Научная статья на тему 'GRANITOIDS OF THE NYARTA BLOCK (SUBPOLAR URALS): NEW DATA'

GRANITOIDS OF THE NYARTA BLOCK (SUBPOLAR URALS): NEW DATA Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
32
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
S-ГРАНИТЫ / ЦИРКОНЫ / U-PB (SIMS) / ИЗОТОПНО-ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ / ПРИПОЛЯРНЫЙ УРАЛ / S-GRANITES / ZIRCONS / ISOTOPE-GEOCHEMICAL CHARACTERISTICS / SUBPOLAR URALS

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Udoratina O.V., Coble M.A., Shuyskiy A.S., Kapitanova V.A.

The age (U-Pb, SIMS), features of the distribution of REE, Ti, Hf, Y in zircons of granitoids of the Nikolayshorsky massif (Subpolar Urals) were determined and isotope-geochemical data (O, Lu-Hf) were obtained. These data allowed establishing the age and characteristics of protolith. The data confirmed the formation of granites in the range of 640-520 Ma. Evidence of different age stages was found in one sample of zircons from the Nikolayshorsky massif. The determined temperature ranges for the formation of zircons indicated that their crystallization (620 Ma) had occurred at a temperature lower than zircons with ages 520 Ma. The isotopic composition of zircon oxygen indicated a crustal source, the hafnium isotopic composition indicated a crust-mantle one, the model ages of protoliths were 1.48-1.02 and 1.11 Ga for zircons of different ages. Granites with the petro-geochemical characteristics of S-granites were formed during granitogenesis processes appeared at different times - 620 and 520 Ma ago.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам , автор научной работы — Udoratina O.V., Coble M.A., Shuyskiy A.S., Kapitanova V.A.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ГРАНИТОИДЫ НЯРТИНСКОГО БЛОКА (ПРИПОЛЯРНЫЙ УРАЛ): НОВЫЕ ДАННЫЕ

Установлен возраст (U-Pb, SIMS), особенности распределения РЗЭ, Ti, Hf, Y в цирконах гранитоидов Николайшорского массива (Приполярный Урал) и получены изотопно-геохимические данные (O, Lu-Hf), позволяющие установить возраст и характеристики протолита. Полученные результаты подтверждают формирование гранитов в интервале 640-520 млн лет. Свидетельства разных возрастных этапов обнаружены в одной выборке цирконов Николайшорского массива. Установленные температурные интервалы формирования цирконов указывают, что их кристаллизация 620 млн лет назад происходила при температуре более низкой, чем у цирконов с возрастами 520 млн лет. Изотопный состав кислорода цирконов свидетельствует о коровом источнике, изотопный состав гафния - о корово-мантийном, модельные возраста протолитов составляют 1.48-1.02 и 1.11 млрд лет для разновозрастных цирконов. Граниты с петро-геохимическими характеристиками S-гранитов сформированы при процессах гранитогенеза, проявленных в различное время - 620 и 520 млн лет назад.

Текст научной работы на тему «GRANITOIDS OF THE NYARTA BLOCK (SUBPOLAR URALS): NEW DATA»

УДК 550.93 (234.852) DOI: 10.19110/2221-1381-2019-9-23-32

ГРАИИТОИДЫ няртинского БЛОКА [ПРИПОЛЯРНЫМ УРАЛ): НОВЫЕ ДАННЫЕ

О. В. Удоратина1'2, М. А. Кобл3, А. С. Шуйский1, В. А. Капитанова1

1ИГ Коми НЦ УрО РАН, Сыктывкар; udoratina@geo.komisc.ru 2ТГУ, 3Стэнфордский Университет, США

Установлен возраст (U-Pb,SIMS),oco6eHHOc™ распределения РЗЭД^Н^ в цирконах гранитоидов няртинского блока (Приполярный Урал),впервые получены изотопно-геохимические данные (0^и-Ж),позволяющие установить изотопно-геохимические характеристики протолита пород. Обнаружены две возрастные группы цирконов отличающиеся своим возрастом,геохимическими (распределение РЗЭ),термическими (t° кристаллизации),изотопными (Lu-Hf) характеристиками,а также расчетными модельными возрастами протолитов. Цирконы с возрастом 619 млн лет кристаллизовались при температуре 702—684 °С,имеют корово-мантийные значения изотопного состава гафния (-2.09—+1.76) и модельный возраст протолита TDM2 1.48—1.29 млрд лет. Цирконы с возрастом 517 млн лет формировались при температуре 795—737 °С,имеют коровые характеристики изотопного состава гафния (+3.58— +5.16) и модельный возраст протолита TDM2 1.03—1.11 млрд лет. Полученные данные подтверждают,что процессы гранитизации в центральной части няртинского блока проявлялись неоднократно ~620 и ~520 млн лет.

Ключевые слова: S-граниты, цирконы, U-Pb (SIMS), изотопно-геохимические характристики, Приполярный Урал.

GRANITOIDS OF THE NYARTA BLOCK [SUBPOLAR URALS): NEW ВАТА

O. V. Udoratina1,2, M. A. Coble3, A. S. Shuyskiy1, V. A. Kapitanova1

institute of Geology of Komi SC UB RAS 2TSU, 3Stanford University, USA

The age (U-Pb,SIMS),features of the distribution of REE,Ti,Hf,Y in zircons of granitoids of the Nartablock (Subpolar Urals) were established,isotope-geochemical data (O,Lu-Hf) were obtained for the first time,allowing to establish the iso-tope-geochemical characteristics of protolith rocks. Two age groups of zircons were found that differ in their age,geo-chemical (REE distribution),thermal (t crystallization),isotopic (Lu-Hf) characteristics,as well as the estimated model ages of protoliths. Zircons with an age of 619 Macrystallized at atemperature of 702—684 °C,have acrust-mantle hafnium iso-topic composition (-2.09—+1.76) and amodel age of protolith TDM2 1.48—1.29 Ga. Zircons with an age of 517 Ma were formed at atemperature of 795—737 °C,have crustal characteristics of the hafnium isotopic composition (+3.58—+5.16) and the model age of the protolith TDM2 is 1.03—1.11 Ga. The dataobtained confirm that granitization processes in the central part of the Nyarta block manifested themselves repeatedly ~620 and ~520 Ma.

Keywords: S-granites, zircons, U-Pb (SIMS), isotope-geochemicalcharacteristics, Subpolar Urals.

