Received: 17 September 2021 / Accepted: 29 January 2022 / Published online: 28 February 2022
DOI 10.34689/SH.2022.24.1.004 УДК 616.127-005.8
GEOSPATIAL ANALYSIS OF TERRITORIAL ASSESIBILITY OF THE AMBULANCE EMERGENCY STATION COVERAGE OF THE WITH ACUTE CORONARY SYNDROME INCIDENTS IN PAVLODAR (KAZAKHSTAN)
Askar Abiltaev1, https://orcid.org/0000-0003-4127-2347 Ayan Myssayev2, http://orcid.org/0000-0001-7332-4856 Aizhan Abiltaeva1, https://orcid.org/0000-0002-0172-9202 Mariya Prilutskaya1, https://orcid.org/0000-0002-9099-316X Zhanar Zhagiparova1, https://orcid.org/0000-0002-5619-3505 Askhat Shaltynov3, https://orcid.org/0000-0001-5387-3356 Bakytzhan Konabekov3, https://orcid.org/0000-0003-0844-3407 Ulzhan Jamedinova3, https://orcid.org/0000-0001-5387-3356 Sabit Zhussupov4, https://orcid.org/0000-0002-0551-126X
1 Pavlodar branch of NCJSC "Semey Medical University", Department of Public Health, Pavlodar c., Republic of Kazakhstan;
2 Department of Science and Human resource of Ministry of Health Republic of Kazakhstan, Nur-Sultan c., Republic of Kazakhstan;
3 NCJSC "Semey Medical University", Department of Public Health, Semey c., Republic of Kazakhstan;
4 Pavlodar City Hospital №1 Unitary Enterprise Based on the Right of Economic Management, Pavlodar c., the Republic of Kazakhstan.
Abstract
Background: Diseases of the cardiovascular system (CVD) remain the leading cause of death in the world today. Nowadays heart disease accounts for 16 per cent of all deaths in the world. This indicator in the Republic of Kazakhstan annually takes a leading position. Among CVDs, ischemic heart disease (IHD) remains the leading cause of death. Half of the patients die at the pre-hospital stage, without waiting for medical help, and many survivors become disabled. The time factor plays a very important role in the treatment of acute myocardial infarction (AMI).
The purpose of the study is to conduct a spatial analysis in order to determine the territorial availability of emergency cardiac care in Pavlodar city, taking into account the time, and using a geographic information system.
Materials and methods: Based on the number of the calls received at Pavlodar Emergency station for the period from 1st August 2017 to 30th July 2018, a retrospective analysis of 2053 cases of Acute Coronary Syndrome with and without ST segment elevation was carried out.
Spatial analysis and Network Analyst were conducted on QGIS 3.16 (Hannover) to determine the density of calls with acute coronary syndrome (e.g. to find 10, 15, and 20-minute areas of accessibility). Tools such as the Hot Spot Analysis and heat map were also used to identify a square kilometer congestion of calls and Kernel Density. That tool calculated a magnitude-per-unit area from point or polyline features using a kernel function to fit a smoothly tapered surface to each point or polyline. New Service Area tool creates a region that encompasses all accessible streets (e.g. streets within specified impedance). Statistical significance was set at the 95% confidence level.
Results: We found clusters in the largest cluster of calls, marked with red and orange colors, which, like the heat map analysis, corresponded to densely built-up areas. Thus, using Kernel density analysis, we identified 6 separate clusters with the call density of more than 42 calls per km2: four clusters located in the northwest, north, and northeast of the city, and two clusters located in the southwest and southeast of the city. From the rest of the city, represented by multi-storey houses, there were received between 18.8 and 32.8 calls per km2. About 18 calls per square kilometer were received from the outskirts of the city and from areas that were mostly of private sector.
To the areas densely built up with multi-storey buildings, as well as cluster plots, the ambulance can arrive within 5 minutes from the moment the call is received. The areas with low call density, an emergency medical services reaches within 10 minutes. Outskirts of the city and the suburbs can be served within 15 minutes.
Conclusion: Based on the data presented above, it is possible to assume that additional research is needed using geographic information systems.
Keywords: Geographic information system (GIS), ST-elevation myocardial infarction (STEMI), Non-ST-Elevation Myocardial Infarction (NSTEMI).
Резюме
ПРОСТРАНСТВЕННЫЙ АНАЛИЗ ТЕРРИТОРИАЛЬНОЙ ДОСТУПНОСТИ СТАНЦИИ СКОРОЙ МЕДИЦИНКОЙ ПОМОЩИ ПРИ ОСТРОМ КОРОНАРНОМ СИНДРОМЕ В ГОРОДЕ ПАВЛОДАР (КАЗАХСТАН)
Аскар Абильтаев1, https://orcid.org/0000-0003-4127-2347 Аян Мысаев2, http://orcid.org/0000-0001-7332-4856 Айжан Абильтаева1, https://orcid.org/0000-0002-0172-9202 Мария Прилуцкая1, https://orcid.org/0000-0002-9099-316X Жанар Жагипарова1, https://orcid.org/0000-0002-5619-3505 Асхат Шалтынов3, https://orcid.org/0000-0001-5387-3356 Бакытжан Конабеков3, https://orcid.org/0000-0003-0844-3407 Улжан Джамединова3, https://orcid.org/0000-0001-5387-3356 Сабит Жусупов4, https://orcid.org/0000-0002-0551-126X
1 Павлодарский филиал НАО «Медицинский университет Семей»,
Кафедра общественного здравоохранения, г. Павлодар, Республика Казахстан;
2 Департамент науки и человеческих ресурсов Министерства здравоохранения Республики Казахстан, г. Нур-Султан, Республика Казахстан;
3 НАО «Медицинский университет Семей», Кафедра общественного здравоохранения, г. Семей, Республика Казахстан;
4 КГП на ПХВ «Городская больница №1 города Павлодар», г. Павлодар, Республика Казахстан.
