Научная статья на тему 'GRANITES OF THE GERDIZ MASSIF (POLAR URALS): NEW DATA'

GRANITES OF THE GERDIZ MASSIF (POLAR URALS): NEW DATA Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
47
22
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ГРАНИТЫ А-ТИПА / ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ / ГЕРДИЗСКИЙ МАССИВ / ПОЛЯРНЫЙ УРАЛ / A-TYPE GRANITES / ISOTOPIC AND GEOCHEMICAL CHARACTERISTICS / GERDIZ MASSIF / POLAR URALS

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Shuyskiy A.S., Udoratina O.V., Miller E.L., Coble M.A.

Petrographic, petrochemical and preliminary geochemical (ICP MS) and isotope geochemical (OZrn, Sm-Nd, (Lu-Hf)Zrn) data allow us to consider granitoids of the Gerdizsky massif as forming in an intraplate setting and represent A-type with crust-mantle characteristics. The new U-Pb (SIMS) geochronologic data show that the granitoids of the northern part of the Gerdizsky massif in the northern Urals are (496±7) Ma.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам , автор научной работы — Shuyskiy A.S., Udoratina O.V., Miller E.L., Coble M.A.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ГРАНИТОИДЫ ГЕРДИЗСКОГО МАССИВА (ПОЛЯРНЫЙ УРАЛ): НОВЫЕ ДАННЫЕ

Петрографические, петрохимические и полученные первые геохимические (ICP MS) и изотопно-геохимические (OZrn, Sm-Nd, (Lu-Hf)Zrn) данные позволяют рассматривать гранитоиды Гердизского массива как внутриплитные образования A-типа c корово-мантийными характеристиками. На основе новых U-Pb (SIMS)-данных возраст гранитоидов Гердизского массива (северная часть) соответствует (496 ± 7) млн лет.

Текст научной работы на тему «GRANITES OF THE GERDIZ MASSIF (POLAR URALS): NEW DATA»

Арктический вектор геологических исследований Arctic vector of geological research

УДК 552.321.1 DOI: 10.19110/2221-1381-2018-12-23-30

GRANITES OF THE GERDIZ MASSIF (POLAR URALS): NEW DATA

A. S. Shuyskiy1, О. V. Udoratina1, E. L. Miller2, M. A. Coble2

institute of Geology of Komi SC UB RAS, Syktyvkar 2Stanford University, USA

self88@yandex.ru

Petrographic, petrochemical and preliminary geochemical (ICP MS) and isotope geochemical (OZrn, Sm-Nd, (Lu-Hf)Zrn) data allow us to consider granitoids of the Gerdizsky massif as forming in an intraplate setting and represent A-type with crust-mantle characteristics. The new U-Pb (SIMS) geochronologic data show that the granitoids of the northern part of the Gerdizsky massif in the northern Urals are (496±7) Ma.

Keywords: A-type granites, isotopic and geochemical characteristics, Gerdiz massif, Polar Urals.

ГРАНИТОИДЫ ГЕРДИЗСК0Г0 МАССИВА (ПОЛЯРНЫЙ УРАЛ): НОВЫЕ ДАННЫЕ

А. С. Шуйский1, О. В. Удоратина1, Е. Л. Миллер2, M. А. Кобл2

1Институт геологии Коми НЦ УрО РАН, Сыктывкар 2Стэнфордский университет, Калифорния, США self88@yandex.ru

Петрографические, петрохимические и полученные первые геохимические (ICP MS) и изотопно-геохимические (OZrn, Sm-Nd, (Lu-Hf)Zrn) данные позволяют рассматривать гранитоиды Гердизского массива как внутриплитные образования A-типа c корово-мантийными характеристиками. На основе новых U-Pb (SIMS)-данных возраст гранитоидов Гердизского массива (северная часть) соответствует (496 ± 7) млн лет.

Ключевые слова: граниты А-типа, изотопно-геохимические характеристики, Гердизский массив, Полярный Урал.

Introduction

Granitoids of the large Gerdizsky massif are exposed along the Paetarka and Gerdizshor rivers in the Polar Urals. Structurally they are located in the northern part of the block Marunkeu where they are found intruding the highly metamorphosed rocks of the Khanmenkhoyskaya suite (PR^«). The massif extends in a north-east direction covering a region of about 15x6 km parallel to the general strike of the folded structures and granitoids cross-cut metamorphic fabrics (fig. 1).