Introduction

In the Subpolar Urals, the central part of the Lyapinsky anticlinorium (Khobeiz anticline, Nyarta block) is composed of highly metamophysic rocks and granitoid massifs developed among them.

The metamorphic gneisses and amphibole crystalline schists enclosing granitoids are considered in the rank of the Nyarta complex of the Proterozoic age [11—14 and links in these publications], Nyarta suite of the Early Riphean age according to other authors of the [4—5]. The entire volume of rocks of the Nyarta complex (suite) is composed of high-temperature zones allocated to the Upper Kozhim meta-morphic complex; it is assumed that all the main events of the metamorphic process (progressive phase) are limited in time by the Vendian [5]. The complex is divided into subcomplexes: 1. gneiss-amphibolite-crystalline shale, corresponding to the field of epidote-amphibolite facies, and 2. metabasite-mica-shale, corresponding to the field of development of high-temperature subfaction of green-shale facies. The previously occurred metamorphism of the am-phibolite facies is reconstructed.

Massifs of granite gneisses and moderately alkaline leu-cogranites developed among these metamorphic formations are considered by some authors as part of the Nikolayshor granite gneiss complex [9, 12—14], by others as part of the first phase of the Salner-Manhambov complex [4—5].

Autochtonous and paraautochthonous granites are formed during granitization and subsequent melting of a

substrate of a heterogeneous composition. They are found in the area of migmatites.

Granite massifs, developed among these rocks (Nikolayshorsky, Bazisny, Ambashorsky, Halmeryusky, Palnikshorsky, Mansaranizsky, Zapadnosvobodnensky, Lavkashorsky, Svobodnensky, Balashovsky, Ustnyartinsky) are considered as melted on-site or slightly displaced small granite bodies with transitional zones between the granite and host metamorphites (Fig. 1, a).

Recent isotope-geochemical studies show that the bulk of granite massifs inherit zircons from the substrate, which confirms the minimum degree of melting. The currently known ages of zircons of the substrate involved in melting vary in a wide range from 2127 to 327 Ma, however, the bulk of granite massifs was melted during the Timan collision [3, 12 and links in these publications]. It was previously shown that under these conditions granitoids were formed with various geochemical and isotope-geochemical characteristics corresponding to S, I, and A types of granites [15].

Characteristics of granitoids of the Nicholashorsky petrotypical massif are known because ofmany years ofgeo-logical survey and thematic studies [4—5, 9—11, 17]. New data relate mainly to detailed mineralogical studies and the isotope-geochemical characteristics of granitoids, as well as the analysis of accumulated data [1—3, 7—8, 10—13, 16].

Geochronological studies of granitoids and gra-nitized rocks began long ago and went from the first dat-23

Рис. 1. а) Схема размещения гранитоидных массивов ядра Хобеизской антиклинали. 1 — образования Западно-Уральской мегазоны; 2—3 — образования Центрально-Уральской мегазоны: 2 — среднего рифея-венда, 3 — нижнего-среднего рифея (ядро Хобеизской антиклинали); 4 — комплексы Тагильской мегазоны; 5 — гранитоидные массивы ядра Хобеизской антиклинали; 6—8 — интрузивные комплексы позднего рифея-кембрия в обрамлении ядра Хобеизской антиклинали: 6 — сальнерско-маньхамбовский, 7 — панэчаизский, 8 — парнукский; 9 — разломы; 10 — надвиги. Цифрами на схеме обозначены массивы: 1 — Николайшорский, 2 — Базисный, 3 — Амбаршорский, 4 — Хальмеръюский, 5 — Пальникшорский, 6 — Маньсаранизский, 7 — Западносвободненский, 8 — Лавкашорский, 9 — Свободненский (выделен пунктирной рамкой), 10 — Балашовский, 11 —

Устьняртинский. b) Геологическая карта северного обрамления няртинского гнейсо-мигматитового комплекса (по [5]). b) 1 — сальнерско-маньхамбовский комплекс гранит-лейкогранитовый (y—lyV2—e1sl) (гнейсо-граниты); 2 — пуйвинская свита (R2pv); 3 — щокурьинская свита (R2?sk); 4 — маньхобеинская свита (R2?mh); 5 — няртинская свита (R^r); верхнекожимский метаморфический комплекс (Vvk): фации регионального метаморфизма: 6 — зеленосланцевая (метабазит-слюдяносланцевый «подкомплекс» sVvk), 7 — эпидот-амфиболитовая (гнейсо-амфиболит-кристаллосланцевый «подкомплекс» gaVvk); 8 — граница метаморфических фаций и субфаций; 9 — гранитизированные породы; 10 — элементы залегания метаморфической и кристаллизационной сланцеватости; 11 — элементы залегания слоистости: а — наклоного, б — опрокинутого; 12 — несогласное залегание; 13 — точка отбора (обр. 80б)

Рис. 1. а) Layout of granitoid massifs of the core of the Khobeiz anticline. 1 — formations of the West Ural megazones; 2—3 — formations of the Central Ural megazone: 2 — Middle Riphean-Wenda, 3 — Lower-Middle Riphean (core of the Khobeiz anticline); 4 — Tagil megazone complexes; 5 — granitoid massifs of the core of the Khobeiz anticline; 6—8 — intrusive complexes of the Late Riphean-Cambrian framed by the core of the Khobeiz anticline: 6 — Salnier-Manhambov, 7 — Panechaiz, 8 — Parnuk; 9 — faults; 10 — thrusts. The numbers on the diagram indicate the arrays: 1 — Nikolayshorsky, 2 — Basisny, 3 — Ambarshorsky, 4 — Halmeryusky, 5 — Palnikshorsky, 6 — Mansaranizsky, 7 — Zapadnosvobodnensky, 8 — Lavkashorsky, 9 — Svobodnensky (highlighted with a dashed frame), 10 — Balashov,