Введение. Основной причиной летального исхода, по сей день, в мире остаются заболевания сердечнососудистой системы (ЗССС). На долю болезней сердца сегодня приходится 16% всех случаев смерти в мире. Данный показатель в Республике Казахстан ежегодно занимает лидирующие позиции. Среди ЗССС ишемическая болезнь сердца (ИБС) остаётся основной причиной смерти. Половина больных погибает ещё на догоспитальном этапе, не дождавшись медицинской помощи, а многие выжившие становятся инвалидами. Временной фактор играет очень важную роль в лечение острого инфаркта миокарда (ОИМ).
Целью исследования является проведение пространственного анализа с целью определения территориальной доступности экстренной кардиологической помощи в городе Павлодар с учётом времени с помощью геоинформационной системы.
Материалы и методы. На основе вызовов, поступивших на станцию Скорой Медицинской Помомщи города Павлодар, Республика Казахстан за период с 1 августа 2017 года по 30 июля 2018 года был проведён ретроспективный анализ 2053 случаев с острым коронарным синдромом с элевацией сегмента ST и без элевации сегмента ST.
Пространственный анализ и Network Analyst проводились на программе QGIS 3.16 (Hannover) с целью определения плотности скопления вызовов с ОКС, в том числе с определением 10-, 15-, и 20-минутных зон доступности. Для определения степени перегруженности телефонных линий на один квадратный километр были использованы такие инструменты, как Hot Spot Analysis (теплокарта), и Kernel Density. Последний используется для вычисления показателя «площадь magnitude-per-unit» от точечных или полилинейных объектов с использованием функции Кернела для подгонки плавно сужающейся поверхности к каждой точке или полилинии. Новый инструмент Service Area создаёт область, охватывающую все доступные улицы (т.е. улицы с установленым импедансом). Статистическая значимость была установлена на уровне 95% достоверности.
Результаты. Мы обнаружили наличие кластеров по наибольшему скоплению вызовов, отмеченные красным и оранжевым цветами, что также, как и анализ теплокарты соответствует плотно застроенным районам. Таким образом, используя анализ Kernel density, мы выявили 6 отдельных кластеров с плотностью вызовов более 42 обращений на 1 км2: 4 кластера расположены на северо-западе, севере и северо-востоке города, и 2 кластера на юго-западе и юго-востоке города. Из остальных других районов города, которые представлены в зонах многоэтажных домов, поступает от 18,8 до 32,8 обращения на 1 км2. С окраин города и районов, преимущественно застроенных частными домами, поступает не более 18 вызовов на 1 км2.
В плотно застроенных многоэтажными домами участки, а также кластерные участки, карета скорой медицинской помощи (СМП) успевает доехать в течении 5-ти минут, с момента поступления вызова. Участки с низкой плотностью вызовов карета СМП достигает в течение 10 минут. Окраины города и пригород могут быть обслужены в течение 15 минут.
Выводы. Основываясь на данных, которые были изложены выше, возможно предположить, что необходимо проведение дополнительных исследований в этой области с применением геоинформационных систем.
Ключевые слова: Геоинфармационная система (ГИС), Острый коронарный синдроим с подъёмом сегмента ST (ОКСпST), Острый коронарный синдроим без подъёма сегмента ST (ОКСбпST).
Тушндеме
ПАВЛОДАР КДПАСЫ (КАЗАХСТАН) БОЙЫНША ЖЕДЕЛ КОРОНАРЛЫК СИНДРОМЫ КЕЗ1НДЕГ1 ЖЕДЕП К0МЕК К0РСЕТУ СТАНЦИЯСЫНЫИ ТЕРРИТОРИЯПЫК КОПЖЕТ1МД1П1Г1Н КЕИ1СТ1КТ1 ТАЛДАУЫ
Аскар Абильтаев1, https://orcid.org/0000-0003-4127-2347 Аян Мысаев2, http://orcid.org/0000-0001-7332-4856 Айжан Абильтаева1, https://orcid.org/0000-0002-0172-9202 Мария Прилуцкая1, https://orcid.org/0000-0002-9099-316X Жанар Жагипарова1, https://orcid.org/0000-0002-5619-3505 Асхат Шалтынов3, https://orcid.org/0000-0001-5387-3356 Бакытжан Конабеков3, https://orcid.org/0000-0003-0844-3407 Улжан Джамединова3, https://orcid.org/0000-0001-5387-3356 Сабит Жусупов4, https://orcid.org/0000-0002-0551-126X
1 Павлодар каласыныц филиалы КеАК «Семей медицина университет», Когамдык денсаулык сактау кафедрасы, Павлодар, к-, Казахстан Республикасы;
2 Денсаулык сактау министрлiпнщ Гылым жэне адами ресурстар департамент директорыныц орынбасары, Нур-Султан к-, Казакстан Республикасы;
3 КеАК «Семей медицина университет», Когамдык денсаулык сактау кафедрасы, Семей к-, Казакстан Республикасы;
4 ШЖК «№1 Павлодар калалык ауруханасы» КМК, Павлодар к-, Казакстан Республикасы.