The new generation of maps [1] show that two types of magmatic rocks are present in the Gerdizskiy massif: the Evyuganskiy migmatite-plagiogranite (mpyPR^), granite gneiss (gyPR1e) and Syadatayakhinskiy granite (yV-C1s) complexes. This article discusses the Evyuganskiy complex rocks (fig. 1). According to the legend [5], the granitoids of the Evyuganskiy complex are Early Proterozoic and the Syadatayakhinskiy complex is Vendian-Cambrian. The age of granitoids of the Evyuganskiy complex was determined by geological data (conglomerates at the base of the overlying Nyaroveyskaya series contain pebbles of similar composition granitoids and plagiogranites to those exposed along Paetarka Creek of the Lapta-Yaha River) as well as by geo-chronological determinations (1.73—2.22 billion. years) [1]. The age of the granitoids of the Syadatayakhinskiy complex was determined using only geological data. Data on the geological structure of the massif, the petrographic characterization and chemical composition of the granitoids can be found

in works of V. I. Okhotnikov, L. V. Mahlaev, V. A. Dushin and in our earlier work on these rocks [1, 3, 4, 7, 8, 9].

Materials and methods of research

The data for the study were obtained by us during a field trip to the northern part of the Gerdizskiy Massif (Evyuganskiy complex), exposed along the Pesaveyyaha River in 2014.

Research was conducted in the Center for Collective Use of Scientific Equipment of UB RAS «Geonauka» (IG Komi SC UB RAS): samples were analyzed by the classical chemical method and the X-ray fluorescence method in the chemical laboratory; the analysis of minerals was performed on a TESCAN VEGA 3 electron microscope with an X-max energy dispersive spectrometer (Oxford instruments); the description of thin sections was conducted on a polarizing microscope Olympus BX51; monofraction of zircons was selected (crushing, division, allocation of non-magnetic fraction, bromforming).

The content of the elements is determined by the method of ICP-MS in the Central Laboratory of VSEGEI (St. Petersburg). Zircon analyzed for U-Pb (SIMS) isotopic ages in the Stanford — U.S. Geological Survey micro analysis center (SUMAC) at Stanford University using a sensitive high-resolution ion microprobe (SHRIMP RG). A preliminary evaluation of the backscattered electron and cathodolu-minescent image was also performed at Stanford University using a scanning electron microscope Jeol 5600 to guide

Table 1. Chemical composition (wt. %) and content of rare elements (ppm) of granitoids

of the Gerdiz massif (northern part) Таблица 1. Химический состав (мае. %) и содержание элементов примесей (г/т) для гранитоидов

Гердизского массива (северная часть)