11 — Ustnartinsky. b) Geological map of the northern frame of the Nyarta gneiss-migmatite complex (according to [5]). b) 1 — Salnier-Manhambov granite-leucogranite complex (y—lyV2—e1sl) (gneiss granites); 2 — Puyvinskaya Suite (R2pv); 3 — Shchokurinskaya Suite (R2? sk); 4 — manhobeinskaya suite (R2?mh); 5 — Nyarta Suite (R^r); Upper Kozhimsky metamorphic complex (Vvk): facies of regional metamorphism: 6 — green shale (metabasite-mica shale "subcomplex" sVvk), 7 — epidote-amphibolite (gneiss-amphibolite-crystal-shale "subcomplex" gaVvk); 8 — border of metamorphic facies and subfacies; 9 — granitized rocks; 10 — elements of occurrence of metamorphic and crystallization schists; 11 — elements ofbedding: a — inclined, b — overturned; 12 — dissonant bedding; 13 — sampling point (sample 80b)

ing of K-Ar, Rb-Sr, Pb-Pb methods, highlighted the main stages of granite formation in this region based on them for a long time [2]. Based on the ages established in recent years for some U-Pb zircon massifs (SIMS): (Halmeryusky (638 ± 6, n = 10), Ambashorsky (520 ± 7, n = 9), Lavkashorsky (327±3, n = 2; 489±6, n = 1; 560 ± 4, n = 3; 1756 ± 19, n = 1;), Svobodnensky (476 ± 11, n = 5; 553 ± 8, n = 3), it is shown that granite formation processes in the core of the Khobeiz anticline (in the rocks of the Nyarta complex (suite)) occurred repeatedly. Some of the zircons, as we believe, are inherited, some reflect the time of formation of the melt, and some subsequent processes, often of all ages (inherited, magmat-ic stage and transformation stage) can be seen in one zircon crystal [3—5].

The age of granitoids ofthe petro typical Nikolayshorsky massif established by the U-Pb (SIMS) method is 640 ± 6.7 [3], 606 ± 3 [14] and correlates geochronologically with the granites of the Salnier-Manhambov complex developed in the frame of the Nyarta block.

The new isotope-geochronological data on granitized rocks, composing the volume of the Nyarta block, allows us to determine the isotope-geochemical features of melting protoliths and the crystallization temperatures and the age of granitization processes more accurately.

Methods

The studies were carried out at the CCU "Geoscience", IG Komi SC UB RAS (Syktyvkar): petrographic, micro-

probe, and chemical (classical method). The content of rare, scattered, and rare-earth elements were measured at the Geochemistry Institute ofthe Russian Academy of Sciences (Moscow) using neutron activation methods and X-ray radiometric methods. Zircon ages were determined using the U-Pb, SIMS method at Stanford University, USA, the research technique is given in [26]. The oxygen isotope composition in zircons was determined at the GIN SB RAS (Ulan-Ude) according to the technique described in [6]. The hafnium isotopic composition was determined by the authors at the Institute of Geology and Mineral Resources (Tianjin, China) according to the [21].

Results and discussion

In the upper reaches of the Kozhim River, where the most complete section of the rocks of the Nyarta complex (suite) is revealed, samples were taken for research (the left

side of the Kozhim-Vozh stream at the confluence with the Kozhim river). Here (65°00'13''; 60°41'32'') in the rocky outcrop, alternating thicknesses of crystalline schists with granite rocks are observed — the zone of migmatization of the western contact of the Ambashora massif is exposed (Fig. 1, b, a fragment of the geological map of the last generation is given).

The tested rocks are represented by white-gray colored medium-grained gneiss-shaped albitized granite. Mineralogical composition (vol %): Plagioclase (albite) — 30—40, quartz — 40—50, feldspar (microcline) — 25—30, muscovite (up to 3). Accessory minerals: zircon, garnet, al-lanite, titanite, secondary — sericite, calcite, ore — pyrite. In thin sections lepidogranoblast microstructures with the rarely development of garnet porphyroblast are observed.

According to the Petrographic Code, rocks are classified as acid plutonic normal alkaline rocks (Fig. 2, a). The silica content (wt %) is 77, alumina 13.2, sodium ox-

Рис. 2. Диаграммы (Na2O+K2O)-SiO2 (a), Al/(Na+K)/Al(Ca+Na+K) — b, Концентрации насыщения цирконием расплавов разного состава (параметр М) и генезиса при различных температурах по [25], экспериментальные данные — по [24] — с, диаграмма a-b для реконструкции первичного состава метамагматических пород по А.Н. Неелову — d. Квадрат -положение точки состава пробы 80б. Нанесены для сравнении: эллипсы — точки составов пород петротипичного Николайшорского массива взятые из работ [7] (темно серое поле) и неопубликованные данные А.А.Соболевой — серое поле, а также нанесена точка среднего состава гранитоидов Амбашорского массива (ромб) [5]

Fig. 2. Diagrams (Na2O + K2O) -SiO2 (a) and Al/(Na+K)/Al(Ca+Na+K) (b), The zirconium saturation concentrations of the melts of different composition (parameter M) and origin at different temperatures (25]). Experimental data after [24] (c), diagram a-b for reconstruction of the primary composition of metamagmatic rocks according to A.N. Neyelov (d) The square is the position of the sample composition point 80b. Ellipses, rock composition points of the Nikolayshorsky massif taken from the works [7] (dark gray field) and unpublished data by A.A.Soboleva — gray field as well as a point of the average composition of granitoids of the Ambashora massif (rhombus) [5]

ide 4.72, potassium oxide 1.44. The rocks are characterized by a significant predominance of Na2O over K2O (Na2O/ K2O — 3.28). The rocks with an agpaity index (0.71), an alumina index ASI (1.29) and an alumina index (al '— 5.9) are related to those with a high alumina index. The position of the composition point in the diagram Al/(Na+K)— Al/(Ca+Na+K), indicates a significant contribution of crustal (sedimentary) material to the melting substrate (Fig. 2, b), as well as the location of the composition point on the Zr-M diagram (Fig. 2, c). According to the petro-geochemical characteristics of the rocks are S type granites. Our data confirm earlier works, where it was shown that, in their petro-geochemical characteristics, the granites of the central part of the Nyarta block were comparable with S-type granites [3, 10, 15].

On the diagram for reconstructing the paleosubstra-tum (N. Neelova), the composition point falls into the uncertainty field of arkosis and rhyolite (Fig. 2, d). Based only on chemical composition data, it is impossible to distinguish highly metamorphosed volcanics and terrigenous sediments — arkoses.

The REE in rock content is 324.72 g/t; a slight predominance oflight REE over heavy (LaN / YbN — 9.46) and a clearly seen Eu minimum (Eu/Eu* — 0.38) are observed at the REE distribution spectra (Fig. 3, a). On the multielement diagrams the large cationic elements predominate over highly charged elements (Fig. 3, b). For comparison, the profiles of the spectra of granitoids of the Nikolayshorsk petrotypical massif are plotted on the charts; unfortunately, there are no data for the rocks of the Ambarshor massif. As can be seen in the studied rocks there are no negative anomalies (Ta, Nb, P, Eu) characteristic of the rocks of the petrotypical massif.

