ЭНЕРГЕТИКА И ЭКОЛОГИЯ
ENERGETICS AND ECOLOGY
Статья поступила в редакцию 10.03.2013. Ред. рег. № 1586 The article has entered in publishing office 18.12.12.
Ed. reg. No. 1586
УДК 517.977.56; 502.174.3
ГРАФИЧЕСКИЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ И РЕЗУЛЬТАТОВ МАТЕМАТИЧЕСКОЙ МОДЕЛИ КЛАСТЕРОВ ВИЭ
Велькин В.И., Щеклеин С.Е., Логинов М.И., Чернобай Е.В.
Уральский федеральный университет имени первого Президента России Б.Н.Ельцина ул. Мира, 19, Екатеринбург, 620002, Россия, тел., факс, (343) 375-95-08, тел.(343) 375-47-78, e-mail v.i.vclkin@ustu.ru
Аннотация. Представлен алгоритм расчета оптимальных соотношений установленной мощности оборудования для кластеров ВИЭ. Дана графическая интерпретация поиска оптимального кластера ВИЭ. Приведены результаты сравнения экспериментальных данных и расчетных характеристик дисперсий стоимости выработки кВт-ч на объекте «Энергоэффективный дом» для различных кластеров возобновляемой энергетики. Ключевые слова: возобновляемые источники энергии, кластер ВИЭ
GRAPHICAL ANALYSIS OF EXPERIMENTAL DATA AND NUMERIC RESULTS SIMULATION OF THE RES-CLUSTERS
Velkin V, Scheklein S., M. Loginov, Chernobay E. Ural Federal University named after the first President of Russia Boris Yeltsin str. Mira, 19, Ekaterinburg, 620002, Russia
Abstract. The algorithm for calculating the optimum ratio of installed capacity of equipment for renewable energy cluster. Graphical interpretation finding the optimal cluster RES are presentation. Results of a comparison of experimental data and the design characteristics of production cost variances kilowatt-hours on the project "Energy-efficient house" for the various clusters of renewable energy. Keywords: renewable energy, renewable energy cluster
йМ
Велькин Владимир Иванович
Сведения об авторе.
Доцент кафедры «Атомные электростанции и возобновляемые источники энергии» Уральского федерального университета имени первого Президента России Б.Н.Ельцина
Образование: УПИ им.
С.М.Кирова в 1982 г., доцент, к.т.н.
Круг научных интересов:
атомная энергетика, двухфазные потоки в энергетическом оборудовании, возобновляемые источники энергии, кластеры ВИЭ. Более 200 публикаций, 10 патентов.
Чернобай Елена Владимировна
Сведения об авторе.
Зав. лабораторией вычислительных методов РГППУ, Екатеринбург,
Образование: Уральский политехнический институт им. С.М.Кирова, 2000 г. Область научных интересов -программирование, вычислительные методы. математический поиск оптимальных решений
Публикации: 4
2013 2013
Щеклеин
Сергей
Евгеньевич
Доктор технических наук, профессор, заведующий кафедрой «Атомные станции и возобновляемые источники энергии» Уральского федерального университета имени первого Президента России Б.Н. Ельцина. Образование: Уральский политехнический институт (УГТУ-УПИ) (1972 г.).
Область научных интересов: термодинамика ядерных энергетических установок, проблемы атомной энергетики и теплофизики двухфазных потоков, продление ресурса и повышение надежности оборудования АЭС, солнечная энергетика, ветровая энергетика, биоэнергетика. Научный руководитель ряда реализованных инновационных проектов в т. ч. «Энергоэффективный дом для села», «Системы солнечного энергоснабжения автономных потребителей специального назначения», «Солнечные системы охранной сигнализации» и др.
Член редколлегии журнала «Известия вузов. Ядерная энергетика», сборника трудов УГТУ-УПИ «Теплофизика ядерных энергетических установок», научно-технического журнала «Энергоэффективность и анализ». Заслуженный энергетик России, действительный член Международной энергетической академии.
Публикации: более 350 научных трудов, в том числе 2 монографий, 18 патентов.
Логинов Михаил Иванович
Заведующий кафедрой прикладной математики Института математики и компьютерных наук« Уральского федерального университета имени первого Президента России Б.Н.Ельцина
Образование: математико-механический факультет УрГУ им. А.М.Горького в 1971 г., доцент, к.ф.-м.н.