Компоненты

Components A41/14 A52/14 A34в/14 A54/14 A34a/14 A51/14 A35/14 A53/14

SiO2 TiO2 69.9 73.2 73.58 74.24 75.62 76.3 77.28 79.64

0.6 0.31 0.32 0.033 0.19 0.093 0.059 0.078

Al2O3 14.66 13.04 12.76 14.82 12.39 12.54 12.25 10.49

FeO 1.4 1.3 0.99 0.38 1.02 0.6 0.42 0.57

MnO 0.039 0.034 0.026 0.04 0.019 0.01 0.018 0.011

CaO 2.17 1.24 0.93 0.4 0.93 0.4 0.4 0.4

MgO 2.17 0.2 0.51 0.1 0.1 0.3 0.1 0.1

K2O 3.58 5.06 4.76 3.7 3.69 4.42 4.52 4.26

Nal2O 3.09 3.53 3.49 5.07 3.73 3.51 3.83 3.24

P2O5 0.15 0.042 0.06 0.1 0.033 0.012 0.009 0.009

П.п.п. 1.77 0.85 1.04 0.64 1.14 0.71 0.59 0.51

Cyмма 100.95 99.72 99.55 99.66 99.6 99.34 100.08 99.83

FeOtot H2O 2.82 2.22 2.08 0.52 1.76 1.05 1.03 1.09

0.19 0.21 0.15 0.17 0.13 0.17 0.17 0.25

CO2 0.13 0.1 0.1 0.13 0.29 0.1 0.1 0.1

Характеристические отношения / Characteristic ratios

Ga/Al — 3.13 2.79 — — 2.92 3.21 2.47

K/Rb — 328.16 263.43 — — 485.89 111.67 225.25

Rb/Sr — 1.49 3.42 — — 13.18 43.81 10.13

а. i. 0.61 0.87 0.85 0.83 0.82 0.84 0.91 0.95

Fe* 0.42 0.86 0.70 0.74 0.91 0.66 0.85 0.86

Na2O+K2O Na2O/K2O 6.67 8.59 8.25 8.77 7.42 7.93 8.35 7.50

0.86 0.70 0.73 1.37 1.01 0.79 0.85 0.76

ASI 1.15 0.97 1.02 1.15 1.05 1.11 1.03 0.98

Элементы примеси / Impurity elements

V — 12.1 11.3 — — 9.6 7.34 7.9

Cr — 23.9 26.2 — — 22.9 24.5 25.6

Co — 1.65 1.29 — — 0.5 0.5 0.5

Ni — 10.2 7.28 — — 6.05 6.68 6.54

Cu — 5.25 3.13 — — 18.6 5.85 2

Zn — 46.1 27.7 — — 24.6 27.1 26.4

Ga — 20.3 18.1 — — 18.9 20.8 16

Rb — 128 150 — — 199 336 157

Sr — 85.9 43.9 — — 15.1 7.67 15.5

Y — 42.8 38.9 — — 34.3 27.2 31.7

Zr — 316 181 — — 143 121 103

Nb — 17.3 12 — — 19.7 37.6 16.2

Mo — 2.14 2.84 — — 1.76 1.41 1.56

Sn — 5 6.65 — — 5.22 15.2 4.61

Cs — 0.93 0.77 — — 0.72 1.53 0.4

Ba — 732 183 — — 181 16.5 41

La — 124 60.4 — — 8.96 5.7 17

Ce — 221 116 — — 35 16.2 50

Pr — 25.1 12.5 — — 2.52 2.23 5.09

Nd — 78 44 — — 8.05 8.57 18

Sm — 12.8 7.46 — — 2.3 2.61 4.69

Eu — 1.46 0.56 — — 0.15 0.061 0.12

Gd — 11.1 7.58 — — 2.95 3.06 3.99

Tb — 1.46 1.05 — — 0.67 0.61 0.64

Dy — 7.53 6.71 — — 5.18 4.44 5.09

Ho — 1.63 1.49 — — 1.25 0.98 1.16

Er — 4.32 3.83 — — 3.71 3.25 3.4

Tm — 0.67 0.55 — — 0.65 0.55 0.51

Yb — 3.82 3.45 — — 3.97 3.8 3.5

Lu — 0.64 0.5 — — 0.57 0.63 0.56

Hf — 9.77 5.58 — — 5.56 5.63 4.04

Ta — 1.22 1.06 — — 2.37 3.82 1.39

Pb — 32.8 28.4 — — 26 19.9 30.5

Th — 24.2 22.6 — — 25.6 25.5 19.1

U — 2.4 2.01 — — 1.7 2.08 1.58

Note: «—» not determined, Fe* — iron index (Fetot/(Fetot+Mg)), a. i. — agpait index (Na+ K/Al), ASI - [Al/Ca - 1.67P + Na + K]

Примечание: «—» не определялось, Fe* — индекс железистости (Fetot/(Fetot+Mg)), а. i. — агпаитовый индекс (Na + K/Al), ASI — [Al/Ca -1.67P + Na +K]

Fig. 1. Schematic geological map of Gerdizsky massif [4]: 1 — Quaternary deposits undivided, 2 — fine-grained granite, 3 — coarsegrained granite, 4 — microcline granite, 5 — precambrian shales

Рис. 1. Схематическая геологическая карта северо-восточной части Гердизского массива по [4]: 1 — четвертичные отложения нерасчлененные, 2 — мелкозернистый гранит, 3 — крупнозернистый гранит, 4 — микроклиновый гранит, 5 — докем-брийские сланцы

Table 2. Results of U-Pb-isotope studies of zircons and crystallization temperature Таблица 2. Результаты U-Pb-изотопных исследований и температуры кристаллизации

в исследованных цирконах

Зерно, Кратер Grain, crater 206Pbc, % Содержания, мкг Content, mkg 232Th Возраст, млн лет Age Ma D,% Изотопные отношения Isotope ratios Rho T (°С) (1.0/0.7)

206pb* U Th 238U 206pb/238U 207Pb/206Pb 207Pb/206Pb 207Pb/235U 206Pb/238U

7.1ц 0.06 25.2 395 228 0.6 461.5+19.2 445.1+25.9 -4 0.0558 + 1.2 0.57+4.4 0.074+4.2 1 726

8.1к 0.16 22.6 337 223 0.68 484.8+18.7 509.9+24.8 5 0.0575+1.1 0.62+4.1 0.078+3.9 1 687

10.1ц 0.51 73.9 1091 686 0.65 489.1+8.8 493.2+84.3 1 0.0571+3.8 0.62+4.2 0.079+1.8 0.4 697

1.1ц 0.18 13.5 196 147 0.77 494.8+12.9 516.9+55.8 4 0.0577+2.5 0.64+3.7 0.080+2.7 0.7 728