Kipicne. ЖYрек-кантамыр жYЙесi аурулары 6YriHri KYHre дейiн элемде влiмнiн Heri3ri ce6e6i болып кала бередк ЖYрек ауруы бYгiнде элемдеп барлык влiм-жiтiмнiн 16% курайды. Бул кврсеткiш казакстан Республикасында жыл сайын жетекшi орын алып келедi. ЖYректщ ишемиялык ауруы (ЖИА) жYрек-кантамыр жYЙесi ауруы арасында влiмнщ негiзгi себебi болып кала бередi. Наукастардыщ жартысы медициналык квмектi кутпестен, ауруханага дейнп кезечде кайтыс болады, ал ^i калгандарды^ квпшiлiгi мYгедек болып калады. Жедел миокардиялык ишемияны (ЖМИ) емдеуде уакыт факторы вте ма^ызды рвл аткарады.
Зертгеудщ максаты - географиялык акпараттык жYЙенi (ГАЖ) пайдалана отырып, уакытты ескере отырып, Павлодар каласында жедел кардиохирургиялык квмектщ аумактык колжепмдтИн аныктау максатында кеиiстiктiк талдау жYргiзу.
Зерттеу материалдары мен эдicтepi. 2017 жылдьщ 1 тамызы мен 2018 жылдьщ 30 шiлдесi аралы^ында Павлодар каласындагы Жедел Медициналык Квмек (ЖМК) станциясына келiп тYскен, ST сегментЫщ квтерiлуi жэне ST сегментЫщ квтерiлуi жок жедел коронарлык синдромы бар наукастардыц 2053 карталарына ретроспективтi талдау жасалынды.
Кеиiстiктiк талдау жэне желтк талдаушы (Network Analyst) QGIS 3.16 бавдарламасын (Hannover) пайдаланып, жедел коронарлык синдром ЖКС-нан келетЫ кочыраулардыщ жиынты^ыныч ты^ызды^ын аныктау жэне 10, 15 жэне 20 минуттык колжетiмдiлiк аймактарын табу Yшiн жYргiзiлдi. Hot Spot Analysis (жылу картасы) сиякты куралдар бiр шаршы шакырымдагы кочыраулардыщ шамадан тыс жYKтелуiн аныктау Yшiн пайдаланылды, ал Kernel Density куралы Kernel функциясын колдана отырып, нYKтеден немесе квп сызыкты сипаттамалардан бiр ауданныщ мвлшерiн эр нYKтеге немесе полилинияга тегiс жерге орналастыру Yшiн есептейдк Service Area жа^а куралы барлык кол жетiмдi квшелердi камтитын аймакты жасайды (ягни, импеданс орнатылган квшелер). Статистикалык ма^ыздылы^ы 95% сенiмдiлiк дечгейще белгiлендi.
Нэтижелер мен талкылау. Бiз кызыл жэне кы^ылт сары тYспен белгiленген кочыраулардыщ еч Yлкен кептелю бойынша кластерлердщ болуын аныктадык, бул жылу картасыныщ талдауы сиякты, ты^ыз елдi мекендерге сэйкес келедi. Осылайша, Kernel density тыгыздыгыны^ талдауын пайдалана отырып, бiз 1 км2-ге 42 шакырудан асатын шакыру тыгыздыгы бар 6 бвлек кластердi аныктадык: 4 кластер каланыщ солтYстiк-батысында, солтYстiгiнде жэне солтYстiк-шыFысында, ал 2 кластер о^сш-батыста жэне о^сш-шы^ыс аумактар. Квпкабатты Yйлер болып табылатын каланыщ калFан аудандарынан 1 км2-ге 18,8-ден 32,8-ге дешн жолдама алынFан. Негiзiнен жеке турFын Yйлер салынFан кала жэне аудандардыщ шет аймактарынан 1 км2-ге 18-ден аспайтын втiнiш TYседi.
Квпкабатты Yйлер тыFыз орналаскан аумактар, сондай-ак кызыл TYспен белпленген аумактарFа жедел жэрдем квлИ ко^ырау TYскен сэттен бастап 5 минут шнде жетедi. Шакырулардыщ твмен тыFыздыFы бар аудандарда ЖМК тасымалы 10 минут iшiнде жетедк Шеткi жэне кала мачындаFы аудандарFа 15 минут iшiнде кызмет кврсетуге болады.
Корытынды. ЖоFарыда келтiрiлген деректерге сYЙене отырып, географиялык акпараттык жYЙелердi пайдалана отырып, осы ЖМК саласында косымша зерттеулер кажет деп болжауFа болады.
TYurndi свздер: Геоак,параттык, жуйелер (ГАЖ), ST тюшеашц жогарылауымен миокард инфарктiсi, ST тюшеамц жогарьлауынсыз миокард инфарктiсi.
Bibliographic citation:
Abiltaev A., Myssayev A., Abiltaeva A., Prilutskaya M., Zhagiparova Zh., Shaltynov A., Konabekov B., Jamedinova U., Zhussupov S. Geospatial Analysis of Ambulance Station Coverage of the Acute Coronary Syndrome Incidents in Pavlodar (Kazakhstan) // Nauka iZdravookhranenie [Science & Healthcare]. 2022, (Vol.24) 1, pp. 30-38. doi: 10.34689/SH.2022.24.1.004
Абильтаев А., Мысаев А., Абильтаева А., Прилуцкая M., Жагипарова Ж., Шалтынов А., Конабеков Б., Джамединова У, Жусупов С. Пространственный анализ территориальной доступности станции скорой медицинской помощи при остром коронарном синдроме в городе Павлодар (Казахстан) // Наука и Здравоохранение. 2022. 1(Т.24). С. 30-38. doi: 10.34689/SH.2022.24.1.004
Абильтаев А., Мысаев А., Абильтаева А., Прилуцкая M., Жагипарова Ж., Шалтынов At., Конабеков Б., Джамединова У., Жусупов С. Павлодар каласы бойынша жедел коронарлык синдромы кезЫдеп жедел кемек керсету станциясыныщ территориялык колжетшдтИн ке^сшт талдауы // Гылым жэне Денсаулык сактау. 2022. 1 (Т.24). Б. 30-38. doi: 10.34689/SH.2022.24.1.004
Background
The diseases of cardiovascular system (CVD) are the main cause of death across the world. According to that, heart diseases accounts for 16% of all deaths in the world [2]. This indicator in the Republic of Kazakhstan (RK) annually occupies a leading position. Ischemic heart diseases stay the leading cause of death [3].