Zircons selected for research (sample 80b) are represented by small light yellow transparent grains saturated with inclusions. There are (1) wide-prismatic (tabular) with a well-developed prism and undeveloped pyramids crystals (150—100 ^m, Ku 1:2), as well as (2) long-prismatic crystals with well-defined heads (100 ^m, Ku 1:3).

Рис. 3. Распределение РЗЭ (a) и мультиэлементная диаграмма (b) в породах. Серое поле неопубликованные данные А. А. Соболевой

Fig. 3. Distribution of REE (a) and Multi-element diagram (b) in the rocks. Gray field unpublished data by A. A. Soboleva

Таблица 1. Химический состав (мас.%), содержание элементов примесей (г/т) и индикаторные отношения в породе Table 1. Chemical composition (wt. %), content of elements (ppm) and characteristic rations of the rock

Химический состав /Chemical composition

806 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P9O5 ППП

77.11 0.001 13.17 1.07 1.07 0.03 0.2 0.5 4.72 1.44 0.02 0.21

Индикаторные отношения / Indicative ratios

806 ASI Ga/Al K/Rb а.и. Кф al' Fe* Na2O + K2O Na2O/K2O (La/Yb)n Eu/Eu* S

1.29 1.86 135.2 0.7 0.91 5.9 0.8 6.2 3.28 9.5 0.4 324.7

Элементы /Elements

Sr Rb Ba Ta Hf Ga Zr* Nb* Y* La Ce Pr

- 88.4 1165 1.83 9.72 13 230 90 100 64.4 128 14.2

806 Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Cs

55 14.1 1.9 16.7 2.28 12.8 2.52 6.65 0.9 4.59 0.68 0.044

Sc Cr Co Ni Zn Se As Sb Th U Br Au

4.61 21.2 1.06 - 270 5.65 26.4 1.25 20.8 6.65 0.62 -

Примечание: * — элементы определены рентгено-радиометрическим методом, остальные методом нейтронной активации. «—» ниже предела обнаружения, Бе* — железистость (Ре01о1/(Ре01о1+М§0)), а. и. — агпаитовый индекс (№ + К/А1), АБ1 — [А1/Са - 1.67Р + N + К], Кф = (БеО + Бе203)/^0 + БеО + Бе203), аГ = А1203/(Бе203 + БеО + МвО).

Note: * — the elements are determined by the X-ray radiometric method, the rest by neutron activation. «—» below detection limit, Fe* — iron index (FeOtot/(FeOtot + MgO)), a.i — agpaitindex (Na+K/Al), ASI- [Al/Ca - 1.67P + Na + K], = (FeO + Fe2O3)/(MgO + FeO + Fe2O3), al' = Al2O3/(Fe2O3 + FeO + MgO).

Рис. 4. a — катодолюминесцентные изображения цирконов из гранитов (проба 80В) с номерами датированных зерен, аналитическими кратерами, возрастом, b — конкордия, конкордантный возраст 619 ±5.4, СКВО 1.4, n = 5

Fig. 4. Cathodoluminescence image of zircon from granites (80B) numbers dating grains and analysis of craters (a); Diagram for zircon 80B — (b). The coordinates of points — the center of the ellipse of error (2a). Concordant age for coherent groups of 5 definitions —

619 ± 5.4 million years (2a, MSWD = 1.4)

In reflected light, the crystal surface is smooth. In the cathodoluminescent images of the group (1) a wide black central zone (often fractured) and a narrow border with growth zonality (Fig. 4, a) is seen; crystals of the second group are characterized by lighter, gray tones of the central parts and white edge zones. The surface of the crystals is smooth in reflected light. According to their morphology, zircons belong to the 4th type identified by Yu. I. Pystina [12], typical of the amphibolite facies (for migmatites), their formation is associated with the presence of a silicate melt, i. e. in fact, they are magmatic zircons [12].

U-Pb zircon age at 11 points was determined (Table 2). We divided zircons in two age groups, the points 1.1, 2.1, 3.1, 7.1 were removed from the calculation. The age range was 1) 642—617 (4.1, 5.1, 6.1, 9.1, 12.1, concordant 619 ± 5.4 Ma, MSWD = 1.4); 2) 525—517 (11.1, 8.1 — 517.6 ± 10.2 Ma, MSWD = 0.05) Ma (Fig. 4, b).

The data, obtained for the first group of zircons, are close to the age of the petrotypical Nikolayshorsk massif (640 ± 6.7, 606 ± 3 Ma), and the age of zircons of the second group is close to the age of granites of the Ambashor massif (520 ± 7 Ma) in the frame of which a sample was taken.

The contents (g/t) of U vary from 210 to 320, Th from 100 to 190 in the first group and from 35 to 235 and 25 to 160, respectively, in the second. The contents of impurity elements in zircons of different age groups differ, which confirms that zircons belong to different generations (Table 3, Fig. 5 a). On the diagrams U/Yb — Y and U/ Yb-Hf zircons, points fall into the field of derivatives of the continental crust (Fig. 5 b-c).

The model crystallization temperature calculated from the titanium content [24] is in the range of 702— 684 °C for the first group and in the range of 795—737 °C

100 1000 Y, ppm

15000 25000

Hf, ppm

Рис. 5. A-спектры распределения РЗЭ (нормированные на хондрит) в цирконах, жирные линии — точки возрастных значений (525—517 млн лет). (b—c) диаграммы Y — U/Yb и Hf — U/Yb для цирконов поля по [23]. Незакрашенный шар — значения для точек 4.1, 5.1, 6.1, 9.1 (619 ± 5.4), закрашенный шар — точки 8.1, 11.1 (517.6 ± 10.2), полузакрашенный шар — остальные значения

Fig. 5. REE distribution spectra (normalized to chondrite) in zircons (a), bold lines — points of age values (525—517 Ma). (b—c)Y — U/ Yb and Hf — U/Yb diagrams for zircon. Fields after [23]. Unfilled ball — values for points 4.1, 5.1, 6.1, 9.1 (6195.4), filled ball — points

8.1, 11.1 (517.610.2), half-filled ball - other values

Таблица 2. Результаты U—Pb изотопных исследований цирконов Table. 2. Results of U—Pb isotope studies of zircons

Зерно. кратер Grain 206Pbc % ' Содержания, мкг Contents, mkg 232Th/ 238U Возраст, млн лет, ± Age, Ma, ± D. % Изотопные отношения, ± Isotope ratios, ± Rho