5.1ц 0 20.3 296 105 0.37 495.4+12.8 469.8+28.3 -6 0.0565+1.3 0.62+2.9 0.080+2.6 0.9 645

3.1к 0.24 32.8 475 270 0.59 498.8+13.9 512.0+26.0 3 0.0576+1.2 0.64+3.1 0.080+2.9 0.9 679

6.1к 0.08 14.6 211 83 0.41 498.9+12.2 536.1+30.9 7 0.0582+1.4 0.65+2.9 0.081+2.5 0.9 694

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9.1ц 0.02 24.5 354 227 0.66 499.8+12.8 488.8+23.5 -2 0.0570+1.1 0.63+2.8 0.081+2.6 0.9 682

2.1к 0.46 20.8 300 195 0.67 500.9+15.4 648.6+253.0 23 0.0613+11.8 0.69+12.2 0.081+3.0 0.2 714

4.1к 0.13 21.6 310 150 0.5 502.2+9.3 535.9+23.6 6 0.0582+1.1 0.65+2.2 0.081 + 1.9 0.9 698

Note: Isotopic ratios and 206Pb contents are corrected for the measured 204Pb. D — discordance: D = 100 x [age (207Pb / 206Pb) / age (206Pb / 238U) — 1]. Rho is the correlation coefficient between the 206Pb / 238U and 207Pb / 235U isotope ratio detection errors. Примечание: Изотопные отношения и содержания 206Pb скорректированы по измеренному 204Pb. D — дискордантность: D = 100 x [возраст (207Pb/206Pb) / возраст (206Pb/238U) — 1]. Rho — коэффициент корреляции между ошибками определения изотопных отношений 206Pb/238U и 207Pb/235U

spot placement on individual zircons. The isotope composition of oxygen in zircons was measured at the Institute of Nuclear Physics of the SB RAS (Ulan-Ude). The isotope composition of samarium-neodymium was obtained at IGGD RAS (St. Petersburg). The isotopic composition of hafnium was determined at the Institute of Geology and Mineral Resources (Tianjin, China). Details of the instrumental conditions and analytical procedures for Hf isotope analyses have been described by Genget al. [14]

Research results

Granitoids are observed as thin, mostly layered bodies among the metamorphosed rocks of the frame. The granites are pink and light gray, gneissic, medium-grained to finegrained granoblastic, lepidogranoblastic and cataclastic texture (fig. 2). The rocks are composed of K-feldspar (microcline) - 20-25 %, plagioclase (albite) 25-35 %, quartz 3035 %, mica (muscovite) 5-10 %. Secondary minerals: chlorite, calcite. Accessory: epidote (clinozoisite (contents of the

Table 3. Hf isotope composition of zircons Таблица 3. Изотопный состав Hf в цирконах

Зерно, кратер Grain, crater Т (млн лет) T (Ma) 176Yb/177Hf 2ст 176Lu/177Hf 2ст 176Hf/177Hf 2ст sHf(0) eHf(t) TDM (млрд лет) (Ga) TDM2 (млрд лет) (Ga) f{ Lu/Hf)

1.1ц 495 0.022002 0.000200 0.000835 0.000007 0.282571 0.000016 -7.1 3.48 0.96 1.09 -0.97

2.1к 501 0.030654 0.000317 0.001154 0.000007 0.282610 0.000019 -5.7 4.87 0.91 1.03 -0.97

3.1k 499 0.035339 0.000795 0.001350 0.000029 0.282588 0.000018 -6.5 4 0.95 1.07 -0.96

4.1k 502 0.021205 0.000035 0.000832 0.000001 0.282557 0.000014 -7.6 3.12 0.98 1.12 -0.97

5.1ц 495 0.048500 0.001541 0.001858 0.000058 0.282544 0.000020 -8.1 2.16 1.03 1.16 -0.94

6.1к 499 0.027934 0.000102 0.001070 0.000004 0.282609 0.000014 -5.8 4.82 0.91 1.03 -0.97

7.1ц 461 0.033142 0.000419 0.001262 0.000017 0.282606 0.000017 -5.9 3.86 0.92 1.05 -0.96

9.1ц 500 0.032910 0.000137 0.001274 0.000005 0.282600 0.000015 -6.1 4.45 0.93 1.05 -0.96

10.1ц 489 0.042890 0.000202 0.001655 0.000003 0.282545 0.000015 -8 2.15 1.02 1.16 -0.95