Награжден знаком «Почетный работник Высшего профессионального образования РФ».
Круг научных интересов: оптимальное управление, дифференциальные игры, прикладная статистика, эконометрика. Более 60 публикаций.
Возобновляемые источники энергии (ВИЭ) все более широко распространяются в мире, однако в России темпы их внедрения гораздо скромнее [1]. Такая ситуация имеет свое объяснение: наличие в стране значительных запасов углеводородных ресурсов и относительно низкие (неконкурентоспособные) удельные показатели природно-климатических факторов (скорости ветра, инсоляции).
В связи с этим существенное значение имеет диверсификация энергообеспечения удаленных потребителей путем одновременного широкого применения различных энергоисточников. Она возможна на основе кластеров ВИЭ [2].
1. ПОСТАНОВКА ЗАДАЧИ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО КЛАСТЕРА ВИЭ
Точные, экономически оправданные соотношения мощностей оборудования ВИЭ для различных типов кластеров в различных регионах, требуют сложных математических расчетов. Для решения этой задачи предложена математическая модель, учитывающая ряд значимых факторов.
Эффективность расчетной имитационной модели кластера ВИЭ в общем виде может быть представлена уравнением:
вкл^ [V (Э,АДМ,Р); у(4Ь,к,рА5р); СС,;Щ (1), где вкл-показатель эффективности гибридного кластера (комплекса НВИЭ); V - совокупность факторов воздействия внешней среды: (скорость ветра (ВЭУ), инсоляция (ФЭП, СК), напор, рас-ход(мГЭС), температура НПИ (ТН), режим метан-генерации (БГУ); Э,АДМ,Р -тип кластера в зави-
симости от доли замещаемой мощности (кластеры: Э-микро; А -мини; 8 -малый; М -средний; Б -полный); ^Ь,к,р,Б,Бр - тип кластера в зависимости от видов НВИЭ в системе: ^двойной гибрид (ДГ+ВЭУ или ДГ+ФЭП или ДГ+ мГЭС и т.п.), Ь-трио-кластер (ДГ+ВЭУ+ФЭП) или (ДГ+ ВЭУ+мГЭС), к- кватро-кластер (ДГ+
ВЭУ+ФЭП+мГЭС), р- пента-кластер (ДГ+ ВЭУ+ФЭП+мГЭС+ТН+БГУ), Б-сикстет-кластер (ДГ+ ВЭУ+ФЭП+мГЭС+ТН+БГУ), Бр -септ-кластер (ДГ+ ВЭУ+ФЭП+мГЭС+ТН+БГУ+СК), СС, -себестоимость производства 1кВт-ч разными видами НВИЭ; " -стоимость кВт установленной мощности вида НВИЭ.
Рассмотрение решения указанной модели приведено в наших исследованиях[3].
Для создания эффективного кластера ВИЭ необходима математическая оптимизация состава оборудования.
2. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ ПОИСКА ОПТИМАЛЬНОГО КЛАСТЕРА ВИЭ
Для различных мест расположения объекта ВИЭ искомые оптимальные значения долей установленных мощностей хдт, хвэу, хфэп и т.д., будут зависеть от условий окружающей среды (скорость ветра, распределение Вэйбулла для скорости ветра, инсоляция) и от правильного выбора класса и типа и установок.
Использование многофакторной модели позволяет определить оптимальную конфигурацию кластера ВИЭ по составу и установленной мощности оборудования.
В качестве целевой функции для кластера ВИЭ была принята квадратичная функция от х1, х2,..., хп следующего вида,:
п п
D (Y / а) = ££<х,
vxixj
(2)
г=\ ]=1
где х1 -доли установленной мощности каждого из видов возобновляемых источников энергии, входя-
щих в кластер ВИЭ; - выборочная ковариа-
ция, посчитанная по выборкам для Yi ^ .
Физический смысл функции - дисперсия стоимости энергии, вырабатываемой кластером ВИЭ за единицу времени.
Используя аналогию с математической теорией Шарпа-Марковица (для рисковых портфельных инвестиций) и Дж.Тобина (для рисковых и безрисковых), работу одного из источников энергии (п+1) будем считать независящей от случайных возмущений (дизельгенератор). Такой источник называется безрисковым.
Работа других п источников ВИЭ подвержена случайным возмущениям (например: использование ветровой и солнечной энергии ВЭУ+ФЭП). Это
- рисковые источники, зависящие от случайных величин (ветер, солнце и т.д.).