According to the foreign recourses, prime purpose of medical service in acute myocardial infarction (MI) is the repairment of myocardial reperfusion [4]. According to the recommendation of Ministry of Healthcare of Rk and international guidelines for the management of patients with MI, emergency cardiological care service has only 120 minutes, from diagnosis to transportation to the nearest percutaneous coronary intervention (PCI) center [6, 10], which is the most optimal for the treatment of myocardial infarction. After the diagnosis of MI, based on the clinical picture, electrocardiogram (ECG) and a troponin test, a doctor determines the further tactics owing to the time and the distance to the nearest PCI center. If the time from the moment of diagnosis to the moment of PCI center admission is more than 120 minutes, a doctor uses thrombolysis for a treatment, otherwise, a patient is delivered to the PCI center without thrombolytic therapy [11, 21].
The only controversial moment here is as follows: when do we start counting those 120 minutes? Until 2017, the countdown began from the moment of the index event, that is from the beginning of the first symptoms, e.g. chest pain. This period of time can be roughly divided into four time periods.
The first one starts from the beginning of MI symptoms till the primary medical contact, which consists of time from first symptoms until calling the emergency medical service, time to receive a call by a dispatcher, and the time of the ambulance arrival to a patient. Unfortunately, it takes a lot of time and is affected by many factors: a low level of public awareness, reduced self-criticism, underestimation of the severity of conditions, and so on.
The second one starts from the first contact with a doctor until the diagnosis, which is no more than 10 minutes.
The third one is transportation to hospital. It depends from many factors: the distance between an ambulance and a patient, a part of the day. Sophistication of the urban transport system and conditions of the weather may also affect the delay of ambulances [1,14,25].
The fourth one is the time from the admission to the hospital until the start of PCI (reperfusion).
According to British studies, more than 75% of patients receive medical care within 150 minutes [24].
There are many factors that are associated with time, and should be taken into account to reduce negative outcome in patients with an acute coronary syndrome (ACS).
Half of the patients die at the prehospital stage, without waiting for an ambulance. Those who survive become disable [9]. Such factor as time plays general role in treatment of MI. The more time medical stuff have after patient arrives in the hospital, the greater the chances are to receive adequate and full medical care. These patients have a small area of myocardial necrosis, it means chances to be disabled are closer to zero. In that case, Emergency Medical Service (EMS) plays a very important role, which depends on localization of EMS Station, distance to a patient, presence of modern transport, credentials of EMS team to provide qualified assistance. A not-trivial moment is the experience of a driver, his awareness of the traffic state, presence of maintenance work on the road. This knowledge helps to reduce the time from diagnosis till the moment when a patient arrives to nearest PCI center.
Despite the fact that Geographic Information System (GIS) in medicine is a completely new concept to developing Kazakhstan, the methods of the GIS are widely used in medicine all over the world for the analysis of geographical patterns of disease, and the availability of hospitals [20]. The total area of Kazakhstan is 2 724 902 km2. Considering the distances between the cities, population density is one of the lowest in the world, less than seven people per km2. Economical, innovational and technological development, difference of climatic zones, and environmental conditions, are those factors that play an important role in the progress of healthcare system - by implementation of GIS. GIS is a basis for an integrated assessment of the population well-being, and complex solution in the infrastructure management and planning. Across Europe and Asia, GIS has proven to be a very useful and necessary tool and has found a wide application in health care, not only for the logistics of ambulance, but also for the transport of patients from home to the nearest hospital, in identification of disease clusters. GIS helps to improve logistics, reducing the economic costs of the organization [5,22].
GIS analysis techniques allow to geo-reference and visualize different data, providing a more comprehensive analysis.
Previous studies showed that inappopriate logistics can worsen an access to PCI centers. Thus, the mere addition of hospitals with PCI can improve the situation in a country. GIS and mathematical modelling can be used to choose the optimal STEMI treatment option depending on the patient's location and the transportation time to PCI center [31].
The studies over the past 10 years have demonstrated that the problems of the rapid response and the correct location of an ambulance station remain relevant [5].
In addition, these concerns are supported by the growing demand for ambulances [15].
This study explores coverage of EMS stations for the patients suffered from ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI), and unstable angina (UA).
Aim of the reported study is to conduct a spatial analysis to determine the territorial availability of emergency cardiac care in Pavlodar taking into account the time by means of a geographic information system.
Matherial and Methods
In order to achieve the goals, we conducted a retrospective analysis of 2053 cards with STEMI and non-STEMI ACS, which documented the calls received at the EMS station in Pavlodar (RK) for the period from 1st August 2017 to 30th July 2018.
Population of the Pavlodar region is 530,209, total area is a 267 km2. The main EMS station serving emergency calls is located in the city center. All patients are hospitalized in the Pavlodar Regional Cardiology Center.