Note: eHf(0) = (((176Hf/177Hf )s / (176Hf/177Hf)CHUR o> ~ 1 > x 1000

eHf(t) = (((™Hf/i77Hf )s - (i«Lu/i77Hf )s x (е* - i))/ ((™Hf/i77Hf)CHUR0 " (176Lu/i77Hf )CHUR x (е» - 1 ))) - 1 x 1000 TDM = 1/ X x In (1 + ((176Hf/177Hf )s - (176Hf/177Hf)DM / (176Lu/177Hf)s - i176Lu/177Hf)DM) TDM2 = TDM - (TDM - t) (fc -fs /(fc -/DM)) /LU/Hf= (176Lu/177Hf)s/ (176Lu/177Hf)CHUR - 1

where (176Lu/177Hf)s and (176Hf/177Hf)s are the measured values of samples (176Lu/177Hf)CHuR= °-0332 and < Hf/177Hf)CHUR,o = 0.282772 [11, 12]); (176Lu/177Hf)DM= 0.0384 and (176Hf/177Hf)DM = 0.28325 [15]), /is the crystallization age of the zircon, and A, = 1.867 x 10_11yr_1 [10, 16]. TDM andTDIvn are single-stage DM model and two-stage DM2 model ages, respective \y.fc,f§, and/j^ are the ^ц/щ values of the crustal source, the sample and the depleted mantle, respectively. In our calculations, fc= —0.72 (176Lu/177Hf = 0.015 in average continental crust) and 0.16 (176Lu/177Hf = 0.0384 [15]).

Примечание: eHf(0) = (((176Hf/177Hf )s / (176Hf/177Hf)CHUR o> ~ 1 > x 1000

eHf(t) = (((™Hf/i77Hf )s - (176Lu/177Hf )s x (е* - 1))/ ((176Hf/i77Hf)CHURo " (176Lu/i77Hf )CHUR x (е» - 1 ))) - 1 x 1000 tdm = 1/ X x In (1 + ((176Hf/177Hf )s - (176Hf/177Hf)DM / (176Lu/177Hf)s - (176Lu/177Hf)DM) tdm2 = tdm - (tdm - t) (fc -fs /(fc -/DM)) /Lu/Hf= ( Lu/177Hf)s/ (176Lu/177Hf)CHuR " 1

где (176Lu/177Hf)s и (176Hf/177Hf)s измеренные значения в образце (176Lu/177Hf)CHUR = °-0332 and (176Hf/177Hf)CHUR,o = 0.282772 [И, 12]); (176Lu/177Hf)DM= 0.0384 and (176Hf/177Hf)DM = 0.28325 [15]), t— возраст кристаллизации циркона и X = 1.867 х Ю-11^1 [10, 16]. TDM одностадийный возраст модели и TDIvp двухстадийный возраст.и/¡_U/Hf значения коровою источника, образца и деплетированной мантии, соответственно. В наших расчетах fc= —0.72 (используя среднекоровую величину 176Lu/177Hf = 0.015) Hj^M= 0.16 (176Lu/177Hf = 0.0384) [15].

clinozitosite minal from 0.67 to 0.88)) apatite (fluorapatite (3-4 wt. % F), zircon, allanite, garnet (spessartine-grossu-lar-almandin), thorite, fluorite, titanite and ore mineral is represented by magnetite [6]. All minerals are confirmed by microprobe analyzes.

The rocks studied have SiO2 content 69.9 to 79.64 wt. % and a high amount of alkali (Na2O + K2O, ranging from 7.42 to 8.59 wt.%), and belong to the family of granites according to the rocks petrochemical classification (fig. 3a and 3b). Moderately alkaline series are moderately potassic rocks rich in alumina (ASI = 0.97-1.15). The content of titanium is very low (TiO2 = 0.09-0.32 wt. %.). With increasing amounts of silica, the content of (K2O + Na2O), CaO and FeO, TiO

decrease; the content of Al2O3,

P2O5 is slightly

Fig. 2. Cataclastic (a) and lepidogranoblast (b) texture (Kfs — K-feldspar, Mus — muscovite, Q — quartz)

Рис. 2. Катакластическая (a) и лепидогранобластовая (b) структура (Kfs — КПШ, Mus — мусковит, Q — кварц)

reduced (Tab. 1).

Rocks are characterized by a low total content of rare earth elements (mean value) — 200 ppm. REE spectra (fig. 3c) is characterized by a slight predominance of LREE over HREE ((La/Yb)N — 7.9) with low Eu values (Eu/Eu * — 0.19). Spider diagrams ofthe rocks under study (fig. 3d) show that they are enriched with large-ion elements (Rb, Th) and have similar or slightly increased content of highly charged elements (Ce, Zr, Sm, Yb). According to the classification, granitoids belong to the A-type granites, based on the characteristic relationship [13].