Вводим обозначения: а - количество электроэнергии, вырабатываемое кластером (в единицу времени); r0- стоимость эксплуатации безрискового источника за единицу времени (здесь содержится как стоимость оборудования, так и стоимость обслуживания);
rk- стоимость эксплуатации в течение часа k типа
0 борудования из рисковых источников (ВИЭ);
x0- доля (от a), вырабатываемая безрисковым источником (дизельгенератор);
xk- доля (от a), вырабатываемая k рисковым источником (ВИЭ).
Измеряемые случайные величины: Zk- количество энергии, вырабатываемой за единицу времени k рисковым источником.
Полагаем, что для каждой из случайных величин Zk имеется выборка из N наблюдений.
Вычисляемые (по выборке для Zk) случайные величины:
Yk = rk / Zk - стоимость энергии, произведенной k- рисковым источником за единицу времени.
Тогда для каждой из случайных величин Yk получим выборку, также состоящую из N наблюдений:
Y / a = x0 r0 + x1 Y1+ x2 Y2 +...+ xn Yn-стоимость энергии, вырабатываемой кластером за единицу времени (это случайная величина, тогда как первое слагаемое в правой части - не случайно). По выборкам для Yk находим: mk- средняя стоимость энергии, вырабатываемой k источником за единицу времени (выборочное среднее по Yk)
m2- средняя стоимость 1 кВт-ч, вырабатываемого солнцем (выборочное среднее по Y2)
m=M(Y/ a)= x0 r0 + x1 m1+ x2 m2 - средняя стоимость энергии, вырабатываемой кластером за единицу времени;
A - допустимый уровень средней стоимости 1 кВт-ч, вырабатываемого кластером (A< Гц)
Задача заключается в выборе xk с «минимальным риском» и минимальной стоимости выработки
1 кВт-ч при следующих ограничениях:
x0 + x1 + x2+...+ xn =1 x0 r0 + xi mj+ .+ xn mn =A x,. > 0, i = 0,1,..., n Это - задача выпуклого программирования, которая решается использованием модуля «поиск решения» в Excel. В результате получим вектор (x0 xh..., xn), определяющий оптимальный по составу оборудования кластер ВИЭ.
Графическая интерпретация поиска оптимального кластера ВИЭ представлена на рис.1.
132
8SJAEE #
Рис.1.
Графическая интерпретация области определения кластеров ВИЭ и оценки риска обеспечения энергией (%)
Fig1.
Graphical interpretation of RES clusters identifying and risk evaluation of energy supply (%)
Величина ^у является оценкой риска, т.е. разброса стоимости электроэнергии, вырабатываемой кластером за единицу времени. Задача такого типа известна в инвестиционном анализе, где соответствующая модель, содержащая как рисковые так и безрисковые финансовые инструменты, называется портфелем Тобина.
На основе решения (2) были определены области значений целевой функции и составлены таблицы оптимальных сочетаний ВИЭ для различных кластеров.
СРАВНЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ
ДАННЫХ И РЕЗУЛЬТАТОВ
МАТЕМАТИЧЕСКОЙ МОДЕЛИ
Расчетные характеристики, полученные с помощью «АРК-ВИЭ» были сопоставлены с экспериментальными данными, накопленными за период эксплуатации дома. «Энергоэффективный дом» представляет собой жилой объект в составе 8 квартир (коттеджей) в таун-хаусе. В каждой квартире-коттедже был «смонтирован» свой кластер ВИЭ. Состав кластеров по квартирам следующий:
1 - окта- кластер (ДГ+ВЭУ+ФЭП+мГЭС+ СК+ТН+БГУ+АКБ);
2- пента-кластер ВИЭ (ДГ+ ВЭУ+ ФЭП+СК+АКБ)
3, 4, 5 - дуплекс-кластер ВИЭ (ДГ+ВЭУ)
6 - трио-кластер ВИЭ (ДГ+ФЭП+АКБ)
7 - септ-кластер ВИЭ (ДГ+ФЭП+ВЭУ+СК+ ВН+мГЭС+АКБ)
8 - кватро-кластер ВИЭ (ДГ+ ФЭП+СК+АКБ)
С учетом предложенного алгоритма расчета оптимальных долей каждого из возобновляемых источников энергии, входящих в состав кластера ВИЭ, была разработана и апробирована автоматизированная программа для быстрого определения искомых параметров.