The analysed call cards contained the following data: sex, age, and nation, address of call, time (time of call application, time of ambulance arriving, time of hospitalization and call completion time), distance, and result of the call. According to the ambulance service
database, STEMI ACS was defined as I21.1, 21.9, I22, I23.0, I23.2, I23.3, and I23.4. Non-STEMI ACS was coded as I20.0, I21.2, I21.4, and I24.9 in accordance with ICD-10 classification.
Spatial analysis and Network Analyst was conducted on the program QGIS 3.16 (Hannover) to determine the density of ACS calls and find 10, 15 and 20-minute service areas. Tools such as the Hot Spot Analysis and a heat map were also used to identify a square kilometer congestion of calls, Kernel Density tool, which calculates a magnitude-per-unit area from point or polyline features using a kernel function to fit a smoothly tapered surface to each point or polyline, was also applied. New Service Area tool creates a region that encompasses all accessible streets (e.g. streets within specified impedance). Statistical significance was set at the 95% confidence level.
In QGIS program, we made the first layer for spatial analysis. The map was taken from the Google map, on which a layer of vector maps of the road were superimposed. It helped to calculate later the time spent on the road. These two layers were used as a template to create a vector map of the city in the QGIS program.
Upon creation of the base layer with a vector map, we added the geocodes got from Yandex server. After that, we did a preliminary analysis of the data and found that the largest call aggregation was definitely from the areas with predominantly high-rise, multi-drive houses, defined as well-established areas. More detailed information of the methods of analysis is contained in our early publication [12].
Results
At the beginning, with the help of a heat map, we determined the patients position on the map in accordance with the number of calls per 1km2 and distributed them by color (Figure 1).
Figure 1. The map of ACS case density (left: The geographical distribution of ACS cases n=2053; right: Hotspot map)
The heat spectrum was presented from a purple colour (the smallest number of calls) to yellow colour (the largest number of calls). The figure depicts the areas painted in yellow, which are located in the districts with high-rise houses. Additionally, the area with high-rise houses colored in orange was found. The plots with the least number of calls are painted in lilac colour, these plots are mostly built by the private sector, and represented more often by single-storey, less frequent by two-storey houses, both on the outskirts and
in the inside of the city. That tool helped to identify the areas with high call concentrations.
The next step of our study included the detection of disease focuses defined as clusters. Applying Kernel density tool, we found clusters with the largest focus of calls, marked with red and orange, which, like in the heat map analysis, corresponded to the densely built-up areas. Results of the Kernel density analysis for the Pavlodar city is presented in Figure 2. The density zones are divided into seven categories
from white (from 0 to 3 cases per km2) to red (more than 42 cases per km2). Therefore, using Kernel density analysis, we identified six separate clusters with call density more than 42 hits per km2: four clusters were located in the northwest, north, and northeast areas of the city, and two clusters were located in the southwest and southeast territories of the city.
The rest of the city, represented by multi-storey houses, received between 18.8 and 32.8 visits per km2. Visits from the outskirts of the city and from areas that are mostly privately built were registered at the level of not more than 18 visits per square kilometer.
Figure 2. Hot spot map clusters and outliers of ACS incidents
The final step was the analysis of territorial accessibility using roads and interchanges in the city applying Network Analysis and the analysis of ORS of Service Area. Our
default analysis was based on two conditions: the ambulance leaves the EMS station and ambulance moves at an average speed of 50 km/h (Figure 5).
Figure 3. The map of ambulance service area.
In the zones, densely built by multi-storey houses, and in the areas colored in red (Hot Spots), ambulances reach patients within 5 minutes. Across the areas with low call density, ambulances reach patients within 10 minutes. Suburbs can be served in 15 minutes.
Disscussion
In the RK, the first study of the emergency cardiological care accessibility was conducted in Semey city. A. Myssayev, et al. in their study determined that Semey residents were able to receive qualified emergency cardiac care within 15 minutes [12].
Our research is the second study that GIS-analyzed ambulance coverage zones considering time-factor in Kazakhstan. After Hot Spots and Kernel density analysis, we identified six clusters and areas of the city with the highest number of patients. The highest frequency of calls corresponded to the density of multi-storey housing. We
attributed it to the fact that neighbourhoods in the northern part were built and occupied more than 30 years ago. The opposite situation was in the south part of the city, which represented neighbourhoods that were also built with multistorey houses but were inhabited more than 10 years ago, or in areas less than 5 years old where young families were housed under a government programme (these areas are represented in yellow in Figure 3).
The key findings were revealed in the work of EMS station. According to the decree, ambulance and emergency medical care, including sanitary aviation, is free for all population [7]. The SMP station operates 24/7. The ambulance team consists of a driver, a paramedic or a doctor, a nurse and optionally a specialist (cardiologists, neurologists, etc.). Pavlodar EMS station processes more than 215,000 calls per year, covering a total area of 267 km2. In the course of the study, it was found that a single
SMP station covered the most part of Pavlodar with a 10-minute corridor. Based on the Network Analyst definition and the OS of Service Area analysis, we have determined that the average speed of an ambulance is 50 km/h, and that the suburban area can be served within 15 minutes. Prehospital access to advanced care in Pavlodar is similar to that observed in the New Zeland, USA and Canada [13,23].
In Kazakhstan, the applying of GIS in healthcare is still poorly studied. Meanwhile, international studies proved the key role of the investigations of these kinds. Over the years, Canadian governmental and non-governmental organizations have tried to find a link between geography and health [28].
Clark RA et al. in the GIS analysis compared the 1-hour availability of PCI centers and rehabilitation centers. They found that the rehabilitation service was available to 91 per cent, while PCI centers were available only to 71 per cent of the population, older patients and indigenous people, who bore a heavier burden of disease than the general population and were more disadvantaged in terms of access [16].