We conducted additional isotope-geochronological studies. Zircons present in the sample are medium in size, up to 200 microns CE (coefficient of extension): 1: 4, 1: 5, whitish, white-yellow, translucent, of short-prismatic habit,

Fig. 3. Diagrams SiO2-Na2O+K2O (a), diagrams Ab-An-Or (b), spectra of rare earths (c) and diagram multi-elemental (d)

Рис. 3. Диаграмма SiO2-Na2O+KjO (a), диаграмма О'Коннера Ab-An-Or (b), спектры распределения РЗЭ (c), мультиэлемен-

тная диаграмма (d)

ютрь^'и

Fig. 4. Cathodoluminescence image ofzircon from granites (A52-14) numbers dating grains and analysis of craters (a); Diagram for zircon A52-14 — (b). The coordinates of points — the center of the ellipse of error (2a). Concordant age for coherent groups of 10 definitions — (496.2 ± 7.1) million years (2a, STD (standard deviation) = 0.85)

Рис. 4. Катодолюминесцентные изображения цирконов из гранитов (А52-14) с номерами датированных зерен и аналитических кратеров (a); диаграмма для цирконов обр. А52-14 — (b). Координаты точек — центры эллипсов погрешностей (2a). Конкордантный возраст для когерентной группы из 10 определений — (496.2±7.1) млн лет (2a, СКВО=0.85)

10000

0.01 -1-1-1-1-1-.-1-,-,-

La(ch) Се (eh) Nd(ch) Sm (ch) Eu(ch) Gd (ch) Dy(din) Y(ch> Er(ch) Yb (ch)

-♦-A5214-7,1 -9-A5214-8.1 -Ж-А5214-10.1 -e-A5214-1.1 -А-А5214-5Л -B-A5214-3.1 -&-A5214-6.1 ® A5214-9.1 -t>A5214-2.1 X A5214-4.1

Fig. 5. Spectra of REE distribution in analyzed zircons from granitoids of the Gerdiz massif Рис. 5. Спектры распределения РЗЭ в цирконах из гранитоидов Гердизского массива

with inclusions and numerous cracks. Cathodoluminescent images of zircons show rough oscillatory zoning in the margins of zircons and wide homogeneous central zones (fig. 4a). The contents of U (ppm) are highly variable from 196 to 1091, but are generally at 300. The content of Th varies within a tighter range of 83-270.

The calculated 206Pb/238U zircon crystallization age was determined from 10 points on sample A52/14 (tab. 2). The results range in ages from 461.5+19.2 to 502.2±9.3 Ma (fig. 4b). The calculated weighted mean age of 10 zircon analyses was 494.9+7.9 Ma (2ct, MSWD = 0.53, probability — 0.85). This calculated concordia age for the coherent group from all 10 definitions is 496.2+7.1 Ma (2ct, MSWD = 0.85, the probability of concordance - 0.721) is within uncertainty of the weighted average (fig. 4b). The trace elements contents are similar, indicating that the analyzed zir-

cons are comagmatic (fig.5). Their formation temperature estimated by the Ti content in zircon [17] varies over a wide range from 645 to 728 °C (at aSiO = 1 and aTiO2 = 0.7).

The concordant age obtained corresponds to the Late Cambrian. The identified age of metagranitoids of the Ingilorskiy massif is similar and is 487.3 ± 7.4 [9]. A Paypudynsky rhyolite complex (X63-O1pp) of the same age level is known in the Polar Urals, which is the felsic component of bimodal rift magmatism in the Polar Urals [2].

The Sm-Nd data of granite sample A52/14, (Sm (12.79 ppm), Nd (82.98 ppm), 147Sm/144Nd (0.0932), 143Nd/144Nd (0.512338), eNd(0) (-5.9), eNd(T) (+0.7), TDM (1029), TDM2 (1181)) [8] indicate that the source of these rocks was either mantle with a significant component of older crust as a contamination. The oxygen isotopic composition of zircons from granitoids (zircon from sam-

ple A52/14) is characterized by low values of+6.9 %o [8] -has core values.

The isotopic data of Hf (tab.3), calculated on age eHf (T), is characterized by positive values from + 4.87 to +2.15, which indicate a crust-mantle source (which agrees well with eNd(t), on the data presented above) and young model age.

Isotope-geochemical (eNd(t), OZrn, eHf(t)Zrn) data allow us to characterize the source of the melts

Conclusions

Thus, according to new petrologic, geochemical, geo-chronologic and isotopic data, granitoids of the northern part of the Gerdizskiy massif have intraplate characteristics and document that they mark the process of rifting that existed in the late Cambrian along the margin of the East European continent.

