так же из вышеприведенной номограммы видно, что виброизоляцию фрезерного станка наиболее оптимально было бы выполнить при помощи виброопор с проходным болтом ОВ-31.
^ ' ; В.И. Сергиенко, В.А. Авраменко, A.B. Голуб, В.Г. Добржанский
ГИДРОТЕРМАЛЬНАЯ ПЕРЕРАБОТКА КУБОВЫХ ОСТАТКОВ АЭС
Радиационная безопасность АЭС во многом связана с системой обращения с жидкими радиоактивными отходами (ЖРО), образующимися при работе АЭС. Системы спецводоподготовки АЭС перерабатывают ЖРО на различных стадиях процесса с использованием ионного обмена и дистилляции. В результате переработки чистая вода возвращается в технологический процесс, а высокосоленые кубовые остатки выпарных аппаратов направляются в емкости хранилищ жидких отходов (ХЖО). Объем накапливаемых кубовых остатков составляет от 0.2 до 1.0 м3/ МВт мощности АЭС в год, в зависимости от типа реактора АЭС. Значительное количество радиоактивных отходов образуется и в неядерных отраслях - теплоэнергетике, медицине, геологии и др. В настоящее время одним из источников образования большого количества РАО являются угле-, нефте- и газодобыча из-за сопутствующего выноса из недр естественных радионуклидов, а также золоотвалы угольных теплоэлектростанций. Количество радиоактивных отходов (РАО), производимых АЭС, составляв! около 0,3% суммарного объёма РАО от других источников. При этом ядерная энергетика является единственной отраслью, которая уделяет достаточное внимание своим отходам. Проблема безопасного обращения с РАО является одной из тех проблем, от которых в значительной мере зависят масштабы и динамика развития ядерной энергетики, а также дальнейшее внедрение ядерных и радиационных технологий. Нигде в мире не решены методы окончательного захоронения РАО.
В соответствии с нормативными документами отходы, передаваемые на долговременное хранение, должны быть соответствующим образом кондиционированы. Так, например, жидкие радиоактивные отходы (ЖРО) должны быть переведены в твёрдые (ТРО), а основной объем переведен в нерадиоактивные промышленные отходы, не требующие специального хранения.
Стоимость долговременного хранения ТРО весьма высока (до 5000-7000 и более $ за м3), поэтому такие технологии оправданы только из-за отсутствия лучших методов.
Особую проблему представляет кондиционирование кубовых остатков (КО) выпарных аппаратов систем спецводоочистки АЭС, представляющие собой высокосоленые (солесодержание до 300 г/л) радиоактивные растворы с удельной активностью более 10"4 Ки/л. Основными радионуклидами в них являются !37Cs и 60Со. Переработка больших объемов этих остатков, накопленных в хранилищах АЭС, для долговременного хранения представляет одну из важных составляющих повышения безопасности работы АЭС. Глубокое извлечение радионуклидов из жидких кубовых остатков и иммобилизация их в малообъёмных ТРО позволила бы решить многие экологические и технические проблемы АЭС.
Традиционными методами переработки кубовых остатков являются глубокое упаривание, цементирование и битумирование. Эти методы позволяют перевести ЖРО в инертную форму, пригодную для захоронения, но не дают значительного сокращения объема конечного радиоактивного продукта. Коэффициенты сокращения объема при использовании различных методов переработки кубовых остатков имеют следующие значения: для цементирования - 0,9... 1,3; битумирования - 1,5...2.5; глубокого упаривания - 2...3; остекловывания - 3...4; селективной сорбции - 70...90. Современные селективные технологии имеют существенно более высокие возможности селективной сорбции в сокращении объемов конечного радиоактивного продукта. Однако из кубовых остатков они позволяют выделить только радионуклиды 137Cs, переведя их в небольшой объем радиоактивных ТРО. Главная проблема с извлечением кобальта возникает из-за присутствия в кубовых остатках солей этилендиаминтетрауксусной кислоты (ЭДТА) и щавелевой кислоты, которые образуют очень прочные комплексы с ионами переходных металлов.