206pb* U Th 206pb/238U 207Pb/206Pb 207Pb/206Pb 207Pb/235U 206Pb/238U

11.1 0.02 17 237 161 0.70 517±5 523+30 + 1 0.0578+1.4 0.67+1.7 0.084+1.0 0.6

8.1 0.03 3 35 23 0.66 525+17 737+128 +30 0.0639+6.0 0.75+6.9 0.085+3.4 0.5

2.1 0.04 18 219 87 0.41 595±4 573+34 -4 0.0592+1.6 0.79+1.7 0.097+0.7 0.4

5.1 -0.01 28 319 187 0.61 617+4 578+29 -7 0.0593+1.3 0.82+1.5 0.101+0.7 0.5

9.1 -0.07 19 222 111 0.51 618+4 588+31 -5 0.0596+1.4 0.83+1.6 0.101+0.8 0.5

6.1 0.01 24 269 160 0.61 628+10 605+51 -4 0.0601+2.3 0.85+2.9 0.102+1.6 0.6

4.1 0.08 25 289 168 0.60 629±9 651+23 +4 0.0614+1.1 0.87+1.8 0.103+1.5 0.8

12.1 -0.17 19 213 98 0.48 642+16 563+34 -15 0.0589+1.5 0.85+3.1 0.105+2.7 0.9

3.1 -0.16 26 291 187 0.66 644±5 606+24 -7 0.0601+1.1 0.87+1.4 0.105+0.8 0.6

1.1 -0.25 13 139 48 0.36 651+6 597+40 -10 0.0599+1.8 0.88+2.0 0.106+0.9 0.4

7.1 -0.30 25 268 178 0.69 667+14 580+23 -16 0.0594+1.1 0.89+2.4 0.109+2.2 0.9

Примечание. 206Pbc и 206Pb* _ обыкновенный и радиогенный свинец. Изотопные отношения и содержания 206Pb скорректированы по измеренному 204Pb. D — дискор-дантность: D = 100 х [возраст (207Pb/206Pb) / возраст (206Pb/238U) — 1]. Rho — коэффициент корреляции между ошибками определения изотопных отношений 206Pb/238U и 207pb/235U.

Note. 206Pbc and 206Pb * — ordinary and radiogenic lead. The isotopic ratios and contents of 206Pb are corrected for the measured 204Pb. D — discordance: D = 100 х [age (207Pb / 206Pb) / age (206Pb / 238U) — 1]. Rho is the correlation coefficient between errors in determining the isotopic ratios 206Pb / 238U and 207Pb / 235U.

Таблица 3. Содержания иттрия, редкоземельных элементов, железа и титана (г/т) и температуры кристаллизации (X) в исследованных цирконах

Table 3. Content of yttrium, rare earth elements, iron and titanium (ppm) and crystallization temperature (°C) in the studied zircons

Зерно / Grain Y La Ce Nd Sm Eu Gd Dy Er Yb Hf Fe 48Ti 49Ti t° (1.0/0.7)

11.1 891 0.02 25 1.7 3.4 1.4 25 84 147 270 9338 55 4.4 4.2 737

8.1 276 0.01 13 0.2 0.5 0.26 5 24 48 103 8896 11 8.1 8 795

2.1 1056 0.03 16 0.8 2.3 0.56 26 105 182 344 9144 33 2.5 2.4 686

5.1 1860 0.16 28 2.1 4.8 1.12 48 200 330 505 9055 35 2.7 2.6 694

9.1 1436 0.02 19 0.8 3.1 0.76 35 143 248 378 9307 26 2.7 2.5 691

6.1 2095 0.01 16 2.2 6.4 1.42 61 222 355 551 9352 34 2.2 2.1 674

4.1 1355 1.14 23 2.4 3.7 0.88 35 145 243 381 8912 42 3 2.8 702

12.1 1120 0.01 16 0.8 2.5 0.63 27 115 199 326 9404 28 2.4 2.4 684

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3.1 2467 0.02 17 2.3 7.1 1.59 72 274 431 636 9617 37 2.3 2.2 679

1.1 844 0.05 10 0.4 1.4 0.37 17 85 155 265 9577 25 2.2 2.1 676

7.1 1723 0.02 21 1.9 4.5 1.71 52 200 302 462 8326 32 3.9 4.0 726

Таблица 4. Изотопный состав Hf в цирконах Table 4. Hf isotope composition of zircons

Зерно Grain Т(млн лет) T(Ma) 176Yb/177Hf 2a 176Hf/177Hf 2a 176Lu/177Hf 2a Tdm (млрд лет) T(Ga) fLu/Hf) £Hf(0) eHf(t) Tdm2 (млрд лет) T(Ga)

1.1 653 0.018629 0.000061 0.00075 0.000003 0.282402 0.000018 1.193 -1 -13.081 0.91 1.35

2.1 596 0.029621 0.000042 0.00123 0.000002 0.282421 0.000018 1.182 -1 -12.425 0.15 1.34

3.1 645 0.051888 0.000153 0.00193 0.000002 0.282342 0.000018 1.317 -0.9 -15.214 -1.90 1.49

4.1 629 0.043429 0.000317 0.00167 0.000011 0.282452 0.000019 1.152 -0.9 -11.331 1.76 1.29

5.1 618 0.033111 0.000129 0.00128 0.000005 0.282389 0.000017 1.228 -1 -13.546 -0.52 1.40

6.1 629 0.042037 0.000361 0.00160 0.000013 0.282412 0.000018 1.206 -1 -12.744 0.38 1.36

7.1 669 0.043574 0.000099 0.00166 0.000004 0.282356 0.000020 1.287 -0.9 -14.696 -0.77 1.45

9.1 618 0.028904 0.000199 0.00112 0.000008 0.282343 0.000019 1.288 -1 -15.178 -2.09 1.48

8.1 525 0.066620 0.000284 0.00280 0.000032 0.282620 0.000026 0.94 -0.9 -5.3789 5.16 1.03

11.1 517 0.015132 0.000081 0.00061 0.000002 0.282559 0.000024 0.971 -1 -7.5437 3.58 1.11

Примечание:

eHf(0)= (((176Hf/177Hf )s /(176Hf/177Hf)CHUR,0)-1 ) x 1°00;

eHf(t) = (((176Hf/177Hf )s - (176Lu/177Hf )s x (e □ t - 1 ) )/ ((176Hf/177Hf)cHUR,0 - (176Lu/177Hf )chur x (e □ t - 1 ))) - 1 x1000;