Studies are conducted within the framework of the project 18-5-5-46

Литература

1. Государственная геологическая карта Российской Федерации масштаба 1:200000: Серия Полярно-Уральская. Лист Q-42-I, II (Лаборовая). Объяснительная записка / Ред. А. П. Казак. СПб.: Картографическая фабрика ВСЕГЕИ, 2009. 372 с.

2. Зархидзе Д. В., Малых О. Н. и др. Государственная геологическая карта Российской Федерации. Масштаб 1: 200 000. Издание второе. Серия Полярно-Уральская. Листы R-41-XXXV, XXXVI (хр. Оченырд). Объяснительная записка. М.: Московский филиал ФГБУ «ВСЕГЕИ», 2017. 224 с. (Минприроды России, Роснедра, Комитет природных ресурсов по Республике Коми, ЗАО «МИРЕКО»).

3. Махлаев Л. В. Гранитоиды севера Центрально-Уральского поднятия (Полярный и Приполярный Урал). Екатеринбург: УрО РАН, 1996. 148 с.

4. Охотников В. Н. Гранитоиды и рудообразование (Полярный Урал). Л.: Наука, 1985. 184 с.

5. Шишкин М. А., Криночкин В. Г. Легенда для геологической карты донеогеновых образований Полярно-Уральской серии листов Госгеолкарты-200. Санкт-Петербург, 1999. 198 с.

6. Шуйский А. С. Минералогические особенности грани-тоидов Гердизского массива (Полярный Урал) // Структура, вещество, история литосферы Тимано-Североуральского сегмента: Материалы 23-й науч. конф. Сыктывкар: Геопринт, 2014. С. 150-154.

7. Шуйский А. С., Голубева И. И. Новые данные по гра-нитоидам Гердизского массива (Полярный Урал) / Вестник Коми НЦ УрО РАН. 2016. № 8. С. 10-14

8. Шуйский А. С., Удоратина О. В., Куликова К. В., Саватенков В. М., Посохов В. Ф. Изотопно-геохимические особенности гранитоидов А-типа Полярного Урала // XXI симпозиум по геохимии изотопов им. академика А. П. Виноградова (15-17 ноября 2016): Тезисы докладов / ГЕОХИ РАН. М.: Акварель, 2016. С. 214-217.

9. Шуйский А.С., Удоратина О. В., Миллер Е. Л., Кобл М. Метагранитоиды Ингилорского массива (Полярный Урал): U-Pb-данные // Материалы IV Международной научно-практической конференции молодых ученых и специалистов памяти академика А. П. Карпинского, 16-20 февраля 2015 г., Санкт- Петербург, ВСЕГЕИ. СПб.: Изд-во ВСЕГЕИ, 2015. С. 481-484.

10. Amelin Y. 2005. Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science 310. P 839— 841.

11. Amelin Y, Lee, D. C, Halliday A. N, Pidgeon R.T. 1999. Nature of the Earth's earliestcrust from hafnium isotopes in single detrital zircons. Nature 399, 252-255.

12. Blichert-Toft J., Albarede F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters148, 243-258.

13. Chappell B. W, Stephens W. G. Origin of infracrustal (I -type) granit magmas //Trans. Roy. Soc. 1988. V. 79. P. 71-89.

14. Geng J.Z, Li, H.K.. Zhang J., Zhou H.Y., Li H.M. 2011. Zircon Hf isotope analysis by means of LA-ICP-MS. Geological Bulletin of China 30 (10), P. 1508-1513 (in Chinese with English abstract)

15. Griffin W. L., Pearson N. J., Belousov E., Jackson S. E., Achterbergh E., Suzanne Y. O., Shee S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta64, 133-147.

16. Soderlun, U., Patchett, P. J., Vervoort J. D., Isachsen C. E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian maficintrusions. Earth and Planetary Science Letters 219, 311-324.

17. Watson E. B., Wark D. A., and Thomas J. B. Crystallization thermometers for zircon and rutile / Contributions to Mineralogy and Petrology 2006, 151(4), P. 413-433.

Reference

1. Gosudarstvennaya geologicheskaya karta Rossiiskoi feder-acii masshtaba 1 200000 Seriya Polyarno Uralskaya List Q 421II Laborovaya, Obyasnitelnaya zapiska (State Geological Map of the Russian Federation at the scale of 1: 200000: Polar-Ural series: Sheet Q-42-I, II (Labor): Explanatory note). Ed. AP Kazak. St. Petersburg: Map factory VSEGEI, 2009, 372 p.