Именно поэтому задача извлечения радионуклидов 60Со может быть решена либо селективным извлечением комплекса ЭДТА-Со(Ш), либо разрушением этого комплекса и удалением ионов кобальта сорбцией или соосаждением с гидроксидами железа и никеля. В первом случае задача
осложняется большим количеством (до нескольких граммов в литре) комплексов ЭДТА-железо и ЗДТА-никель, присутствующих в кубовых остатках, а во втором случае - высокой константой устойчивости комплекса ЭДТА-Со(Ш).
Основным приемом разрушения комплекса ЭДТА-Со(Ш) является окислительная деструкция органических составляющих кубовых остатков с помощью тех или иных методов* Для полного удаления радионуклидов кобальта соосаждением на гидроксидах переходных металлов из растворов, содержащих ЭДТА, как, например, в технологии озонирования кубовых остатков, необходима полная окислительная деструкция ЭДТА. К сожалению, окисление органической составляющей кубовых остатков требует большого расхода окислителя (до 100 и более грамм озона на литр кубового остатка) не только из-за устойчивости ЭДТА к окислительной деструкции, но и в силу прочности комплекса кобальт - ЭДТА.
Именно поэтому была предпринята попытка разработать альтернативную технологию. Среди нескольких технологий, разрабатываемых в Институте химии ДВО РАН, наиболее перспективной была принята технология гидротермального окисления, то есть окисления в жидкой фазе при высоких 200-250 °С температурах и давлении до ЮМПа. Несмотря на необычные для традиционной химической технологии температуры и давления эффект, который дает гидротермальная технология, чрезвычайно велик.
В предложенной технологии кубовый остаток, предварительно очищенный от радионуклидов цезия на феророцианидных сорбентах (SNi, НЖС или Термоксид-35 или другие аналогичные сорбенты) окисляется перекисью водорода в проточном реакторе на слое катализатора при температурах от 180 до 250 °С и давлении 10-15 МПа. Эта технология обеспечивает очистку КО от радионуклидов кобальта, марганца и альфа-излучателей. Охлажденный очищенный кубовый остаток при необходимости дочищается от радионуклидов цезия и подается на узел цементации (узел цементации не требует специального оборудования, так как активность очищенного кубового остатка лежит в пределах 10-100 Бк/л). Полученные таким образом цементные блоки в соответствии с нормативными документами (СПОРО-99, НРБ-99) выводятся из-под контроля Госатомнадзора и могут быть размещены на долговременное хранение на любом полигоне промышленных отходов.
Проведенные лабораторные исследования показали перспективность такого подхода. На результатах исследований был разработан стенд для отработки технологии непосредственно в условиях АЭС.
Технологическая цепочка переработки состоит из трёх стадий.
1. Предварительная чистка кубового остатка от радионуклидов цезия. Производится в фильтрах, обеспечивающих селективную сорбцию радионуклида 137Cs. Основными технологическими проблемами этого этапа является крайне неравномерное распределение радионуклидов в сорбенте. Это приводит к тому, что частичная пептизация ферроцианидных коллоидов при фильтрации ограничивает коэффициент очистки кубового остатка после достижения определенной активности в верхнем слое сорбента. Пептизация характерна для любых композитных ферроцианидных сорбентов и лежит в пределах 10"4... Ю'Ч в зависимости от рН, солесодержания и других свойств растворов и сорбентов.
2. Гидротермальное окисление кубового остатка. На этой стадии происходит очистка кубового остатка от радионуклидов кобальта, марганца и других переходных металлов. Кроме этого в реакторе при гидротермальном окислении происходят превращение гидроксидов переходных металлов в оксиды и совместная кристаллизация оксидов на поверхности шихты (катализатора). Последний процесс позволяет многократно сократить объем образующихся осадков и решить проблемы с их фильтрацией. Высокая скорость протекающих процессов позволяет уменьшить объем фильтра реактора и тем самым повысить безопасность работы.
3. Доочистка после гидротермального процесса.
