Expert Meeting: Methods and Tools for Assessing the Health Risks of Air Pollution at Local, National and International Level, Bonn, Germany, May 12—13, 2014. World Health Organization; 2014. Accessed May 16, 2022. https://www.euro.who.int/ data/assets/ pdf_file/0010/263629/WHO-Expert-Meeting-Metho-ds-and-tools-for-assessing-the-health-risks-of-air-pollu-tion-at-local,-national-and-international-level.pdf

53. Health Risks of Air Pollution in Europe - HRAPIE Project. Recommendations for concentration-response functions for cost-benefit analysis of particulate matter, ozone and nitrogen dioxide. World Health Organization; 2013. Accessed May 16, 2022. https://www.euro.who.

int/_data/assets/pdf_file/0006/238956/Health_ris-

ks_air_pollution_HRAPIE_project.pdf

54. Пискунов И.В., Глаголева О.Ф., Голубева И.А. Альтернативные виды топлив для устойчивого развития транспортного сектора Часть 2. Водородное топливо // Транспорт на альтернативном топливе. 2021. № 5(83). С. 53-62.

55. Клейн С.В., Попова Е.В. Гигиеническая оценка качества атмосферного воздуха г. Читы - приоритетной территории федерального проекта «Чистый воздух» // Здоровье населения и среда обитания. 2020. N° 12(333). С. 16-22. doi: 10.35627/2219-5238/2020-333-12-16-22

56. Тищенко В. П. Дисперсные системы и загрязнение атмосферы и гидросферы: [науч. ред. Л.П. Майорова]. Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2017. 204 с.

57. Tsuda A, Henry FS, Butler JP. Particle transport and deposition: basic physics of particle kinetics. Compr Physiol. 2013;3(4):1437-1471. doi: 10.1002/cphy.c100085

58. Landrigan Pj, Fuller R, Acosta NjR, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462-512. doi: 10.1016/S0140-6736(17)32345-0

59. SINTEF Project. MineHealth - Sustainability of miners well-being, health and work Barents. February 4, 2013. Accessed May 16, 2022. https://www.sintef.no/en/ projects/2012/sustainability-of-miners-well-being-heal -th-and-wor/

■ + +■ ö

ТОМ 30 №5 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.