2. Zarkhidze D. V., Malikh O.N., et al. Gosudarstvennaya geologicheskaya karta Rossijskoj Federacii. Masshtab 1: 200 000. Izdanie vtoroe. Seriya Polyarno-Uralskaya. Listy' R-41-XXXV, XXXVI (xr. Ochenyrd). Obyasnitelnaya zapiska (The State Geological Map of the Russian Federation. Scale 1: 200 000. Second edition. Series Polar Ural. Sheets R-41-XXXV, XXXVI (ridge Ochenyrd). Explanatory note). Moscow: Moscow branch ofthe FSBU «VSEGEI», 2017, 224 p. (Ministry of Natural Resources of Russia, Rosnedra, Committee of Natural Resources for the Komi Republic, CJSC MIREKO)

3. Makhlaev L. V. Granitoidy severa Centralno Uralskogo pod-nyatiya (Polyarny i Pripolyarny Ural) (Granitoids of the Central Central Ural Uplift (Polar and Subpolar Urals)). Ekaterinburg: UB RAS, 1996, 148 p.

4. Okhotnikov V. N. Granitoidy i rudoobrazovanie (Polyarny Ural) (Granitoids and ore formation (the Polar Urals)). Leningrad: Nauka, 1985, 184 p.

5. Shishkin M. A., Krinochkin V. G. Legenda dlya geo-logicheskoj karty doneogenovyx obrazovanij Polyarno-Uralskoj serii listov Gosgeolkarty-200 (Legend for the geological map of the pre-Neogene formations of the Polar-Ural series of sheets of the State Geological Library-200). St. Petersburg, 1999, 198 p.

6. Shuyskiy A. S. Mineralogicheskie osobennosti granitoidov Gerdizskogo massiva (Polyarny Ural) (Mineralogical features of granitoids of the Gerdiz massif (Polar Urals)). Structure, matter, history of the lithosphere of the Timan-Northern Ural Segment: Proceedings of the 23rd Scientific Conference. Conf. Syktyvkar: Geoprint, 2014, pp. 150-154.

7. Shuyskiy A. S., Golubeva I. I. Novye dannye po granitoi-dam Gerdizskogo massiva (Polyarny Ural) (New data on the granitoids of the Gerdiz massif (Polar Urals)). Komi Bulletin of the Urals Branch of the Russian Academy of Sciences. Syktyvkar, No. 8, 2016. pp. 10-14.

8. Shuyskiy A. S., Udoratina O. V., Kulikova K. V., Savatenkov V. M., Posokhov V. F. Izotopno-geoximicheskie osobennosti gran-itoidov A-tipa Polyarnogo Urala (Isotope-geochemical features of the A-type granitoids of the Polar Urals). XXI Symposium on the Geochemistry of Isotopes named after Academician AP Vinogradov (November 15-17, 2016). Theses of reports / GEOKHI RAS -Moscow, Watercolor, 2016, pp. 214-217.

9. Shuyskiy A. S., Udoratina O. V., Miller E. L., Coble M. Metagranitoidy Ingilorskogo massiva (Polyarny Ural): U-Pb dan-nye (Metagranitoids of the Inhylor Massif (Polar Ural): U-Pb data). Proceedings of the IV International Scientific and Practical Conference of Young Scientists and Memory Specialists Academician A. P. Karpinsky, February 16-20, 2015, St. Petersburg, VSEGEI, St. Petersburg: Publishing house VSEGEI, 2015, pp. 481-484.

10. Amelin Y. Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science 310. 2005, pp. 839841.

11. Amelin Y., Lee, D. C., Halliday, A.N., Pidgeon, R.T. Nature of the Earth's earliestcrust from hafnium isotopes in single detrital zircons. Nature 399, 1999, pp. 252-255.

12. Blichert-Toft, J., Albarede, F. The Lu—Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters148, 1997, pp. 243-258.

13. Chappell B. W, Stephens W. G. Origin of infracrustal (I - type) granit magmas. Trans. Roy. Soc. 1988, V. 79, pp. 71—89.

14. Geng, J.Z., Li, H.K., Zhang, J., Zhou, H.Y., Li, H.M.,. Zircon Hf isotope analysis by means of LA-ICP-MS. Geological Bulletin of China 30 (10). 2011, pp. 1508-1513 (in Chinese with English abstract)

15. Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Achterbergh, E., Suzanne, Y.O., Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta64. 2000, pp. 133-147.

16. Soderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C. E.,. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian maficintrusions. Earth and Planetary Science Letters 219, 2004, pp. 311-324.

17. Watson E. B., Wark D. A., and Thomas J. B. Crystallization thermometers for zircon and rutile /Contributions to Mineralogy and Petrology, 2006, 151(4), pp. 413-433.

i Надоели баннеры? Вы всегда можете отключить рекламу.