Tdm= 1/ □ x ln (1 + ((176Hf/177Hf )s - (176Hf/177Hf)DM /(176Lu/177Hf)S - (176Lu/177Hf)DM);

Tdm2= THf1 - (THf1-0 (fc - /s/(/C - /dm)); /Lu/Hf= (176Lu/177Hf)S/ (176Lu/177Hf)cHUR -1 где (176Lu/177Hi)Sn (176Hf/177Hf)Sизмеренныезначениявобразце (176Lu/177Hf)CHUR= 0.0332 и (176Hf/177Hf}CHUR0= 0.282772 176Hf/177Hf)DM= 0.28325 [19, 20]); (176Lu/177Hf)DM = 0.0384 и (176Hf/177Hf)DM= 0.28325 [22]), t — возраст кристаллизации циркона и □ = 1.867 x 10—11yr—1[18, 27]. Tdm одностадийный возраст модели и Tdm2 двухстадийный возраст/С, /s, /dmh /ьи/щзначения корового источника, образца и деплетированной мантии, соответственно. В наших расчетах /С= -0. 72 (используя среднекоровую величину 176Lu/177Hf = 0.015[18]) иfDM= 0.16 (176Lu/177Hf = 0.0384)[21].

Note: where (176Lu/177Hf)S and (176Hf/177Hf)S are the measured values of samples (176Lu/177Hf)CHUR= 0.0332 and (176Hf/177Hf)CHUR0= 0.282772 [19, 20]); (176Lu/177Hf)DM = 0.0384 and (176Hf/177Hf)DM= 0.28325 [22]), t — is the crystallization age of the zircon, and □ = 1.867 x 10-11yr-1 [18, 27]. TDM and TDM 2 are single-stage DM model and two-stage DM2 model ages, respectively. fc, fS, and /DMare the fLu/Hfvalues of the crustal source, the sample and the depleted mantle, respectively. In our calculations, /C= -0. 72 (176Lu/177Hf = 0.015 in average continental crust)[18] and fDM= 0.16 (176Lu/177Hf = 0.0384 [22]).

Р

Мантийные значения

т

"Т"

300

—I-

500 700

Возраст, млн лет

900

Рис. 6. Изотопный состав Hf (a) и O (b) в продатированных цирконах. Условные обозначения на рис. 5

Fig. 6. The isotopic composition of Hf (a) and O (b) in the zircons dated. Legend in fig. 5

for the second (Table 3). The obtained rather low crystallization temperatures of zircons (characteristic of low-temperature magmatic zircons) are indirectly confirmed by the weak luminescence of the crystals of the first group in cathode rays. The temperature range obtained by saturation of the melt with zirconium shows higher temperatures (Fig. 2, c) of about 800 °C. The calculated temperatures, based on the study of crystal morphology close to our values, were obtained previously for zircons of granitoids of the petrotypical Nikolayshorsk massif 900—800, 700—650, 648—606, showing the complex history of the massif and the presence of zircons fixing various stages [7, 8]. The author of these works also determined low-temperature and higher-temperature zircons and made a conclusion about the repeated granitogenesis of the rocks.

The isotopic composition of hafnium in zircons of the first age group (point 4.1, 5.1, 6.1, 9.1, 12.1) varies from -2.09 to +1.76 and indicates a crust-mantle source, the model age of the protolith TDM2 is 1.48—1.29 Ga (Table 4, Fig. 6, a). The isotopic composition of hafnium in zircons of the second age group (point 8.1, 11.1) is +3.58 to +5.16, i. e. has mantle characteristics, the estimated model age of the protolith TDM2 is 1.03—1.11 Ga.

The oxygen isotopic composition (5180, %% of zircons has positive (+7.31) crust values (Fig. 6, b). High positive values of the oxygen isotopic composition are associated with the research method, since all oxygen of the zircon sample is burned out, and the hafnium isoto-pic composition was studied locally at the dated zircon points.

Conclusions

The gneiss-shaped granites of the central part of the Nyarta block, developed in the western frame of the Ambashora massif in the zone of development of mig-matites, were studied. The rocks belong to S granites and are formed on primary sedimentary rocks, which is indicated by the mineral composition of the rock and petro-geochemical indices. Two age groups of zircons, 619 and 517 Ma, were found in the rocks. Zircons differ in their ages, geochemical (REE distribution), thermal (t° crystallization), isotopic (Hf) characteristics, as well as the estimated model ages of protoliths. The new data show that the granitization processes resulting in the studied rocks occurred in the central part of the Nyarta block in ~620 and ~520 Ma. The obtained time lines in the evolution of this part of the Subpolar Urals correlate with suprasubduction-accretion, collisional, syncollisional, and post-collisional processes (640—520) during which the formation of various types of granitoids, including S-granites, took place [1, 15]. We believe that zircons with an age of 619 ± 5.4 Ma are inherited from the previous melting process. The heating of the strata was stronger in a later period, therefore zircons of the second age group (517.6 ± 10.2 Ma) had higher crystallization temperatures. Either a partial entry of a deeper granite melt into this zone is possible, taking into account more mantle characteristics of these zircons and other model age of the source.

The authors are grateful to F. Mon and C. Gene (China Academy of Sciences, Beijing and the Tianjin Institute of Geology and Mineral Resources, China) for the opportunity to study the Lu-Hf zircon system.

The work is carried out according to No. GR AAAA-A17-117121270035-0, isotope (U-Pb, Lu-Hf) studies were carried out at the expense of financial resources of the project No. 18-5-5-46 "Evolution of the orogen Protouralid-Timanide according to geological, petrological, geochemical, and isotopic data".

Литература

1. Андреичев В. Л. Геохронология гранитоидного магматизма Приполярного Урала // Вестник Института геологии Коми НЦ УрО РАН. 2010. № 11. С. 7—12.

2. Андреичев В. А. Изотопная геохронология доуралид Приполярного Урала. Сыктывкар, 1999. 48 с. (Научные доклады Коми научный центр УрО Российской академии наук; Вып. 413)

3. Возраст цирконов из гранитов ядра Хобеизского гра-нито-гнейсового купола (Полярный Урал) / А. А. Соболева, Н. А. Кузенков, О. В. Удоратина и др. // Происхождение магматических пород: Мат-лы межд. (X Всерос.) петрограф. совещ. Апатиты: Кольский НЦ РАН. 2005. С. 236—238.

4. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (третье поколение). Серия Уральская. Листы Р-40 — Североуральск. Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ, 2005. 332 с.