In earlier studies, Nallamothu B.K. et al. showed that about 80% of adults in the United States lived in 60 minutes from the nearest PCI center. Despite this, among patients living in the vicinity of the hospital, almost % patients experienced a 30-minute delay. These results indicated that a more thorough planning of the service in the future was needed [25].
Other studies in Australia showed that 78% of PCI centers were located in large cities, a significant number of Australians did not have access to PCI within the time recommended in the guidelines [18, 26].
These results may help further strategic development of the cardiac service. In places where access is limited, it is necessary to mobilize and synchronize relevant organizations to optimize temporary access to evidence-based medical services such as PCI [30]. If necessary, EMS stations may be relocated [29] or used to determine the number and location of new stations [27]. Lilley R., et al. in their study showed that 700,000 New Zealanders did not have timely access to tertiary care, the study revealed important socio-demographic differences in timely access for indigenous Maori, New Zealand Europeans, elderly New Zealanders and South Islanders, reflecting the geographical distribution of the New Zealand population. According to Lilley R., et al. the next step in the study is to determine the optimal location of the hospital providing advanced healthcare and to prevent deaths [23].
We assume that it is possible to perform spatial analysis regarding other nosologies (diseases) in order to form a complete picture of the EMS station coverage according to road networks and interchanges. The GIS system can also be used in the control of disease incidence and spread in particular areas. Hasker et al. used the system to control the spreading of tuberculosis among the Comoros people living in the northern islands of Madagascar, with an estimated population of about 800,000 people [19.
GIS system can be used not only to evaluate ground services but also to investigate an air emergency service. Widener M.J. et al. showed the work of the Maryland Air Force Air Traffic Control Service, located at the Maryland
Emergency Medical Service Institute (n=2,208 geocodes) [17]. S. Schierbeck, et al., performed spatial analysis using a GIS model. They identified the required amount of drones with an external defibrillation function for cardiac arrest, for 100% coverage of the entire territory of Sweden, with 8 minutes access to patient. They concluded that only 70% of patients were reached in less than 20 minutes (Me 12 minutes) [29].
Currently, this problem remains one of the most important social issues and has been widely reflected in the State Health Development Programme for 2011 - 2015 and for 2016-2020, where one of the main missions is to improve diagnostics, providing the development and implementation of comprehensive diagnostic programs, introduction of international standards, diagnostic protocols and methodologies for all levels of health organizations, based on the principles of evidence-based medicine [8].
All the above-mentioned facts claim that GIS systems are widely used in many countries. The next research step should include the assessment of the service availability to identify available time, areas and zones that require reorganization for more productive work. As a practical result, mobilization and synchronization of all necessary services could be expected. In the next step we plan to carry out research in a real time mode with conditions that the ambulance team is located at the EMS station, and excluding the possibility of accepting a call while on the route It will allow to study the real picture of EMS work, and, most importantly, a picture of the accessibility of the EMS service to the public and its various segments. This will have the beneficial effect of reducing travel time and increasing the number of timely service calls, which are far more cost-effective for the region.
Conclusion
Overall, our study revealed that emergency cardiac care is able to cover a large area of Pavlodar within the period of 10 minutes. Continuous development and urban growth warrant a repetitive analysis according to the reported methodology to establish proper and cost-effective emergency cardiac care system.
Any opinions and views represented in the article belong to the authors and represent authors' views, and do not represent any institutions, organization, or funders.
Conflict of interest - The authors declare that they do not have any competing interests.
Contribution of the authors: The authors claim a lack of funding.
This article and parts of the materials of the article were not previously published and are not under consideration in other publishers.
Литература:
1. Абильтаев А.М., Конабеков Б.Е., Сепбосынова А.С., Джамединова У.С., Мантлер Н.В., Мансурова Г.Т., Калелова А.М., Кусаинова А.Р., Кадырбеков Е.С., Шалтынов А.Т., Мысаев А.О. Сезонность вызовов скорой медицинской помощи по причине острого коронарного синдрома // Медицина (Алматы). 2019. №1 (199). С. 19-26
2. Гелис Л.Г. Острый коронарный синдром // Кардиология. Electronic resource available from: http://www.cardio.by/treatkor (Дата обращения: 23.09.2018).
3. ВОЗ «Ведущие причины смертности и инвалидности во всем мире за период 2000-2019 гг.» Electronic resource available from: https://www.who.int/ru/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019 (Дата обращения: 22.05.2021).
4. "Здоровье населения Республики Казахстан и деятельность организаций здравоохранения". Electronic resource available from: http://www.rcrz.kz/i ndex. php/ru/statistika-zdravookhraneniya-2 (Дата обращения: 22.05.2021).
5. Клинический протокол диагностики и лечения инфаркта миокарда с подъемом сегмента ST. 2017. 1-63 p. Electronic resource available from: http://www.rcrz.kz/docs/clinic_protocol (Дата обращения: 22.05.2021).
6. Лукьяненко Н.В. Базарова Г.Х. Методологический подход использования ГИС технологий в эпиднадзоре за сибирской язвой на территории Алтайского края, Республики Алтай // Медицинский альманах. 2016. Т. 3. С.103-108.
7. Постановление Правительства Республики Казахстан от 29 ноября 2010 года. № 672. «Об утверждении Государственной программы развития здравоохранения Республики Казахстан "Саламатты Казахстан" на 2011 - 2015 годы» Указ Президента Республики Казахстан от 29 ноября 2010 года № 1113. Electronic resource available from: https://adilet.zan.kz/rus/docs/U1000001113 (Дата обращения: 22.05.2021)
8. Постановление Правительства Республики Казахстан от 15 октября 2018 года № 634. «Об утверждении Государственной программы развития здравоохранения Республики Казахстан "Денсаулык" на 2016 - 2019 годы». Electronic resource available from: https://adilet.zan.kz/rus/docs/P1800000634 (Дата обращения: 22.10.2021)
9. Сыродоев А.М., Гулин А.В., Симонов С.Н. Современные особенности течения острого инфаркта миокарда. 2015. P. 2013-2016.