Одновременно с разрушением комплексов Со-ЭДТА при гидротермальном окислении происходит разрушение выделившихся в первой стадии ферроцианидных коллоидов. Это позволяет провести дополнительную очистку кубового остатка от i37Cs на ферроцианидном фильтре доочистки. В результате ресурс работы ферроцианидных фильтров контейнеров можно повысить многократно, и единственным ограничением его работы является предел активности, при котором фильтр-контейнер будет оставаться среднеактивным ТРО. Естественно, доочистка после гидротермального процесса необходима в случае, когда на первой стадии очистки не удается добиться необходимого результата. Поскольку после гидротермальной обработки активность очищаемых растворов по 137Cs не
П
превышает 1000 Бк, требуемые коэффициенты очистки лежат в пределах 10 ... 102. Поэтому на этой стадии можно использовать фильтры без биологической защиты. В этом случае кубовый остаток из накопительной емкости после гидротермального процесса подается насосом на ферроцианидный фильтр, после которого собирается в накопительной емкости для процесса цементации очищенного кубового остатка. ' ' ' . < . ^
Стендовые испытания разработанной технологии проводились на Нововоронежской АЭС в период с 11 мая по 20 ноября 2006 г. и на Курской АЭС - в августе - сентябре 2007 г.
В результате испытаний гидротермальной технологии окисления кубового остатка при температу ре 250 °С были достигнуты следующие уровни остаточной активности.
Ново-Воронежская АЭС.
при исходной активности 4,4- 10э Бк/дм3 по 60Со и по 137Cs - 8,1 *104 Бк/дм3 получена остаточная активность по 60Со - < 37 Бк/дм3 и по 137Cs - 6 ... 150 Бк/дм .
Курская АЭС.
при исходной активности 3,7-105 Бк/дм3 по 60Со и пО !3?Cs - 5,9*106 Бк/дм3 получена остаточная активность по 60Со - 12 ... 60 Бк/дм3 и по 137Cs - 6 ... 150 Бк/дм3.
Коэффициенты очистки составили по 137Cs - 105 - 106, по Со- 10J-10\
Стендовые испытания на реальных кубовых остатках АЭС подтвердили высокую эффективность гидротермальной технологии их переработки.
Гидротермальное окисление кубовых остатков перекисью водорода позволяет производить эффективную очистку от радионуклидов кобальта и радионуклидов других переходных металлов, не требует применения дорогостоящего озонирования. При гидротермальном окислении кубовых остатков можно легко получать очень высокие (104 и более) степени очистки кубового остатка от радионуклидов кобальта. Технология не требует отдельной фильтрации образующихся гидроксидов металлов, позволяет в 2-3 раза поднять эффективность использования ферроцианидных фильтров и значительно (по сравнению с озонированием) уменьшает общий объем получаемых ТРО.
Бег гидротермального окисления такой процесс невозможен.
Р.В. Лизун, А.И. Сковлюк, В.И. Северинов (ДВГТУ, г. Владивосток)
АТТЕСТАЦИЯ РАБОЧИХ МЕСТ ПО УСЛОВИЯМ ТРУДА
Согласно Постановлению №12 от 14 марта 1997г. Министерства труда и социального развития Российской Федерации «О проведении аттестации рабочих мест по условиям труда», в целях организации работы по сертификации производственных объектов на соответствие требованиям по охране труда Министерство труда и социального развития Российской Федерации постановило:
-органам исполнительной власти по труду субъектов Российской Федерации оказывать практическую помощь организациям в проведении аттестации рабочих мест по условиям труда;
-федеральным органам исполнительной власти привести в соответствие с Положением, утвержденным настоящим Постановлением, отраслевые методические документы по проведению в подведомственных организациях аттестации рабочих мест по условиям труда.
Отсюда следует, что обеспечение защиты от рисков несчастных случаев на производстве и профессиональных заболеваний предполагает обязанности работодателя предпринимать все необходимые меры по профилактике производственного травматизма и профессиональной заболеваемости. Поэтому одним из конкретных важнейших направлений в работе по профилактике производственного травматизма и профессиональной заболеваемости является аттестация рабочих мест по условиям труда - это российский вариант классической оценки, анализа и управления рисками.
Аттестация рабочих мест по условиям труда позволяет полностью идентифицировать и объективно оценить опасные и вредные производственные факторы на рабочих местах, что является непременным требованием любой современной системы управления охраной труда.