5. Государственная геологическая карта Российской Федерации. Масштаб 1 : 200 000. Серия Северо-Уральская. Лист Q-41-XXV. Объяснительная записка / Под ред. М. А. Шишкина. М.: МФ ВСЕГЕИ, 2013. 252 с.

6. Демонтерова Е. И., Иванов А. В., Карманов Н. С., Палесский С. В., Посохов В. Ф. Неопротерозойские мета-терригенные породы Северо-Муйской глыбы (Байкало-

Муйский пояс): новые данные по петрохимическому составу // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы совещания. Вып. 10. Иркутск: Институт земной коры СО РАН, 2012. Т. 1. С. 78—79.

7. Денисова Ю. В. Термометрия циркона из гранито-идов Приполярного Урала // Вестник Института геологии Коми НЦ УрО РАН, 2016, №. 12. С. 37—44.

8. Денисова Ю. В. Типоморфические и типохими-ческие особенности акцессорных цирконов гранитоидов Приполярного Урала // Вестник Института геологии Коми НЦ УрО РАН, 2014. №. 5. С. 9—16.

9. Корреляция магматических комплексов европейского Северо-Востока СССР / В. Н. Охотников, В. И. Мизин, Л. Т. Белякова и др. Сыктывкар, 1985, 25с.

10. Махлаев Л. В. Гранитоиды севера Центрально-Уральского поднятия (Полярный и Приполярный Урал). Екатеринбург. 1996. 150 с.

11. Пыстин А. М. Полиметаморфические комплексы западного склона Урала. СПб.: Наука 1994. 208 с.

12. Пыстин А. М., Пыстина Ю. И. Докембрий Приполярного Урала: хроностратиграфический аспект // Труды Карельского научного центра РАН. 2019. № 2. С. 34—52.

13. Пыстин А. М., Пыстина Ю. И. Метаморфизм и гранитообразование в протерозойско-раннепалеозойской истории формирования Приполярноуральского сегмента земной коры // Литосфера. 2008. № 6. С. 25—38.

14. Пыстин А. М., Пыстина Ю. И. Новые данные о возрасте гранитоидов Приполярного Урала в связи с проблемой выделения кожимской среднерифейской гранит-рио-литовой формации // Известия Коми научного центра УрО РАН. Выпуск 4(8). 2011. С. 73—78.

15. Соболева А. А., Удоратина О. В. Доуральские грани-тоиды на Урале // Вестник Института геологии Коми НЦ УрО РАН. 2010. № 9 (189). Вып. 2. С. 16—17.

16. Удоратина О. В., Капитанова В. А, Кобл М. А. Изотопные и геохронометрические системы в гранитои-дах Николайшорского массива (Приполярный Урал): новые данные // Методы и геологические результаты изучения изотопных геохронометрических систем минералов и пород: Мат-лы Росс. конф. по изотоп. геохронологии. М.: ИГЕМ РАН, 2018. С. 360—363.

17. ФишманМ. В., ГолдинБ. А.. Гранитоиды Центральной части Приполярного Урала. Л.: Изд. АН СССР, 1963. 108 с.

18. Amelin, Y. Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago // Science. 2005. 310, 839—841.

19. Amelin, Y., Lee, D. C., Halliday, A. N., Pidgeon, R. T. Nature of the Earth's earliestcrust from hafnium isotopes in single detrital zircons // Nature. 1999. 399, 252—255.

20. Blichert-Toft J., Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system // Earth and Planetary Science Letters. 1997. 148, 243—258.

21. Geng, J. Z, Li, H. K., Zhang, J, Zhou, H. Y., Li, H. M. Zircon Hf isotope analysis by means of LA-ICP-MS // Geological Bulletin of China 30 (10). 2011, pp. 1508—1513 (in Chinese with English abstract)

22. Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Achterbergh, E., Suzanne, Y. O.,Shee, S. R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites // Geochimica et Cosmochimica Acta. 2000. 64, 133—147

23. Grimes C. B, John B. E, Kelemen P. B, Mazdab F. K, Wooden J. L., Cheadle M. J., Hanghoj K., Schwartz J. J. Trace el-

ement chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance // Geology. 2007. 35(7), 643—646.

24. Hanchar J. M., Watson E. B. Zircon saturation thermometry // Reviews in Mineralogy and Geochemistry. 2003. 53 (1), 89—112.

25. Kostitsyn Y. A., Belousova E. A., Silant'ev S. A, Bortnikov N. S., Anosova M. O. Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks // Geochemistry International. 2015. 53 (9), 759—785.

26. Shuyskiy A. S., Udoratina О. V., Miller E. L., Coble М. A. Granites of the Gerdiz massif (Polar Urals): new data // Вестник ИГ Коми НЦ УрО РАН. 2018. № 12. С. 23—30.

27. Soderlund, U., Patchett, P. J., Vervoort, J. D., Isachsen, C. E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian maficintrusions // Earth and Planetary Science Letters. 2004. 219, 311—324.

28. Watson E. B., Wark D. A., and Thomas J. B. Crystallization thermometers for zircon and rutile // Contributions to Mineralogy and Petrology 2006, 151(4), P. 413—433.

Reference

1. Andreichev V. L. Geokhronologiya granitoidnogo magma-tizma Pripolyarnogo Urala (Geochronology of granitoid magma-tism of the Subpolar Urals). Vestnik of the Institute of Geology of the Komi Scientific Center, Ural Branch of RAS, 2010, No. 11, pp. 7—12.

2. Andreichev V. A. Izotopnaya geokhronologiya douralid Pripolyarnogo Urala (Isotopic geochronology of preuralides of the Subpolar Urals). Syktyvkar, 1999, 48 pp. (Scientific reports of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences; V. 413).

3. Vozrast tsirkonov iz granitov yadra Khobeizskogo granito-gneysovogo kupola (Polyarnyy Ural) (Age of zircons from granites of the core of the Khobeiz granite-gneiss dome (Polar Urals)). A. A. Sobolev, N. A. Kuzenkov, O. V. Udoratina, etc. Origin of igneous rocks: Mat. (X All-Russian.) Petrograph. conference Apatity: Kola Science Center RAS, 2005, pp. 236—238.

4. State geological map of the Russian Federation scale 1: 1 000 000 (third generation). Series Ural. Sheets R—40 — Severouralsk. Explanatory note. St. Petersburg: VSEGEI Cartographic Factory, 2005, 332 pp.