10. Amsterdam E.A. et al. 2014 AHA/ACC guideline for the management of patients with non-st-elevation acute coronary syndromes: A report of the American college of cardiology / American heart association task force on practice guidelines // Circulation. 2014. Vol. 130, № 25. e344-e426 p.
11. Arso I.A. et al. In-hospital major cardiovascular events between STEMI receiving thrombolysis therapy and primary PCI // Acta Med. Indones. 2014. Vol. 46, № 2. P. 124-130.
12. Carr B.G., Bowman A.J., Wolff C.S., et al. Disparities in access to trauma care in the United States: a population-based analysis // Injury 2017. 48:332-8.
13. Chen X.Q., Liu Z.F., Zhong S.K., Niu X.T., Huang Y.X., Zhang L.L. Factors influencing the emergency medical service response time for cardiovascular disease in Guangzhou, China. Curr Med Sci. 2019. 39(3):463-71. https://doi.org/10.1007/ s11596-019-2061-z PMid:31209820
14. Christensen E.F., Bendtsen M.D., Larsen T.M., Jensen F.B., Lindskou T.A., Holdgaard H.O., et al. Trends in diagnostic patterns and mortality in emergency ambulance service patients in 2007- 2014: A population-
based cohort study from the North Denmark Region // BMJ Open. 2017. 7(8):e014508.
https://doi.org/10.1136/bmjopen-2016-014508 PMid:28827233
15. Clark R.A., Coffee N, Turner D., Eckert K.A., van Gaans D., Wilkinson D., Stewart S., Tonkin A.M. Cardiac Accessibility and Remoteness Index for Australia (Cardiac ARIA) Project Group. Application of geographic modeling techniques to quantify spatial access to health services before and after an acute cardiac event: the Cardiac Accessibility and Remoteness Index for Australia (ARIA) project // Circulation. 2012 Apr 24. 125(16):2006-14. doi:10.1161/CIRCULATI0NAHA.111.083394. Epub 2012 Mar 26. PMID: 22451583).
16. Diaz M.A., Hendey G.W., Bivins H.G. When is the helicopter faster? A comparison of helicopter and ground ambulance transport times // J Trauma. 2005. 58:148-53.
17. Dickstein K., Cohen-Solal A., Filippatos G., Mc Murray J.J., Ponikowski P., Poole-Wilson P.A., Stromberg A., van Veldhuisen D.J., Atar D, Hoes A.W., Keren A., Mebazaa A.., Nieminen M., Priori S.G., Swedberg K. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM), ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008 // Eur J Heart Fail. 2008. 10:933-989.
18. Hasker E., Assoumani Y., Mzembaba A., Zakir A.M., Ortuno-Gutierrez N., de Jong B.C. Using a geographic information system as a management tool for tuberculosis control. // The International Journal of Tuberculosis and Lung Disease, Volume 24, Number 3, 1 March 2020, pp. 354-356(3) https://doi.org/10.5588/ijtld.19.0704
19. Hewins K. 2014 NSTE-ACS Guidelines Overview. Acute Coronary Syndrome Summit. 2016. 47 p.
20. Ibanez B. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation // Eur. Heart J. 2018. Vol. 39, № 2. P. 119-177.
21. Jamedinova U., Shaltynov A., Konabekov B., Abiltayev A., Myssayev A.O. Application of geoinformation systems in health care: literary review. Nauka i Zdravookhranenie [Science & Healthcare]. 2018, (Vol.20) 6, pp. 39-47.
22. Lilley R., et al. Geographical and population disparities in timely access to prehospital and advanced level emergency care in New Zealand: A cross-sectional study // BMJ Open 2019. 9:e026026. doi:10.1136/bmjopen-2018-026026
23. Myocardial Ischaemia National Audit Project Heart attack in England, Wales and Northern Ireland Annual Public Report | April 2015 - March 2016/ published on 27th June 2017. P. 14.
24. Nallamothu B.K., Bates E.R., Wang Y., Bradley E.H., Krumholz H.M. Driving times and distances to hospitals with percutaneous coronary intervention in the United States: implications for prehospital triage of patients with ST-elevation myocardial infarction // Circulation. 2006. 113:1189 -1195.
25. O'Connor R.E., Brady W, Brooks S.C., Diercks D, Egan J., Ghaemmaghami C., Menon V., O'Neil B.J., Travers A.H., Yannopoulos D. Part 10: acute coronary syndromes: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care // Circulation. 2010. 122. S787-S817.
26. Reshadat S., Saeidi Sh., Zangeneh A. Using a geographic information system to identify the number and location of new health centres needed in the city of Kermanshah, Islamic Republic of Iran // East Mediterr Health J. 2020. 26(8): 888-898. https://doi.org/10.26719/emhj.20.022
27. Rytkonen M.J.P. Not all maps are equal: GIS and spatial analysis in epidemiology // International Journal of Circumpolar Health, 2004; 63 (1): 9-23. Available from: https://doi.org/10.3402/ijch. v63i1.17642. PMid:15139238.
28. Schierbeck S., Nord A., Svensson L., Rawshani A.., Hollenberg J., Ringh M., Forsberg S., Nordberg P., Hilding F., Claesson A. National coverage of out-of-hospital cardiac arrests using automated external defibrillator-equipped drones - A geographical information system analysis // Resuscitation. 2021, Jun. 163:136-145. doi: 10.1016/j.resuscitation.2021.02.040. Epub 2021 Mar 3. PMID: 33675868.