В «теле» программы заложена идеология и «прошиты» алгоритмы, приведённые в данной главе. Расчет оптимальных соотношений для установленных мощностей различных видов оборудования ВИЭ выполнен с использованием модуля «Поиск решения» в стандартном пакете «Excel».
Экранное меню программы представлено на рис.2..
Главная Вставка Разметка страницы Формулы Данные Рецензирование Быд w - X
ить очения Si 1 с i в? т ¥ Поиск решения Анализ
ш П .я Я Л т; 1= si -+ ■ 4
Подучить внешние данныет 06НОБ все Подш СЬртировка Сортировка i Фильтр _ .V фильтр екстпо Удалить голбцам дубликаты Работа с данныгн Структура т
J 27 h A ¥
t HI * 1 - - 1 ! j ! < 1 -1 V 1 , я 1 с |. .■ 1*1 ö
-- !<■ :■:■!■ ,TT i-: NJ r-:: £" ■ i У «КУ П к V: 11«сст К Ml ■ мяетл '/ПЖ- : С 4 пэдди, «л ■ с:пл1 VEH * т ■: г • ч !№Uri4 - : 411Г1- - WwwyiiiM «Д "С 'ДГ Ша =
л i 7 : я 3D 'Lsnii ал Jen sir Jlj^stns кйервгЬр .|дг| □ я ЛМР ■■А: Л«:ст« i^rn--»* i 3] 31 БВТМ для ЕГЛ: №вС ^IiBII.M № ь :»: :«■ 1 Лт-ч
ii7:ori крк» = f CTt.-C 5 ! _ Ls с.ш: ър > 31 Джда гг: НГ> 'RS ? з1 "■:::п. зги и/с и 3] С»:?с гг» зет.: j м/с » ä üCi СГГв тгпи м/с :: 31 » 31
Фетавдитричаит g тао^ааоонтель =-j"; C.JSGC 1А - 31 > : CK Sc - з! A-Piimj.vn, ¡Т-4'.V3 31 JT-Ч'.У 3 » 31 |*-сслтия ST-Ч,1 wJ :::: 31 2C 31
V <■ -: х-" идрсвлеетркк_ ш \fifX-i\ C.JXC D.J5 3 л Дкаутп Sf НЕ - 3ä I-::: г-■ з: ЯгТ 31 Оeps Те 3 //с - d екги а: : ■ ■л 31 2 9 31
ЫХЯ) 3l 31 i 31 3!
Бясгажкаа jenem w> [3"У| Э ссас' 2 T | шт з] :.--»: - zf ил :ЕО 31 ■ :.' -я: ■ ü 3D 31
Т ■ и:: * d с.л d
:: Iff- i1E1i:i ПИ МОЦНСГН
h
37 ! ■ уттл- :№ к-:: i ■ _i ■■ ■ ■ v *n I 1 и II У илатп к 1-г ■ мчстн уп ■-: i: н ■с: п л ■ ¡илеп :л к та: ■ - ■XL Г
41: дрссг WWrWIML'eüi 'С4ШГГ1 "icf.ii- «'я -: -иг ■.- ■ ¿то клюет ■
31 2Z-21 :: :: 21 beiBonfE ■л: л-: л ■ « дъхт « шопм -1- 1-1 : iö : т .' для «с г : -: - : Tjß :ectii Ь Z II ITH*' --
ДИИЛЬ '«ЛИТ» {ДГ] 0 Э..1 - й ПЗТНДОЯОУ.С1: '-к г 'ч«: - 3i Ст: v.v Qsr« ■ il i за ¡0 k 4.
■1ол-«№ыи »шле^ггор Э О.ГСО O.D * 31 -исшс> О Э-- ** - 3j (VnrmiiBi,, Дт^'«.1 31 гЬК'ДЯВ.ЯЯ^ CT-VM1 - 31 IH^CC.'S.JCT ат-ч/*3 :::: 31 = 31
СЫЮМВ ^ATtt-TT« ^ ИЧруЛНе« ¡СЧ аЭК| 31 3i 31 31 31 31
рло ri ю н - ,1 ста ^os -л | ЕГУ| 0 0£СС< OD üi 1 с ия -3i ■ :.'-к : а.1 -: ■ шт 23 31 ■ :."-к "TAI шт -а - 31
~t "¡.по -¡ok {га | Й D.JXC Ofl - 31 2Д 31
Т*- «JTTI II DO сзстпу &5с Г(ДОИ- нч Мизнши 'ЛГЛ.-Т-П ■ мает ■: i, вт-ч 2 ж»уi-Kv: ' v: _- гэт : Ü.'.г-т :: - /сги.ч : rpsww.ceni I
Z! 4 и:.: Dl H
It Ин wjci ih -0 мащ^пга
2? h -i^^i-p 13
Рис.2.