5. State geological map of the Russian Federation on a scale of 1: 200 000. Ed. II. Series North Ural. Sheet Q-41-XXV. Explanatory note, Ed. M. A. Shishkina. St. Petersburg. 2001, 210 p.

6. Demonterova Ye. I., Ivanov A. V., Karmanov N. S., Palesskiy S. V., Posokhov V. F. Neoproterozoyskiye metaterri-gennyye porody Severo-Muyskoy glyby (Baykalo-Muyskiy poyas): novyye dannyye po petrokhimicheskomu sostavu (Neoproterozoic metaterrigenous rocks of the North Mui block (Baikal-Mui belt): new data on the petrochemical composition). Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from the ocean to the continent): Materials of the meeting. V. 10. Irkutsk: Institute of the Earth's Crust SB RAS, 2012, V. 1, pp. 78—79

7. Denisova Yu. V. Termometriya tsirkona iz granitoidov Pripolyarnogo Urala (Thermometry of zircon from granitoids of the Subpolar Urals). Vestnik of the Institute of Geology of Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, 2016, No. 12, pp. 37 — 44.

8. Denisova Yu. V. Tipomorficheskiye i tipokhimicheski-ye osobennosti aktsessornykh tsirkonov granitoidov Pripolyarnogo Urala (Typomorphic and typochemical features of accessory zir-

cons of granitoids of the Subpolar Urals). Vestnik of the Institute of Geology of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, 2014, No. 5, pp. 9—1.

9. Korrelyatsiya magmaticheskikh kompleksov yevropeysk-ogo Severo-Vostoka SSSR (Correlation of magmatic complexes of the European Northeast of the USSR). V. N. Okhotnikov, V. I. Mizin, L. T. Belyakova et al. Syktyvkar, 1985, 25 p.

10. Makhlayev L. V. Granitoidysevera Tsentral'no-Ural'skogo podnyatiya (Polyarnyy i Pripolyarnyy Ural) (Granitoids of the north of the Central Ural uplift (Polar and Subpolar Urals)). Yekaterinburg, 1996, 150 p.

11. Pystin A. M. Polimetamorficheskiye kompleksy zapad-nogo sklona Urala (Polymetamorphic complexes of the western slope of the Urals). St. Petersburg: Science 1994, 208 p.

12. Pystin A. M., Pystina Yu. I. Dokembriy Pripolyarnogo Urala: khronostratigraficheskiy aspekt (Precambrian Subpolar Urals: chronostratigraphic aspect). Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences, 2019, No. 2, pp 34-52.

13. Pystin A. M., Pystina Yu. I. Metamorfizmi granitoobra-zovaniye v proterozoysko-rannepaleozoyskoy istorii formirovani-ya Pripolyarnoural'skogo segmenta zemnoy kory (Metamorphisms granite formation in the Proterozoic-Early Paleozoic history of the formation of the Polar Ural segment of the earth's crust). Lithosphere, 2008, No. 6, pp. 25—38.

14. Pystin A. M., Pystina Yu. I. Novyye dannyye o vozraste granitoidov Pripolyarnogo Urala v svyazi s problemoy vydeleniya kozhimskoy srednerifeyskoy granit-riolitovoy formatsii (New data on the age of granitoids of the Subpolar Urals in connection with the problem of isolating the Kozhym Middle Riphean granite-rhyolite formation). Vestnik of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences. V. 4 (8), Syktyvkar, 2011, pp. 73—78.

15. Soboleva A. A., Udoratina O. V. Douralskiye granitoidy na Urale (Preural granitoids in the Urals). Vestnik of the Institute of Geology of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences. Syktyvkar, 2010, No. 9 (189), Issue 2, pp. 16—17.

16. Udoratina O. V., Kapitanova V. A., Kobl M. A. Izotopnyye i geokhronometricheskiye sistemy v granitoidakh Nikolayshorskogo massiva (Pripolyarnyy Ural): novyye danny-ye (Isotopic and geochronometric systems in granitoids of the Nikolayshorsky massif (Subpolar Ural): new data). Methods and geological results of the study of isotopic geochronometric systems of minerals and rocks. Ross conf. by isotope. geochronolo-

gy. Moscow, June 5—7, 2018 Materials Conf., Moscow: IGEM RAS, 2018, pp. 360—363.

17. Fishman M. V., Goldin B. A. Granitoidy Tsentral'noy chasti Pripolyarnogo Urala (Granitoids of the Central part of the Subpolar Urals). Leningrad: Ed. USSR Academy of Sciences, 1963, 108 p.

18. Amelin, Y. Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science. 2005. 310, 839—841.

19. Amelin, Y, Lee, D. C, Halliday, A. N., Pidgeon, R. T. Nature of the Earth's earliestcrust from hafnium isotopes in single detrital zircons. Nature. 1999. 399, pp. 252—255.

20. Blichert-Toft J., Albarede F. The Lu—Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters. 1997. 148, pp. 243—258.

21. Geng, J. Z, Li, H. K., Zhang, J., Zhou, H. Y, Li, H. M. Zircon Hf isotope analysis by means of LA-ICP-MS. Geological Bulletin of China 30 (10). 2011, pp. 1508—1513 (in Chinese with English abstract)

22. Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Achterbergh, E., Suzanne, Y. O.,Shee, S. R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 2000, 64, pp. 133—147

23. Grimes C. B., John B. E., Kelemen P. B, Mazdab F. K., Wooden J. L., Cheadle M. J., Hanghoj K., Schwartz J. J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 2007, 35(7), pp. 643—646.

24. Hanchar J. M., Watson E. B. Zircon saturation thermometry. Reviews in Mineralogy and Geochemistry. 2003. 53 (1), pp. 89—112.

25. Kostitsyn Y. A., Belousova E. A., Silant'ev S. A, Bortnikov N. S., Anosova M. O. Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks. Geochemistry International, 2015, 53 (9), pp. 759—785.

26. Shuyskiy A. S., Udoratina O. V., Miller E. L., Coble M. A. Granites of the Gerdiz massif (Polar Urals): new data. Vestnik IG Komi SC UB RAS, 2018, № 12, pp. 23—30.

27. Soderlund, U., Patchett, P. J., Vervoort, J. D., Isachsen, C. E. The 176Lu decay constant determined by Lu—Hf and U— Pb isotope systematics of Precambrian maficintrusions. Earth and Planetary Science Letters, 2004, 219, pp. 311—324.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

28. Watson E. B., Wark D. A., and Thomas J. B. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 2006, 151(4), pp. 413—433.

i Надоели баннеры? Вы всегда можете отключить рекламу.