29. Scuffham P.A., Tippett V.I. The cost-effectiveness of thrombolysis administered by paramedics // Current Medical Research and Opinion. 2008. 24: 2045-2058
30. Shaltynov A., Abiltaev A., Konabekov B., Jamedinova U., Aldyngurov D., Utegenova A., Myssayev A. Geospatial Analysis of Ambulance Station Coverage of the Acute Coronary Syndrome Incidents in Semey, Kazakhstan // Open Access Macedonian Journal of Medical Sciences. 2020 Sep 20. 8(E):638-646. https://doi.org/10.3889/oamjms.2020.5160.
31. Stassen W., Olsson L., Kurland L. The application of optimisation modelling and geospatial analysis to propose a coronary care network model for patients with ST-elevation myocardial infarction // Afr J Emerg Med 2020. https://doi.org/10.1016/j. afjem.2020.04.008
Referensec:
1.Abil'taev A.M., Konabekov B.E., Sepbosynova A.S., Dzhamedinova U.S., Mantler N.V., Mansurova G.T., Kalelova A.M., Kusainova A.R., Kadyrbekov E.S., Shaltynov A.T., Mysaev A.O. Sezonnost' vyzovov skoroi meditsinskoi pomoshchi po prichine ostrogo koronarnogo sindroma [Seasonality of emergency medical calls due to acute coronary syndrome]. Medicine [Meditsina]. 2019. №1 (199). pp. 19-26 [in Russian]
2.VOZ «Vedushchie prichiny smertnosti i invalidnosti vo vsem mire za period 2000-2019 gg» [WHO Leading Causes of Death and Disability Worldwide 2000-2019] [Electronic resource available from]: https://www.who.int/ru/news/item/09-12-2020-who-reveals-
leading-causes-of-death-and-disability-worldwide-2000-2019 (accessed: 22.05.2021). [in Russian]
3. "Zdorov'e naseleniya Respubliki Kazakhstan i deyatel'nost' organizatsii zdravookhraneniya" ["The health of the population of the Republic of Kazakhstan and the activities of health-care organizations"]. Electronic resource available from: http://www.rcrz.kz/index.php/ru/statistika-zdravookhraneniya-2 (accessed: 22.05.2021). [in Russian]
4. Klinicheskii protokol diagnostiki i lecheniya infarkta miokarda s pod"emom segmenta ST. 2017. 1-63 p. [Clinical protocol of diagnosis and treatment of myocardial infarction with segment ST. 2017. Electronic resource available from: http://www.rcrz.kz/docs/clinic_protocol (accessed: 22.05.2021). [in Russian]
5. Luk'yanenko N.V. Bazarova G.Kh. Metodologicheskii podkhod ispol'zovaniya GIS tekhnologii v epidnadzore za sibirskoi yazvoi na territorii Altaiskogo kraya, Respubliki Altai [Methodological approach of the use of GIS technologies in disease surveillance for anthrax in territory of Altai Territory, Republic of Altai]. Meditsinskii al'manakh [Medical almanac]. 2016. T. 3. pp.103-108. [in Russian]
6. Gelis L.G. Ostryi koronarnyi sindrom [Acute Coronary Syndrome]. Kardiologiya. [Cardiology]. Electronic resource available from: www.cardio.by/treatkor (accessed: 23.09.2018). [in Russian]
7. Postanovlenie Pravitel'stva Respubliki Kazakhstan ot 29 noyabrya 2010 goda. № 672. «Ob utverzhdenii Gosudarstvennoi programmy razvitiya zdravookhraneniya Respubliki Kazakhstan "Salamatty ^aza^stan" na 2011 -2015 gody» Ukaz Prezidenta Respubliki Kazakhstan ot 29 noyabrya 2010 goda № 1113.
[Decision of the Government of the Republic of Kazakhstan of 29 November 2010. №672. «On the approval of the State Program for the Development of Health Care of the Republic of Kazakhstan "Salamatti Kazakstan" for 2011-2015» Decree of the President of the Republic of Kazakhstan from 29 November 2010 №1113]. Electronic resource available from:
https://adilet.zan.kz/rus/docs/U1000001113 (accessed: 22.05.2021) [in Russian]
8. Postanovlenie Pravitel'stva Respubliki Kazakhstan ot 15 oktyabrya 2018 goda № 634. «Ob utverzhdenii Gosudarstvennoi programmy razvitiya zdravookhraneniya Respubliki Kazakhstan "Densauly^" na 2016 - 2019 gody» [Decision of the Government of the Republic of Kazakhstan of 15 October 2018 #634. «On approval of the State Program for Health Development of the Republic of Kazakhstan "Densauliq" for 2016 - 2019»]. Electronic resource available from: https://adilet.zan.kz/rus/docs/P1800000634 (accessed: 22.10.2021) [in Russian]
9. Syrodoev A.M., Gulin A.V., Simonov S.N. Sovremennye osobennosti techeniya ostrogo infarkta miokarda [Current features of acute myocardial infarction]. 2015. P. 2013-2016. [in Russian]
Coresponding Author:
Abiltayev Askar Muratovich - MD, Department of Public Health, Pavlodar branch of NCJSC "Semey Medical University, Pavlodar c., Republic of Kazakhstan.
Address: Republic of Kazakhstan, Pavlodar c.,140002, str. Toraigyrov 72/1 Email: Ali_argin@mail.ru Phone: +7 (775)080-08-19