Экранное меню программы автоматизированного поиска оптимального кластера ВИЭ «АРК-ВИЭ-2» Fig.2
The OSD menu of automated search of optimal cluster RES "ARC-RES-2"
Результаты сравнения экспериментальных данных и расчетных характеристик оптимальных кластеров ВИЭ представлены на рис. 3.
График сравнительной эффективности оптимальных расчетных и экспериментальных кластеров ВИЭ в коттеджах 1-8 Fig 3
Comparative effectiveness of the optimal schedule of the calculated and experimental clusters RES in cottages 01.08
1-Окта-кластер ВИЭ (котт.1); 2 - пента-кластер ВИЭ (котт.2); 5-дуплекс-кластер ВИЭ (котт.3,4,5); 6-трио-кластер ВИЭ (котт.6); 7- септ-кластер ВИЭ (котт.7); 8-кватро кластер ВИЭ (котт.8).
Все кластеры ВИЭ в «Энергоэффективном доме», смонтированные без научно-обоснованной конфигурации, не соответствовали оптимальному соотношению долей установленной мощности между видами оборудования ВИЭ, вследствие чего имеют резерв повышения эффективности. Этот резерв определяется величиной 2-5 руб. за вырабатываемый 1кВт-ч энергии, что соответствует недовыработке (или потере) 20-50 % потенциальной мощности установленного оборудования ВИЭ.
Разработанная методология применения кластеров ВИЭ позволяет на основе многолетних актино-метрических характеристик определять для конкретных территорий оптимальный состав и установленную мощность каждого вида оборудования. На рис.4. представлен пример определения оптимальных кластеров ВИЭ для конкретных территорий.
Рис.4.Области А,Б,С,Б значений целевой функции для определения оптимальных кластеров ВИЭ с различными
актинометрическими характеристиками Fig 4. Areas A, Б, С, D show the values of the objective function to determine the best renewable energy clusters with
different actinometric characteristics
А - «Энергоэффективный дом» (Vb=3,5Wc; инсоляция- 250 Вт/м2, удаленность, 20 км, ГСОП 5800) (ГСОП-градусо-сутки отопительного периода); В- г.Качканар (Vj^^Wc; инсоляция- 350 Вт/м2, удаленность 10 км, ГСОП 6100) С -гора Шунут (V^^/c; инсоляция- 250 Вт/м2, удаленность 60 км, ГСОП 6100) D-пос.Бурматово Ивдельского района (V^^Wc; инсоляция- 200 Вт/м2, удаленность 250 км, ГСОП 6200)
ВЫВОДЫ
1. Сравнительный анализ экспериментальных данных и полученных расчетным путем значений соотношений установленной мощности оборудования ВИЭ (х,) на объекте «Энергоэффективный дом» показал, с одной стороны, хорошую сходимость результатов, а с другой - значительный резерв оптимизации кластеров ВИЭ.
2. Предложенный алгоритм и разработанная компьютерная программа автоматизированного расчета кластера ВИЭ «АРК-ВИЭ» дают производителям и потребителям инструмент быстрого определения оптимального состава оборудования ВИЭ для конкретного района применения.
ЛИТЕРАТУРА
1.Безруких П.П., Стребков Д.С. Состояние и перспективы развития возобновляемых источников энергии в России.// Малая энергетика.-М.: ОАО «НИИЭС», 2008, №4-5.
2.Велькин В.И. Оптимизация выбора энергообеспечения на основе кластерного подхода в использовании возобновляемых источников энергии //Альтернативная энергетика и экология, Саров, 2012 г.№2.
3. Велькин В.И., Логинов М.И., Чернобай Е.В.. Разработка математической модели и программы для расчета кластера ВИЭ// Достижения математики, Саров, 2013 г.№1, с.46-50.
ГхЛ
— TATA —
оо
2013 2013